首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chenaf D  Chapuis RP 《Ground water》2002,40(4):385-389
Starting from the equations of Theis and Cooper-Jacob, two new mathematical methods are proposed for interpreting the residual drawdown data for an infinite confined aquifer. Under Theis' assumptions and using the Cooper-Jacob approximation, the principal aquifer characteristics of transmissivity, pumping storativity, and recovery storativity are expressed without any correction or additional assumption. An actual case is used for illustration and confirms the validity of proposed equations and methods.  相似文献   

2.
《Advances in water resources》2005,28(10):1057-1075
The theory of a pumping test or a slug test to measure aquifer transmissivity or storativity assumes that the aquifer properties are uniform around the well. The response of the drawdown to small spatial variations in aquifer properties in the volume of influence is determined by spatial weighting functions or Fréchet kernels, which in general are functions of space and time. The Fréchet kernels determine the effective “volume of influence” of the measurements at any time. Under the assumption that the well is a line sink we derive explicit analytical expressions for the Fréchet kernels for storativity and for transmissivity for both pumping and slug tests. We also derive the total sensitivity functions for uniform variations in storativity and transmissivity and show that they are the spatial integrals of the Fréchet kernels. We consider both the case of separate pumping and observation wells and also the radially symmetric case of observations made at the pumped or slugged well. The “volume of influence” is symmetric with respect to the pumping or slugged well and the observation well, and far from the well the contours of equal spatial sensitivity approach the shapes of ellipses with a well at each focus, rather than circles centered on the pumping well. We use the analytical solutions to investigate the nature of the singularities in the spatial sensitivity functions around the wells, which govern the importance of inhomogeneities close to the well or observation point.  相似文献   

3.
A new method for the interpretation of pumping tests in leaky aquifers   总被引:4,自引:0,他引:4  
A novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The method is based on the analysis of the first and second derivatives of the drawdown with respect to log time for the estimation of the flow parameters. Like commonly used analysis procedures, such as the type-curve approach developed by Walton (1962) and the inflection point method developed by Hantush (1956), the mathematical development of the DIP method is based on the assumption of homogeneity of the leaky aquifer layers. However, contrary to the two methods developed by Hantush and Walton, the new method does not need any fitting process. In homogeneous media, the two classic methods and the one proposed here provide exact results for transmissivity, storativity, and leakage factor when aquifer storage is neglected and the recharging aquifer is unperturbed. The real advantage of the DIP method comes when applying all methods independently to a test in a heterogeneous aquifer, where each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. Therefore, the methods are complementary and not competitive. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.  相似文献   

4.
Groundwater management decisions are often founded upon estimates of aquifer hydraulic properties, recharge and the rate of groundwater usage. Too often hydraulic properties are unavailable, recharge estimates are very uncertain, and usage is unmetered or infrequently metered over only recent years or estimated using numerical groundwater models decoupled from the drivers of drawdown. This paper extends the HydroSight groundwater time-series package ( http://peterson-tim-j.github.io/HydroSight/ ) to allow the joint estimation of gross recharge, transmissivity, storativity, and daily usage at multiple production bores. A genetic evolutionary scheme was extended from estimating time-series model parameters to also estimating time series of usage that honor metered volumes at each production bore and produces (1) the best fit with the observed hydrograph and (2) plausible estimates of actual evapotranspiration and hence recharge. The reliability of the approach was rigorously tested. Repeated calibration of models for four bores produced estimates of transmissivity, storativity, and mean recharge that varied by a factor of 0.22-0.32, 0.13-0.2, and 0.03-0.48, respectively, when recharge boundary effects were low and the error in monthly, quarterly, and biannual metered usage was generally <10%. Application to the 30 observation bores within the Warrion groundwater management area (Australia), produced a coefficient of efficiency of ≥0.80 at 22 bores and ≥0.90 at 12 bores. The aquifer transmissivity and storativity were reasonably estimated, and were consistent with independent estimates, while mean gross recharge may be slightly overestimated. Overall, the approach allows greater insights from the available data and provides opportunity for the exploration of usage and climatic scenarios.  相似文献   

