首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of Au, Ag, As, Cd and Sb in aquatic bryophytes collected from the Dolgellau Mineral Belt, North Wales, U.K. are reported. One aquatic liverwort, Scapania undulata (L) Dum. and two mosses, Fontinalis squamosa Hedw. and Racomitrium aciculare (Hedw.) Brid. were collected from sites upstream and downstream of the recently reopened Gwynfyndd Au mine. There was little inter-species variation in metal contents for these three bryophytes, but Scapania undulata appeared the most sensitive to changes in water concentrations of Ag, As and Sb. Gold concentrations varied little between the contaminated and control sites. Concentrations in the range < 4–18 ng Aug g−1 D.W. were typical background levels, while bryophytes collected immediately below the mine contained 6–45 ng Au g−1. Silver and Sb both showed more pronounced ( 5–10 fold) elevations above control concentrations in samples collected downstream of the mine. Background concentrations for these elements were 5–85 ng Ag g−1 and 0.15–1.3 μg Sb g−1.Arsenic concentrations downstream of the mine (160–1080 μg g−1) greatly exceeded the background range of 9–32 μg g−1. It is suggested, therefore, that As may be an ideal ‘pathfinder’ element when prospecting for auriferous deposits using aquatic bryophytes.  相似文献   

2.
In an attempt to delineate heavy metal contamination precincts and to evaluate the extent and degree of toxic levels, besides their possible sources, 38 water samples from Ankaleshwar Industrial Estate, south Gujarat, India were analyzed. By clutching geochemical analyses and GIS-based colour composites areas depicting anomalously high concentration of heavy metals (Mo, Zn, Pb, Ni, Co, Cd, etc.) in the groundwater were revealed. The multicomponent overlays in grey-scale facilitated in identifying situates of heavy metal ‘hot spots’, and lateral protuberances of the contamination plume around defile stretch of the main stream Amla Khadi flowing through the area. The multiple pollution plumes emerging from other parts of the area further coincide with effluent laden streams and small channels indicating industrial establishments as major sources of groundwater contamination. Influent nature of the streams, accelerated infiltration process, high mass influx and shallow groundwater table are the factors conducive for easy access of heavy metals to the phreatic aquifers affecting over 20 km2 area. On the basis of P/U ratios (concentration of metals in polluted water to unpolluted water), geogenic and anthropogenic sources have been identified. Very high levels of technogenic elements present in the ground water raise concerns about possible migration into food crops, as the area is an important horticultural locale and is highly cultivated.  相似文献   

3.
The interaction of contaminated rocks (loam and clay recovered from depths of 1 and 4 m by a borehole drilled in the territory of a metallurgical plant in Ryazan oblast) was examined experimentally, and the concentrations (C) of twenty elements in solutions after the experiments were analyzed. The concentrations lie within ranges typical of the upper aquifer in the contaminated area, with the Al, As, Mo, Na, S, and W concentrations exceeding the maximum permissible concentration values (MPC). The experiments with clay yielded less stable and unambiguous results because a certain portion of clay particles passed through the filter (0.05 μm) when the rock and water were separated after the experiments and thus may contribute to the concentrations of certain elements in the solutions. The experiments led us to derive two types of dependences for each element: (1) C-t (time) dependences within the range of 1–36 days and (2) C-n (number of acts of rock treatment with fresh water portions) dependences. The both types are presented by various mass ratios of rock and water (r/w = 0.5 and 0.1). The character of the dependences led us to classify the elements into two groups. The concentrations of elements of one of the groups (As, Si, and V) shows no systematic dependences of C on t, n, and r/w, and this corresponds to equilibrium reached by fast adsorption-desorption reactions. These dependences in the other group of elements (almost all other elements) testify that the slow dissolution-precipitation reactions proceed away from equilibrium. The C-n dependences were utilized to evaluate the recovery ratios of elements and to identify easily soluble species of Ca, Mg, Mo, Na, S, and Sr. A fraction of ooliths (goethite + SiO2) separated from the clay contains elevated concentrations of certain trace elements. Microprobe analyses of the ooliths show that elements whose concentrations are comparable with the detection limits of microprobe analysis are evenly distributed, with elevated concentrations detected only in two instances: (i) Ce and La (in monazite) and (ii) Co and Ni (in MnO). Having a high isomorphic capacity with respect to several elements, goethite can act as a geochemical barrier and thus constrain the migration of these elements. The correlation dependences of elemental concentrations in rock fractions were utilized to derive further information on the speciation of the elements related to common sources in various rocks and the number of concentrator minerals.  相似文献   

