首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The St. Lawrence River discharges a substantial volume of water (405 km3/a) containing suspended (SPM; 3.42 × 106t) and dissolved (68.0 × 106t) materials to the Gulf of St. Lawrence. The total load contains organic carbon in paniculate (POC; 3–14% of SPM), and dissolved (DOC; 3.76 ± 0.63 mg/l) form. The concentration of POC (and particulate organic nitrogen) is positively correlated with discharge (increased during the spring flood and the fall enhancement of flow), but concentration of DOC is not so simply related to discharge. In consequence, the total organic carbon (POC + DOC) load is relatively invariant, and increased annually by only 2–3% despite a progressive increase of 8% in discharge over the years of this study. Seasonal differences in the composition of the particulate organic matter (POM) are interpreted as reflecting dominant contributions from within-river production in summer and from terrestrial sources in spring and fall. In years when the annual discharge was greater than average, a higher proportion of the POM was terrigenous. The organic matter in surface sediments of the estuary to which the river discharges is predominantly of terrestrial provenance.  相似文献   

2.
Few studies have examined the dynamics of sediments and suspended organic matter and their export from headwater basins in the Andes Mountains to the Amazon River, despite the fact that the Andes are the primary source of sediments to the lower Amazon basin. We measured river discharge as well as the concentration, δ15N, δ13C, %N, and %OC of coarse and fine suspended sediments (CSS and FSS) in the Chorobamba River, located in the central Andean Amazon of Peru. Samples were taken at least weekly over an entire year (July 2004-July 2005), with additional sampling during storms. Concentrations of particulate organic matter (POM) were generally low in the study river, with concentrations increasing by up to several orders of magnitude during episodic rain events. Because both overall flow volumes and POM concentrations increased under stormflow conditions, the export of POM was enhanced multiplicatively during these events. We estimated that a minimum of 80% of annual suspended sediment transfer occurred during only about 10 days of the year, also accounting for 74% of particulate organic carbon and 64% of particulate organic nitrogen transport. Significant differences occurred between seasons (wet and dry) for δ13C of coarse and fine POM in the Chorobamba River, reflecting seasonal changes in organic matter sources. The time series data indicate that this Andean river exports approximately equal amounts of fine and coarse POM to the lower Amazon. The observation that the vast majority of sediments and associated OM exported from Andean rivers is mobilized during short, infrequent storm events and landslides has important implications for our understanding of Amazon geochemistry, especially in the face of incipient global change.  相似文献   

3.
Vertical and horizontal distributions of dissolved and suspended particulate Fe and Mn, and vertical fluxes of these metals (obtained with sediment traps) were determined throughout the Pacific Ocean. In general, dissolved Fe is low in surface and deep waters (0.1 to 0.7 nmol/kg), with maxima associated with the intermediate depth oxygen minimum zone (2.0 to 6.6 nmol/kg). Vertical distributions of dissolved Mn are similar to previous reports, exhibiting a surface maximum, a subsurface minimum, a Mn maximum layer coincident with the oxygen minimum zone, and lowest values in deep waters.Near-shore removal processes are more intense for dissolved Fe than for dissolved Mn. Dissolved Mn in the surface mixed layer remains elevated much farther offshore than dissolved Fe. Elevated near-surface dissolved Mn concentrations occur in the North Pacific Equatorial Current, suggesting transport from the eastern boundary. Near-surface mixed-layer dissolved Mn concentrations are higher in the North Pacific gyre reflecting enhanced northern hemisphere aeolian sources.Residence time estimates for the settling of refractory paniculate Fe and Mn from the upper water column are 62–220 days (Fe), and 105–235 days (Mn). In contrast, residence times for the scavenging of dissolved Fe and Mn are 2–13 years (Fe) and 3–74 years (Mn). Scavenging residence times for dissolved Mn based on horizontal mixing in the surface mixed layer of the northeast Pacific are 0.4 years (nearshore) to 19 years (1000 km offshore).There is no evidence for in situ Fe redox dissolution within sub-oxic waters in the eastern tropical North Pacific. Dissolved Fe appeared to be controlled by dissolution from sub-oxic sediments, with oxidative scavenging in the water column or upper sediment layers. However, in situ Mn dissolution within the oxygen minimum zone was evident.  相似文献   