5.
A single recovery type curve from Theis'' exact solution   总被引:2,自引:0,他引:2  
Samani N  Pasandi M 《Ground water》2003,41(5):602-607
The Theis type curve matching method and the Cooper-Jacob semilog method are commonly used for estimation of transmissivity and storage coefficient of infinite, homogeneous, isotropic, confined aquifers from drawdown data of a constant rate pumping test. Although these methods are based on drawdown data, they are often applied indiscriminately to analyze both drawdown and recovery data. Moreover, the limitations of drawdown type curve to analyze recovery data collected after short pumping times are not well understood by the practicing engineers. This often may result in an erroneous interpretation of such recovery data. In this paper, a novel but simple method is proposed to determine the storage coefficient as well as transmissivity from recovery data measured after the pumping period of an aquifer test. The method eliminates the dependence on pumping time effects and has the advantage of employing only one single recovery type curve. The method based on the conversion of residual drawdown to recovered drawdown (buildup) data plotted versus a new equivalent time (delta(t) x t(p)/t(p) + delta(t)). The method uses the recovery data in one observation point only, and does not need the initial water level h0, which may be unknown. The accuracy of the method is checked with three sets of field data. This method appears to be complementary to the Cooper-Jacob and Theis methods, as it provides values of both storage coefficient and transmissivity from recovery data, regardless of pumping duration.  相似文献   

6.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

7.
Mutch RD 《Ground water》2005,43(6):935-938
A new distance-drawdown method for aquifers with anisotropy on the horizontal plane is presented. The method uses scalar transformation to convert to an equivalent, isotropic medium, thus permitting application of the Cooper-Jacob Method. The method is applicable to cases where at least one ellipse of equal drawdown can be delineated but can also be applied where no ellipse can be discerned from the data. In the latter case, a least-squares regression approach can be employed to estimate the orientation and magnitude of the anisotropy. The regression R2 value provides a quantitative assessment of the degree to which the drawdown data are indicative of a systematic areal anisotropy in the aquifer or whether the data simply reflect natural aquifer heterogeneity. In addition to confined aquifers, this methodology, like the Cooper-Jacob Method, is also applicable to unconfined aquifers either before the onset of delayed drainage or following the completion of delayed drainage provided that the u value meets the recommended criterion.  相似文献   

8.
We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy . The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy , is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy .  相似文献   

9.
Cem B. Avci  A. Ufuk Sahin 《水文研究》2014,28(23):5739-5754
Pumping tests are one of the most commonly used in situ testing techniques for assessing aquifer hydraulic properties. Numerous researches have been conducted to predict the effects of aquifer heterogeneity on the groundwater levels during pumping tests. The objectives of the present work were as follows: (1) to predict drawdown conditions and to estimate aquifer properties during pumping tests undertaken in radially symmetric heterogeneous aquifers, and (2) to identify a method for assessing the transmissivity field along the radial coordinate in radially symmetric and fully heterogeneous transmissivity fields. The first objective was achieved by expanding an existing analytical drawdown formulation that was valid for a radially symmetric confined aquifer with two concentric zones around the pumping well to an N concentric zone confined aquifer having a constant transmissivity value within each zone. The formulation was evaluated for aquifers with three and four concentric zones to assess the effects of the transmissivity field on the drawdown conditions. The specific conditions under which aquifer properties could be identified using traditional methods of analysis were also evaluated. The second objective was achieved by implementing the inverse solution algorithm (ISA), which was developed for petroleum reservoirs to groundwater aquifer settings. The results showed that the drawdown values are influenced by a volumetric integral of a weighting function and the transmissivity field within the cone of depression. The weighting function migrates in tandem with the expanding cone of depression. The ability of the ISA to predict radially symmetric and log‐normally distributed transmissivity fields was assessed against analytical and numerical benchmarks. The results of this investigation indicated that the ISA method is a viable technique for evaluating the radial transmissivity variations of heterogeneous aquifer settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Actual pumping tests may involve continuously decreasing rates over a certain period of time, and the hydraulic conductivity (K) and specific storage (Ss) of the tested confined aquifer cannot be interpreted from the classical constant‐rate test model. In this study, we revisit the aquifer drawdown characteristics of a pumping test with an exponentially decreasing rate using the dimensionless analytical solution for such a variable‐rate model. The drawdown may decrease with time for a short period of time at intermediate pumping times for such pumping tests. A larger ratio of initial to final pumping rate and a smaller radial distance of the observation well will enhance the decreasing feature. A larger decay constant results in an earlier decrease, but it weakens the extent of such a decrease. Based on the proposed dimensionless transformation, we have proposed two graphical methods for estimating K and Ss of the tested aquifer. The first is a new type curve method that does not employ the well function as commonly done in standard type curve analysis. Another is a new analytic method that takes advantage of the decreasing features of aquifer drawdown during the intermediate pumping stage. We have demonstrated the applicability and robustness of the two new graphical methods for aquifer characterization through a synthetic pumping test.  相似文献   