4.
Concentrations of arsenic and its geochemically associated elements, Ag, Co, Cu and Ni, were measured together with Al, Ba, Cd, Fe, Mn, Pb, Sr and Zn in aquatic bryophytes. These bryophytes originated from some of the arsenic mineralization zones of the Klodzko-Zloty Stok granodiorite massif and its metamorphic envelope (Sudetes Mts., Poland) and from identical zones of the east Sudetic Rychlebske Mts. and Jesenik Mts. (Czech Republic). Concentrations of As in all examined populations were higher than background values (1 μg/g dry weight) culminating in an average maximum of 6270 μg/g in Chiloscyphus pallescens from a stream draining an area with former arsenic and gold mining near Zloty Stok.This survey has shown that aquatic bryophytes accumulate the examined elements to a high degree especially if growing in areas with mineral deposits. This was demonstrated by strong positive correlations between Ba, Sr, Zn concentrations in water and Platyhypnidium rusciforme.  相似文献   

5.
阿坝州位于四川西北部,与青海、甘肃交界,处于高海拔地区;该地区地表水资源丰富,长江与黄河上游水系均流经该区域。通过系统性采集区内河水(76件)、井水(7件)、溪水(8件)等样品,测试水体中D与18O的丰度与微量元素含量。结果表明:①受大气降水与流经地层的影响,阿坝地区河水中D与18O的丰度均显著高于溪水、井水与自来水等介质,线性相关性表明,河水中18O的富集与硫酸盐矿物的溶解密切相关;②阿坝地区井水、自来水、溪水之间存在明显的水力联系;③对于阿坝地区而言,黄河上游河流中δD与δ18O值均高于长江上游水系河流,但两者之间差别较小,这由于同一地区水系具有相同的大气降水来源;④河水、井水、溪水等表水中微量元素呈高Ba、Zn、Cr,低As、Pb、Cd的特点,与该地区岩石样品中微量元素特征基本一致,表明该地区表水中微量元素含量主要受地质背景因素控制。  相似文献   

6.
Chemical, mineralogical and isotopic studies have been made on nodules of the MARID (Mica-Amphibole-Rutile-Ilmenite-Diopside) xenolith suite in southern African kimberlites. All are ultramafic and ultrapotassic (MgO= 20–25%, K2O=4–9%), with bulk compositions reflecting the wide variation in relative proportions of the five minerals amongst the nodules. They are comparable in major element compositions to magnesian lamproites, in particular the ultrabasic olivine-lamproites of Western Australia. In a number of high pressure experimental studies on ultra-potassic rocks, the phases produced between 25–30 kbar from compositions comparable to those of MARID rocks (in the presence of additional water), were predominantly phlogopite and diopside (±K-richterite, ±ilmenite, ±rutile). Furthermore the compositions of experimental minerals produced in the synthetic-biotite-mafurite-H2O system by Edgar et al. (1976) are similar to those in MARID rocks.It is suggested on the basis of these observations and the textural appearance of MARID rocks that they are magmatic compositional equivalents of MgO-rich lamproites that crystallized at high pressures. While lamproites have higher average concentrations of incompatible elements, (including REE), some MARID rocks have comparable abundances. It is suggested that late stage vapour-rich melts carrying substantial REE and other incompatible elements escaped from crystallizing MARID magmas into surrounding subcontinental lithosphere, thus resulting in lower levels of these elements in most MARID rocks. In contrast faster crystallization of lamproitic rocks under volcanic/ hypabyssal conditions would prevent similar losses.The MARID proto-magmas are thought to be either partial melts of metasomatised phlogopite peridotite, or small volume asthenospheric melts which are modified and further enriched by incorporation of small partial melts of enriched subcontinental lithosphere during magma ascent.  相似文献   