4.
Major ion chemistry of water and elemental geochemistry of suspended and surficial sediments collected from the Cauvery Estuary were studied to understand the geochemical processes in this tropical estuarine system. Specific conductance (EC), total dissolved solids (TDS), and total suspended matter (TSM) increased conservatively with increasing chlorinity. In general, SO4 2?, Na, K, Ca, and Mg showed an increasing trend while H4SiO4 and PO4 3? showed a decreasing trend toward the sea. Additional removal mechanisms operating for these ions in the Cauvery Estuary have been identified based on observed concentrations. Factor analysis pointed out the sources contributing to the observed trends in estuarine water chemistry. POC and PON decreased toward the high chlorinity zone. TSM in the Cauvery Estuary were mostly of inorganic nature. Stable carbon isotope values showed that the carbon was equally of marine and terrestrial origin and helped to delineate the contribution of river water and seawater. The ? mean size (a logarithmic grain size scale commonly used by sedimentologists) indicated that the surficial sediments were primarily comprised of coarse and silt, whereas suspended sediments were principally silt and clay. Suspended sediments were enriched in clays compared to surficial sediments. Quartz and feldspar were abundant among detritals while chlorite, kaolinite, and montmorillonite were dominant among clays. Silicon was the most abundant element in the sediments followed by Al, Ca, Na, K, Fe, Mn, and P. Heavy metals were enriched in the suspended sediments compared to the surficial bottom sediments as follows: Fe = 3.5, Mn = 7.4, Pb = 1.1, Zn = 15.2, Cu = 7.4, and Cr = 4.0. The levels of Cd, Cr, Zn, and Fe increased up the middle reaches and then decreased toward the sea due to urban effluent and fertilizer input. Size fractionation studies indicated that the metal concentration in the finer fraction was 50% higher by mass than the coarse silt and fine silt fractions. Chemical fractionation studies showed that the abundance of metals were in the order of residual > organic/sulfide > carbonate > Fe/Mn oxide > exchangeable fractions.  相似文献   

5.
Sedimentary biomarker distributions can record ocean productivity and community structure, but their interpretation must consider alteration during organic matter (OM) export and burial. Large changes in the water column redox state are known to impact on the preservation of biomarkers, but more subtle variation in sediment redox conditions, characteristic of major modern ocean basins, have been less thoroughly investigated. Here we evaluate changes in biomarker distributions during sinking and burial across a nearshore to offshore transect in the southwestern Cape Basin (South East Atlantic), which includes a range of sedimentary environments. Biomarker concentrations and distributions in suspended particulate matter from the upper water column were determined and compared with underlying sedimentary biomarker accumulation rates and distributions. Biomarker distributions were similar in surface and subsurface waters, indicating that the OM signature is exported from the ocean mixed layer with minimal alteration. We show that, while export production (100 m) is similar along this transect, 230Thxs-corrected biomarker accumulation rate varies by over an order of magnitude in sediments and is directly associated with sedimentary redox conditions, ranging from oxic to nitrogenous–ferruginous. Biomarker distributions were dominated by sterols in surface water, and by alkenones in underlying sediments, which we propose to be primarily the result of selective preservation. Notably, the difference in sediment O2 penetration depth was associated with relative biomarker preservation. Subtle variation in sedimentary redox conditions has a dramatic impact on the distribution of preserved biomarkers. We discuss mechanisms for preferential degradation of specific biomarkers within this setting.  相似文献   

6.
《Applied Geochemistry》2005,20(7):1391-1408
Surface water samples from the St. Lawrence River were collected in order to study the processes controlling minor and trace elements concentrations (Al, Fe, Mn, Cd, Co, Cu, Ni and Zn), and to construct mass balances allowing estimates of the relative importance of their natural and anthropogenic sources. The two major water inputs, the upper St. Lawrence River, which drains waters originating from the Lake Ontario, and the Ottawa River were collected fortnightly over 18 months. In addition, other tributaries were sampled during the spring floods. The output was monitored near Quebec City at the river mouth weekly between 1995 and 1999. Dissolved metal concentrations in the upper St. Lawrence River carbonated waters were lower than in the acidic waters of the tributaries draining the crystalline rocks of the Canadian shield and the forest cover. Biogeochemical and hydrodynamic processes occurring in Lake Ontario drive the seasonal variations observed in the upper St. Lawrence River. Biogeochemical processes relate to biological uptake, regeneration of organic matter (for Cd and Zn) and oxyhydroxide formation (for Mn and Fe), while hydrodynamic processes mainly concern the seasonal change in vertical stratification (for Cd, Mn, and Zn). In the Ottawa River, the main tributary, oxyhydroxide formation in summer governs seasonal patterns of Al, Fe, Mn, Cd, Co and Zn. The downstream section of the St. Lawrence River is a transit zone in which seasonal variations are mainly driven by the mixing of the different water masses and the large input of suspended particulate matter from erosion. The budget of all dissolved elements, except Fe and Zn, was balanced, as the budget of particulate elements (except Cd and Zn). The main sources of metals to the St. Lawrence River are erosion and inputs from tributaries and Lake Ontario. Direct anthropogenic discharges into the river accounted for less than 5% of the load, except for Cd (10%) and Zn (21%). The fluxes in transfer of dissolved Cd, Co, Cu and Zn species from the river to the lower St. Lawrence estuary were equal to corresponding fluxes calculated for Quebec City since the distributions of dissolved concentrations of these metals versus salinity were conservative. For Fe, the curvature of the dilution line obtained suggests that dissolved species were removed during early mixing.  相似文献   