11.
Water level time series from groundwater production wells offer a transient dataset that can be used to estimate aquifer properties in areas with active groundwater development. This article describes a new parameter estimation method to infer aquifer properties from such datasets. Specifically, the method analyzes long‐term water level measurements from multiple, interacting groundwater production wells and relies on temporal water level derivatives to estimate the aquifer transmissivity and storativity. Analytically modeled derivatives are compared to derivatives calculated directly from the observed water level data; an optimization technique is used to identify best‐fitting transmissivity and storativity values that minimize the difference between modeled and observed derivatives. We demonstrate how the consideration of derivative (slope) behavior eliminates uncertainty associated with static water levels and well‐loss coefficients, enabling effective use of water level data from groundwater production wells. The method is applied to time‐series data collected over a period of 6 years from a municipal well field operating in the Denver Basin, Colorado (USA). The estimated aquifer properties are shown to be consistent with previously published values. The parameter estimation method is further tested using synthetic water level time series generated with a numerical model that incorporates the style of heterogeneity that occurs in the Denver Basin sandstone aquifers.  相似文献   

12.
Abstract. PUMPTEST.BAS is a BASIC program for IBM PC b microcomputers and compatibles that calculates transmissivity and storativity of confined aquifers using the Cooper-Jacob method.  相似文献   

13.
In recent years, many approaches have been developed using the artificial neural networks (ANN) model incorporated with the Theis analytical solution to estimate the effective hydrological parameters for homogeneous and isotropic porous media, such as the Lin and Chen approach (ANN approach) and the principal component analysis (PCA)‐ANN approach. The above methods assume a full superimposition of the type curve and the observed drawdown and try to use the first time‐drawdown data as a match point to make a fine approximation of the effective parameters. However, using first time‐drawdown data or early time‐drawdown data does not always allow for an accurate estimation of the hydrological parameters, especially for heterogeneous and anisotropic aquifers. Therefore, this article corrects the concept of the superimposed plot by modifying the ANN approach and the PCA‐ANN approach, as well as incorporating the Papadopoulos analytical solution, to estimate the transmissivities and storage coefficient for anisotropic, homogeneous aquifers. The ANN model is trained with 4000 training sets of the well function, and tested with 1000 sets and 300 sets of synthetic time‐drawdown generated from the homogeneous and heterogeneous parameters, respectively. In situ observation data from the time‐drawdown at station Shi‐Chou on the Choushui River alluvial fan, Taiwan, is further adopted to test the applicability and reliability of the proposed methods, as well as provide a basis for comparison with the Straight‐line method and the Type‐curve method. Results suggest that both of the modified methods perform better than the original ones, and using late time‐drawdown to optimize the effective parameters is shown to be better than using early time‐drawdown. Additionally, results indicate that the modified ANN approach is better than the modified PCA‐ANN approach in terms of precision, while the efficiency of the modified PCA‐ANN approach is approximately three times better than that of the modified ANN approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Aquifer parameter estimation using an incremental area method   总被引:2,自引:0,他引:2  
Theoretical well functions have been derived over the years to predict ground water level behaviour in aquifer systems under stress owing to groundwater extraction. The drawdown data collected during pump tests are typically analysed using graphical curve‐matching procedures to estimate aquifer parameters based on these well functions. Difficulty in aquifer characteristic identification and parameter estimation may arise when the field data do not perfectly match the drawdown curves obtained from the well functions. The present study provides a new method for the interpretation of aquifer pump tests which supplements the existing curve‐matching procedures in case ideal conditions do not exist; the proposed method provides a greater degree of flexibility in the data analysis for diagnostic tool purposes. The method, referred to as the Incremental Area Method (IAM) is based on integrating the logarithmic‐based drawdown curves within a discrete time and matching the results with a corresponding time integral of the Theis ( 1935 ) Well Function which governs ideal confined aquifers. The application of the proposed method to synthetically generated data and field data showed that IAM represents a viable method which yields information on potential non‐idealness of the aquifer and provides aquifer parameter estimates thus potentially overcoming drawdown data curve‐matching difficulties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
 Logarithmic sensitivities and plausible relative errors are studied in a simple no-crossflow model of a transient flowmeter test (TFMT). This model is identical to the model of a constant-rate pumping test conducted on a fully penetrating well with wellbore storage, surrounded by a thick skin zone, and situated in a homogeneous confined aquifer. The sensitivities of wellbore drawdown and wellface flowrate to aquifer and skin parameters are independent of the pumping rate. However, the plausible relative errors in the aquifer and skin parameters estimated from drawdown and wellface flowrate data can be proportionally decreased by increasing the pumping rate. The plausible relative errors vary by many orders of magnitude from the beginning of the TFMT. The practically important flowrate and drawdown measurements in this test, for which the plausible relative errors vary by less than one order of magnitude from the minimum plausible relative errors, can begin approximately when the dimensionless wellface flowrate exceeds q D =q/Q≈0.4. During most of this stage of the test, the plausible relative errors in aquifer hydraulic conductivity (K a ) are generally an order of magnitude smaller than those in aquifer specific storativity. The plausible relative errors in the skin hydraulic conductivity (K s ) are generally larger than the plausible relative errors in the aquifer specific storativity when the thick skin is normal (K s >K a ) and smaller when the thick skin is damaged (K s <K a ). The specific storativity of the skin zone would be so biased that one should not even attempt to estimate it from the TFMT. We acknowledge Wiebe H. van der Molen for recommending the De Hoog algorithm and sharing his code. This research was partially supported by the US Geological Survey, USGS Agreement #1434-HQ-96-GR-02689 and North Carolina Water Resources Research Institute, WRRI Project #70165.  相似文献   