7.
Twenty-five drinking water samples collected from the household property and from the Sydney Regional Municipality well bores and lakes were analyzed to evaluate the various inorganic parameters, level of concentrations of the priority elements and polyaromatic hydrocarbons (PAHs). The pH of the majority of the water samples was below the guidelines adopted by Health and Welfare Canada (1996), although the drinking waters supplied by the Sydney Regional Municipality were within the guidelines. Only three water samples (13 and 14: Point Aconi area and 16: Port Morien fish plant) have elevated concentrations of various PAHs compared to the detection limit. Eight samples have higher concentrations of manganese and two samples (number 7: Sydney Airport and number 1: RCMP Office; Reserve Mines) have higher concentrations of priority elements (especially lead) than the recommended guidelines (>0.05 mg/l). These priority elements and the PAHs in the drinking water samples may have originated from the leaching of the individual coal seams within that part of the Sydney Basin. Other potential sources of these elements and PAHs (Power Plant disposal, Sydney Tar Pond, metalliferous rocks, hydrocarbon reservoir rocks) are not located close enough to the sampling sites of the water samples. Therefore, they are not considered the source of these elements and PAHs.  相似文献   

8.
Mafic intrusive rocks (1.79–1.78 Ga) of the Transscandinavian Igneous Belt (TIB) and the c. 1.87 Ga Hedesunda Igneous Complex in the Fennoscandian Shield of south‐central Sweden were studied using whole‐rock and isotope geochemistry. Rock types vary from gabbros/norites (and leucogabbros) to quartz diorites, with Mg# between 76 and 49, and wt% SiO2 between 43.6 and 59.7, indicating some variation in evolutionary levels and variable cumulus components. Geochemical signatures are calc‐alkaline to shoshonitic, large ion lithophile elements and light rare earth elements enriched and high‐field strength elements depleted of continental‐arc type. εNd(t) ranges between +1.0 and +2.7, and 87Sr/86Sr(t) between 0.7020 and 0.7038. There is no systematic correlation between chemical parameters and isotope ratios. These isotopic data overlap with other mafic plutonic TIB rocks; samples from the Dala Province (DP) tend to overlap with the c. 1.7 Ga basic Dala lavas of TIB at slightly elevated relative Sr/Nd ratios. With two exceptions, the εNd(t) of +1 to +2 conform to an isotopically ‘mildly depleted’ source, typical for mafic TIB rocks and many Svecofennian rocks in the region. Reported values above εNd(t) +2.0 are scarce in the TIB. Mantle sources represent depleted mantle wedge material that was enriched by fluids/melts not long before (TDM c. 2.0 Ga), that is during subduction in the preceding Svecofennian (2.0–1.87 Ga) and/or during the TIB‐0&1 event (1.85–1.78 Ga). The palaeotectonic settings inferred are active continental margins; N–S‐directed convergence at 1.87 Ga and E–W‐directed at 1.79–1.78 Ga. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The apatite-bearing carbonate rocks at Eppawala, Sri Lanka occur as massive, discontinuous bodies in a Precambrian, high-grade metamorphic terrain, which weather to form economically important phosphate deposits. The ore bodies at Eppawala contain =42% P 2O 5, and citric acid solubility of different components varies from 4 to 6%. The parent rocks are mainly made up of calcite, dolomite and apatite, with lesser amounts of ilmenite, magnetite, pyrite, forsterite, phlogopite, enstatite, magnesite, diopside, tremolite and spinel. Most of minerals show an euhedral habit, with a wide range of crystal sizes (from a few millimetres to several decimetres). The Eppawala rocks are characterised by low silica (=0.41%), high phosphorous (=10.58%) and high strontium content (2,960–6,819 ppm). Concentrations of light rare-earth elements in these rocks are comparably higher than those of marbles. The REE fractionation of these rocks is pronounced, and La/Yb ratios vary between 14 and 43. Both apatite and calcite show markedly elevated strontium levels (=0.6%). The d 13C PDB and d 18O SMOW values of the carbonates are in the range of –3.4 to –2.2 and 7.7 to 16.4‰ respectively. The euhedral habit, as well as the presence of major quantities of apatite and considerable amounts of iron-bearing minerals suggest that the ore host rock has genetic links to an igneous source rather than to an intensely metamorphosed limestone. The higher light REE contents of the rocks, compared to marbles, also argue against a metamorphic or sedimentary origin. The Sr/Mn and Ce/La ratios in the apatite are ~40 and ~2 respectively, suggesting that they were formed in a carbonatite magma. The markedly increased REE concentrations in the bulk chemistry of the rocks have been shown to be mainly controlled by the content of phosphate minerals. Compared to most carbonatites, the Eppawala rocks are generally depleted in selected trace elements, particularly Ba, Nb, Th, V, U and Zr. This depletion may be due to either a primary infertility of the parent magma with regard to such trace elements, or it is a result of fractional crystallisation during the rock formation. The stable isotope ratios do not plot within the defined "mantle carbonatite box", but still lie within the broader range of carbonatitic rocks. With these data at hand, it can be readily argued that the mode of occurrence, petrography and geochemistry of the Eppawala apatite-bearing carbonates provide conclusive evidence of their carbonatitic origin.  相似文献   