7.
The factors which control concentrations of soluble inorganic phosphorus in the Amazon estuary are described and the efflux of phosphorus through the estuary is estimated using estuarine data collected on three field excursions (two in December, 1982 and one in May, 1983), and various laboratory mixing experiments. There is evidence to suggest that suspended sediments release significant quantities of inorganic phosphate to the estuarine waters. Bottom sediments collected from the estuary released soluble inorganic phosphorus at rates of approximately 0.2 μM day−1, when suspended in mixtures of seawater and deionized water. Release rates depended on salinity but were independent of sediment concentrations. Inputs of phosphate persisted for approximately 3 days in suspensions with sediment concentrations of 0.5 g l−1, but the duration of release increased to greater than 8 days at concentrations greater than 10 gl−1. A one-dimensional dispersion model was developed incorporating input rates derived from the laboratory mixing experiments. The model predicts phosphate concentrations which are consistent with field observations, and it provides quantitative estimates for total fluxes of soluble inorganic phosphorus to the high salinity fringes of the estuary (~25 ppt) of approximately 15 × 106molesday−1 and 27 × 106molesday−1 during December, 1982 and May, 1983 respectively. The data indicate a significant phosphate loss from estuarine waters at salinities from 0–4 ppt, possibly associated with iron and humate removal. More than 50% of the predicted flux could be contributed by phosphate released from suspended sediments within the turbid part of the estuary.  相似文献   

8.
Manganese has been measured in size-fractionated paniculate matter profiles obtained by large volume in situ filtration of the upper 1000 m of the N.W. Atlantic as part of the Warm Core Rings Experiment (WCRE) in 1982. Environments sampled included Warm Core Rings (WCR) 82B and 82H, the entrainment zone at the edge of these rings, the Slope Water surrounding rings, and the Gulf Stream (GS) and Sargasso Sea (SS) from which the rings formed.Manganese concentrations ranged from 10 pmol kg−1 to 10,000 pmol kg−1 with the extreme values observed in the quasi-isolated core waters of WCR 82B and in a tongue of shelf water at the periphery of WCR 82B, respectively. The majority of the Mn was in the 1–53 μm particle size fraction and most Mn was probably close to 1 μm in size. Mn showed no correlation with major biogenic phases indicating that formation by local biological processes was not an important source. Instead, most paniculate Mn present in the waters sampled originated in reducing sediments at the continental margin.A manganese budget for the quasi-isolated core waters of WCR 82B between February and June 1982 showed that most Mn removal was by the aggregation of the small Mn-oxyhydroxide particles into fecal material, followed by sedimentation.Calculations show that WCRs cause offshore particulate Mn transports from the continental margin between 66°W and Cape Hatteras of 8.5 × 104 to 14 × 104 mol d−1 with most derived from the continental shelf. Only 4% of the shelf derived Mn becomes entrained into WCRs and the rest is left to disperse in the Slope Water or enter the circulation of the Gulf Stream. The WCR-induced offshore Mn transports may account for a large fraction of the Mn flux to sediments on the continental slope and upper continental rise.  相似文献   

9.
Thallium(I) has been added to estuarine sediment suspended in various natural and artificial aqueous samples in order to examine its reactivity under simulated estuarine conditions. In river water and sea water, adsorption of Tl to sediment was so rapid that a period of desorption-relaxation succeeded instantaneous adsorption. Entire time-courses could not be fitted with a conventional kinetic model, but pseudo-first-order forward and reverse rate constants of 0.0044 and 0.30 h−1, respectively, were derived for river water by omitting measurements defining the adsorption “overshoot” observed at the onset of the experiment. The extent of adsorption after a 16 h equilibration period was considerably greater in river water than in sea water, and displayed a quasi-linear increase with increasing pH over the range 2-9 in the former but no clear dependence on pH in the latter. A logarithmic reduction in the sediment-water distribution coefficient, KD, was observed on estuarine mixing from river water to sea water. Experiments conducted in electrolyte solutions coupled with inorganic equilibrium speciation modeling revealed that the effect was the combined result of a reduction in the activity of Tl+, an increase in the proportion of TlCl0 and increasing competition for adsorption sites from K+ with an increase in salinity. Overall, there was little experimental evidence for either the oxidation of Tl+ or its complexation by dissolved organic matter. The findings of the investigation are discussed in terms of the likely behavior of Tl in estuaries.  相似文献   