16.
The standard practice for assessing aquifer parameters is to match groundwater drawdown data obtained during pumping tests against theoretical well function curves specific to the aquifer system being tested. The shape of the curve derived from the logarithmic time derivative of the drawdown data is also very frequently used as a diagnostic tool to identify the aquifer system in which the pumping test is being conducted. The present study investigates the incremental area method (IAM) to serve as an alternative diagnostic tool for the aquifer system identification as well as a supplement to the aquifer parameter estimation procedure. The IAM based diagnostic curves for ideal confined, leaky, bounded and unconfined aquifers have been derived as part of this study, and individual features of the plots have been identified. These features were noted to be unique to each aquifer setting, which could be used for rapid evaluation of the aquifer system. The effectiveness of the IAM methodology was investigated by analyzing field data for various aquifer settings including leaky, unconfined, bounded and heterogeneous conditions. The results showed that the proposed approach is a viable method for use as a diagnostic tool to identify the aquifer system characteristics as well as to support the estimation of the hydraulic parameters obtained from standard curve matching procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Commonly used analytical approaches for estimation of pumping-induced drawdown and stream depletion are based on a series of idealistic assumptions about the stream-aquifer system. A new solution has been developed for estimation of drawdown and stream depletion under conditions that are more representative of those in natural systems (finite width stream of shallow penetration adjoining an aquifer of limited lateral extent). This solution shows that the conventional assumption of a fully penetrating stream will lead to a significant overestimation of stream depletion (> 100%) in many practical applications. The degree of overestimation will depend on the value of the stream leakance parameter and the distance from the pumping well to the stream. Although leakance will increase with stream width, a very wide stream will not necessarily be well represented by a model of a fully penetrating stream. The impact of lateral boundaries depends upon the distance from the pumping well to the stream and the stream leakance parameter. In most cases, aquifer width must be on the order of hundreds of stream widths before the assumption of a laterally infinite aquifer is appropriate for stream-depletion calculations. An important assumption underlying this solution is that stream-channel penetration is negligible relative to aquifer thickness. However, an approximate extension to the case of nonnegligible penetration provides reasonable results for the range of relative penetrations found in most natural systems (up to 85%). Since this solution allows consideration of a much wider range of conditions than existing analytical approaches, it could prove to be a valuable new tool for water management design and water rights adjudication purposes.  相似文献   

18.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   

19.
The application of a digital computer model of radial flow in an aquifer to the estimation of aquifer parameters is considered. Pumping-test data for a shallow unconfined gravel aquifer, in which the drawdown recorded at the pumped well is a significant proportion of the thickness of the aquifer, are used to test the method. The model is sufficiently flexible to allow for decrease in the saturated thickness, vertical components of flow, well losses and variations of aquifer parameters in time and space.  相似文献   

20.
An analytical model of stream/aquifer interaction is proposed that predicts drawdown in an aquifer with leakage from a finite-width stream induced by pumping from a well. The model is formulated based on the assumptions of stream partial penetration, a semipervious streambed, and distributed recharge across a finite-width stream. Advantages of the analytical solution include its simple structure, consisting of the Theis well function with integral modifications. The solution is derived for the semi-infinite domain between the stream and pumping well, which is of primary interest to hydrogeologists. Previous stream/aquifer analytical models are compared to the analytical solution based on dimensionless drawdown profiles. Drawdown in the aquifer near a wide stream was found to be less than that predicted by a solution that ignored stream width. Deviations between the proposed analytical solutions and previous solutions increase as stream width increases. For a hypothetical stream/aquifer system, the proposed analytical solution was equivalent to prior solutions when the ratio of the distance between the stream and aquifer to the stream width was greater than 25. This analytical solution may provide improved estimates of aquifer and streambed leakage parameters by curve fitting experimental field drawdown data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号