10.
Isotopic and geochemical data of the Zerenda series metamorphic rocks from the Kokchetav massif are reported. Some of these rocks contain microdiamond inclusions in garnets and other indicators of ultrahigh pressure metamorphism (P > 40 kbar, T = 900–1000 °C). The diamond-bearing rocks exhibit distinctive geochemical characteristics compared to typical crustal rocks. The REE patterns range from LREE depleted to slightly LREE enriched [chondrite normalized (La/Yb)N– 0.1–5.4] with a negative Eu anomaly. They are depleted in incompatible elements (e.g. Sr, Ba, U, Th) with respect to the upper crust. In contrast non-diamondiferous rocks of the Zerenda series exhibit normal crustal geochemistry. All rocks of the Zerenda series have very radiogenic lead isotopes. The measured μ values (238U/204Pb) compared with those calculated for the interval between crust formation and ultrahigh pressure (UHP) metamorphism suggest a decrease by factors of up to 200 during the UHP metamorphism. The Sm-Nd mineral isochrons from the diamond-bearing rocks and other rock types of the Zerenda series give a Middle Cambrian (524–535 Ma) age of metamorphism. The Nd model ages show that crust formation occurred about 2.3 Ga ago. Significant fractionation of Sm and Nd and loss of incompatible elements may be due to partial melting of the protoliths. The Ar-Ar age determinations of secondary biotite and muscovite from the diamond-bearing rocks yield an age of 517 ± 5 Ma. This cooling age requires a short time interval between UHP metamorphism and uplift to a crustal level. Ultrahigh pressure metamorphism might be a significant source of Pb for the mantle. We propose that the radiogenic Pb of the oceanic array is the contamination traces of numerous UHP events. Beside the geological aspect we demonstrate a method of dating a high grade metamorphic terrain using Nd isotopes. We compare whole rock isochrons and mineral isochrons and in this way get some insight into the behaviour of the Sm-Nd system during very high grade metamorphic events. Received: 14 August 1998 / Accepted: 1 June 1999  相似文献   

11.
During more than a century of gold mining in South Africa large amounts of tailings were produced, which now cover vast areas in densely populated regions. These dumps contain elevated levels of uranium and other toxic heavy metals associated with gold in the mined ore. Large-scale extraction of uranium from auriferous ore only took place during the cold war, leaving tailings with high uranium concentrations that were deposited before and after this period. Recent studies found elevated levels of the radioactive heavy metal in groundwater and streams, mainly attributed to the discharge of contaminated water from mines. In this paper the contribution of seepage from slimes dams to the uranium pollution of adjacent streams is analysed. Based on geochemical analyses of samples, field observations and long-term in situ measurements of hydraulic and hydrochemical parameters at selected mining sites across the Witwatersrand goldfields, the extent, mechanisms and dynamics of diffuse stream contamination by tailings seepage is characterised. Temporal and spatial variations of the process and the associated hazard potential are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
There are large areas of Permian basaltic rocks in the Tarim basin (PBRT) in northwestern China. Precise Ar–Ar dating of these rocks revealed an eruption age span of 262 to 285 Ma. Most of the PBRT is composed of alkaline basaltic rocks with high TiO2 (2.43%–4.59%, weight percent), high Fe2O3 + FeO (12.63%–17.83%) and P2O5 (0.32%–1.38%) contents. Trace elements of these rocks have affinities with oceanic island basalts (OIB), as shown in chondrite normalized rare earth elements (REE) diagrams and primitive mantle normalized incompatible elements diagrams. The rocks show complex Sr–Nd isotopic character based on which they can be subdivided into two distinct groups: group 1 has relatively small initial (t = 280 Ma)87Sr/86Sr ratio ( 0.7048) and positive εNd(t) (3.42–4.66) values. Group 2 has relatively large initial 87Sr/86Sr ratio (0.7060–0.7083) and negative εNd(t) (from − 2.79 to − 2.16) values. Lead isotopes are even more complex with variations of (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t ranging from 17.9265 to 18.5778, 15.4789 to 15.6067 and 37.2922 to 38.1437, respectively. Moreover, these two groups have different trace elements ratios such as Nb/La, Ba/Nb, Zr/Nb, Nb/Ta and Zr/Hf, implying different magmatic processes. Based on the geochemistry of basaltic rocks and an evaluation of the tectonics, deformation, and the compositions of crust and lithospheric mantle in Tarim, we conclude that these basaltic rocks resulted from plume–lithosphere interaction. Permian mantle plume caused an upwelling of the Tarim lithosphere leading to melting of the asthenospheric mantle by decompression. The magma ascended rapidly to the base of lower crust, where different degrees of assimilation of OIB-like materials and fractionation occurred. Group 1 rocks formed where the upwelling is most pronounced and the assimilation was negligible. In other places, different degrees of assimilation and fractionation account for the geochemical traits of group 2.  相似文献   

13.
Spatial distribution and temporal trends studies were carried out at Katedan Industrial Development Area (KIDA) near Hyderabad, capital of Andhra Pradesh state, India under Indo-Norwegian Institutional Cooperation Program, to find out the extent of contamination in streams and lake sediments from the discharge of industrial effluents. Stream and lake sediment samples were collected from the five lakes in the study area and connecting water streams. The samples were analyzed by XRF spectrometer for toxic elements. The studies reveal that the stream sediments with in the KIDA and the impounded Noor Mohammed Lake down stream have high concentration of some of the toxic elements like chromium, nickel, lead, arsenic, zinc etc. The geology of the area indicates that the study area consists of residual soil of acidic rocks, which are predominantly of Archaean gneisses and granites having low to medium concentrations of chromium and nickel. The source of these high concentration of elements like lead 2,300 mg/kg, copper 1,500 mg/kg, arsenic 500 mg/kg, chromium 500 mg/kg etc. cannot be derived from the surrounding acidic rocks and may be attributed to the industrial effluents released in the ditches and random dumping of hazardous solid waste. It was observed that the metal concentrations increased in the streams during the dry season (pre-monsoon period). After the monsoon rains, the metal concentrations in the streams were reduced by half which may be due to dilution. The eroded sediments are deposited in the lake where very high concentrations were encountered. Overflowing of the lake will spread the contamination further downstream. The lake sediments will remain as a major source of contamination by desorption to the water phase regardless of what happens to the effluent discharge in the KIDA. However, some samples showed enrichment of lead, arsenic and nickel during post-monsoon, which were collected near the dumpsite due to the leaching of toxic elements from the dump site to the lakes. Some of the toxic elements like nickel and copper have not shown any dilution but have increased after the rains, which could be due to the leaching of arsenic from the dumpsite to the lake along with rainwater. Geochemical maps showing the distribution of heavy/trace elements in streams and lakes are prepared and presented in this paper. Effect of toxic elements on the health of the residents in the surrounding residential areas is also discussed.  相似文献   

14.
Fifty-seven shallow groundwater samples were collected from Guiyang karst basin, China, to analyze the aqueous rare-earth elements in low-water seasons and it is shown that the total amount of rare-earth elements (ΣREE) in karst groundwater is exceedingly low compared with that in carbonate rocks or weathering crusts of carbonate rocks, and ranges from 0.01 to 0.43, from 0.03 to 0.27, from 0.03 to 0.19 and from 0.05 to 1.38 μg·L-1 for dolomite, dolomitic & limestone, limestone and clastic rock aquifer, respectively. Both distributions and contents of rare-earth elements (REE) in karst groundwater reflect the lithology of host rocks or weathering crusts of carbonate rocks through which groundwater flows. The chondrite-normalized patterns show a non-flat profile with higher enrichment of slightly light rare-earth elements (LREE) than heavy rare-earth elements (HREE), prominent fractionation between LREE and HREE, negative Ce anomalies and negative or positive Eu anomalies. There is more obvious fractionation between LREE and HREE in groundwater than that in carbonate rocks and their weathering crusts due to high contents of HCO3? and PH in groundwater. In shallow karst groundwater, REE(CO3)n2n-3 (n=1 and 2) is the main inorganic species of REE. But for a clastic rock aquifer, both REESO4+ and REECO3+ are the main inorganic species of REE. Species of REE in groundwater is closely associated with the hydrochemical type of groundwater which is predominated by the lithology of host rocks, groundwater-rock interaction and weathering-pedogenesis of carbonate rocks.  相似文献   

15.
Gas chromatography and other analytical techniques (EMR, PMR, and IR spectroscopy) were used to examine volatile components (CH4, C2-C3, CO2, CO, H2, H2O, and others) in alkaline rocks and minerals from the Ukrainian Shield (eight massifs and dikes of grorudites) and from the Khibina and Lovozero massifs in the Baltic Shield. The alkaline rocks from the Ukrainian Shield are mostly of Proterozoic (1.7–2.1 Ga) age. The alkaline rocks from the Kola Peninsula were confirmed to be rich in methane (21 ± 14 μl/g on average) and other hydrocarbons, whereas the analogous rocks from the Ukrainian Shield are poor in methane (2.1 ± 1.6 μl/g on average at a maximum of 14 μl/g). The latter rocks are richer in CO2, which is one of the major volatile components of alkaline rocks, including agpaitic nepheline syenites from the Kola Peninsula. The rocks from the Ukrainian Shield often have elevated contents of nitrogen (up to 20 μl/g). The reasons for the differences in the composition of volatile components of rocks from the Kola Peninsula and Ukrainian Shield are as follows: the agpaitic crystallization trends of large massifs in the Kola Peninsula and much less clearly pronounced agpaitic trends in the small massifs in the Ukrainian Shield, the affiliation of these rocks with different complexes, the deeper erosion levels of the Ukrainian alkaline massifs, different ages of these rocks, etc.  相似文献   

16.
We have studied sediments of the Piscinas beach (SW Sardinia, Italy), which is supplied by two streams that wash mine dumps of abandoned lead and zinc mines at Montevecchio and Ingurtosu, situated inland from the supply basin of the beach itself. A study of the texture, mineralogy and geochemistry of the sediments was conducted for the purpose of assessing the possible influence of the mine waste on the composition of the sediments, looking for any anomalous enrichments in heavy metals. Furthermore, to evaluate and quantify metal release into the sea, samples of Posidonia oceanica, a bioaccumulator marine plant, were also examined. The results indicate that the distribution of heavy metals in the foreshore sediments is particularly affected by the contribution of the streams, while in the shoreface the distribution is affected by the currents that disperse the sediments both out to sea and southwards. The metal contents of the Posidonia oceanica are correlated with the different stages of activity of the mines. Received: 28 January 1998 · Accepted: 22 April 1998  相似文献   

17.
The geochemistry of tholeiitic rocks, alkali olivine basalts and basanites of The Mesozoic province of Israel has been studied. The elemental concentration in the magmas was treated in terms of batch melting followed by fractional crystallization processes. During the latter process, the crystallizing minerals from effusive and hypabyssal bodies match the conditions of maintaining surface equilibrium with the melt (Rayleigh Law). According to the incompatible characteristics of the LIL elements which were determined, they can be divided into two groups: (1) those elements (La, Ce, Ta, Th, Hf) which maintain incompatibility for rocks having D.I. <63, and (2) those elements which can be regarded as incompatible in rocks with further restrictions for U and Ba (D.I.<50); for P2O5 (Ni>75 ppm); for Sr (Ni>200 ppm). Assuming that the mantle has [La] n = 1 the spectrum of the rocks studied was generated by 0.5% to 3.2% partial melting from a single garnet peridotite source rock. The source rocks appear to be quite homogeneous with only a slightly LREE-enriched pattern. For the above melting range the D s (bulk distribution coefficient between the source rocks and the melts) values for Ta, La, Ce, Th, U, P2O5, Sr, Ba, and Hf were found to be 0.0012, 0.002, 0.0029, 0.0031, 0.0039, 0.0082, 0.0083, 0.01, and 0.015, respectively. If the mantle has [La] n =2, then for the range of 1 to 6.4% melting, the D s values would be 0.002, 0.0035, 0.0053, 0.0055, 0.007, 0.0152, 0.0153, 0.019, and 0.027, respectively.  相似文献   

18.
Organic material in metal contaminated soils around an abandoned magnetite mine–smelter complex in the critical Highlands watershed protects the groundwater and surface water from contamination. Metals in these waters were consistently below local and national water standards. Two groups of soil types cover the area: (1) Group A disturbed metal-rich soils, and (2) Group B undisturbed organic soils. Chromium and nickel were more elevated than other metals with Cr more widespread than Ni. In Group A, Cr correlated strongly with sesquioxides in the lower horizons (Fe2O3: r = 0.74, p < 0.025; Al2O3: r = 0.92, p < 0.005). In Group B, Cr correlated strongly (r = 0.96, p < 0.005) with soil organic matter (SOM) in the O-horizons. Ni–Cr (Group A: 52 and 70% in O- and lower horizons, respectively; Group B: ~100% in both horizons) and V–Cr correlations (78% only in Group A lower horizons) suggest similar retention mechanisms for these elements. Average soil \textpH\textCaCl2 {\text{pH}}_{{{\text{CaCl}}_{2} }} for both groups ranged between 3.65 and 5.91, suggesting that soil acidity is determined by organic acids and solubility of Al3+ releasing H+ ions. SOM and sesquioxides contribute significantly to creating naturally occurring filtration systems, removing metals, and protecting water quality. High Ca, Fe, and Ti in Group A soils suggest slag and ash were mixed into the soils. Some low-Cr sources include magnetite, slag, and ash (100, 100 and 200 mg/kg, respectively). Constant ZrO 2 :TiO 2 ratios in the lower soils indicate soil formation from breakdown of underlying tailing rocks, contributing Cr to these layers.  相似文献   

19.
The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite porphyry. The K2O content of majority of these rocks is greater than 3%, and, in the K2O-SiO2 diagram, all the samples fall into the high-K calc-alkaline to shoshonitic fields. They are enriched in light rare earth elements (LREEs) and depleted in heavy rare earth elements (HREEs; LaN/YbN = 14.3-21.2), and show slightly negative Eu anomalies (δEu = 0.77-1.00). These rocks have high K, Rb, Sr, and Ba contents; moderate to high enrichment of compatible elements (Cr = 36.7-79.9 ppm, Co = 9.6-16.4 ppm, and MgO = 2.2%-3.4%); low Nb, Ta, and Ti contents, and characteristic of low high field strength elements(HFSEs) versus incompatible elements ratios (Nb/Th = 0.75, Nb/La = 0.34) and incompatible elements ratios (Nb/U = 3.0 and Ce/Pb = 5.1, Ba/Rb = 12.0). These rocks exhibit restricted Sr and Nd isotopic compositions, with (87Sr/86Sr) i values ranging from 0.7044 to 0.7069 and εNd(t) values from -2.8 to -2.2. The Sr-Nd isotope systematic and specific trace element ratios suggest that Langdu high-K calc-alkaline intrusive rocks derived from a metasomatized mantle source. The unique geochemical feature of intrusive rocks can be modeled successfully using different members of a slightly enriched mantle, a slab-derived fluid, and terrigenous sediments. It can be inferred that the degree of partial melting and the presence of specific components are temporally related to the tectonic evolution of the Zhongdian island arc. Formation of these rocks can be explained by the various degrees of melting within an ascending region of the slightly enriched mantle, triggered by the subduction of the Garzê-Litang ocean, and an interaction between the slab-derived fluid and the terrigenous sediments.  相似文献   

20.
A critical study of 311 published WR chemical analyses, isotopic and mineral chemistry of anorthosites and associated rocks from eight Proterozoic massif anorthosite complexes of India, North America and Norway indicates marked similarities in mineralogy and chemistry among similar rock types. The anorthosite and mafic-leucomafic rocks (e.g., leuconorite, leucogabbro, leucotroctolite, anorthositic gabbro, gabbroic anorthosite, etc.) constituting the major part of the massifs are characterized by higher Na2O + K2O, Al2O3, SiO2, Mg# and Sr contents, low in plagioclase incompatible elements and REE with positive Eu anomalies. Their δ 18O‰ (5.7–7.5), initial 87Sr/86Sr (0.7034–0.7066) and ɛ Nd values (+1.14 to +5.5) suggest a depleted mantle origin. The Fe-rich dioritic rocks occurring at the margin of massifs have isotopic, chemical and mineral composition more close to anorthosite-mafic-leucomafic rocks. However, there is a gradual decrease in plagioclase content, An content of plagioclase and XMg of orthopyroxene, and an increase in mafic silicates, oxide minerals content, plagioclase incompatible elements and REE from anorthosite-mafic-leucomafic rocks to Fe-rich dioritic rocks. The Fe-rich dioritic rocks are interpreted as residual melt from mantle derived high-Al gabbro melt, which produced the anorthosite and mafic-leucomafic rocks. Mineralogically and chemically, the K-rich felsic rocks are distinct from anorthosite-mafic-leucomafic-Fe-rich dioritic suite. They have higher δ 18O values (6.8–10.8‰) and initial 87Sr/86Sr (0.7067–0.7104). By contrast, the K-rich felsic suites are products of melting of crustal precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号