10.
The depth distributions of hydroxylamine/acetic acid-extractable Co and Cd were determined in box-cores from a series of stations along the 1200 Km length of the Laurentian Trough. These were compared with the concentrations of total Co and Cd and the distributions of extractable Mn and Fe in the cores, as well as with the total Cd concentrations in sedimenting particles collected with a sediment trap. The results indicate a strongly contrasting behaviour of the two elements during early diagenesis, consistent with their respective chemistries and particle-associations. Cobalt occurs mainly in a non-reactive form and is buried with the accumulating sediments. A mobile component of Co is associated with Mn- and Fehydroxides and, like these compounds, follows a redox-sensitive pattern of dissolution in the reducing zone of the sediment—vertical migration—enrichment by precipitation in the oxidized surface layer—and redistribution along the bottom in paniculate form. Paniculate Cd arrives at the sediment surface bound to biogenic material, is rapidly solubilized during aerobic degradation of the organic matter, and migrates vertically both into the reducing zone of the sediments where it precipitates, and back into the water column where it may be recycled through biological processes. In an estuary, Co will be concentrated in the oxidized layer of the sediments and tend to migrate landward, while Cd will be most abundant in sediments underlying regions where plankton production is high relative to dilution by terrigenous particles.  相似文献   

11.
Allochthonous inputs of suspended particulate matter from freshwater environments to estuaries influence nutrient cycling and ecosystem metabolism. Contributions of different biogeochemical reactions to phosphorus dynamics in Tomales Bay, California, were determined by measuring dissolved inorganic phosphorus exchange between water and suspended particulate matter in response to changes in salinity, pH, and sediment redox. In serum bottle incubations of suspended particulate matter collected from the major tributary to the bay, dissolved inorganic phosphorus release increased with salinity during the initial 8 h; between 1–3 d, however, rates of release were similar among treatments of 0 psu, 16 psu, 24 psu, and 32 psu. Release was variable over the pH range 4–8.5, but dissolved inorganic phosphorus releases from sediments incubated for 24 h at the pH of fresh water (7.3) and seawater (8.1) were similarly small. Under oxidizing conditions, dissolved inorganic phosphorus release was small or dissolved inorganic phosphorus was taken up by particulate matter with total P content <50 μmoles P g?1; release was greater from suspended particulate matter with total phosphorus content >50 μmoles P g?1. In contrast, under reducing conditions maintained by addition of free sulfide (HS?), dissolved inorganic phosphorus was released from particles at all concentrations of total phosphorus in suspended particulate matter, presumably from the reduction of iron oxides. Since extrapolated dissolved inorganic phosphorus release from this abiotic source can account for only 12.5% of the total dissolved inorganic phosphorus flux from Tomales Bay sediments, we conclude most release from particles is due to organic matter oxidation that occurs after estuarine deposition. The abiotic, sedimentary flux of dissolved inorganic phosphorus, however, could contribute up to 30% of the observed net export of dissolved inorganic phosphorus from the entire estuary.  相似文献   

12.
The concentrations of authigenic phases of Cd, Re, U, and Mo increase with depth in four 45-cm-long sediment box cores collected along the axis of the Laurentian Trough, Gulf of St. Lawrence. Average authigenic accumulation rates, estimated from element inventories, are similar to rates in other continental margin environments. Strong regional variations in sediment accumulation rate and sulfide concentration have little influence on the accumulation rates of Cd and Re. This suggests that slow precipitation kinetics controls the accumulation of Cd and Re in these sediments. The accumulation rate of authigenic U is more variable; it may be tied to the kinetics of microbially mediated U reduction and be controlled by the availability of reactive organic matter. Authigenic Mo is distinguished by a sharp subsurface concentration minimum, above which Mo cycles with manganese. Mo released to pore water upon reduction of Mn oxides diffuses downward and enriches the subsurface sediment. Mo accumulates most rapidly in the sediment with the highest sulfide content. Slow conversion of molybdate to thiomolybdate may explain the much slower Mo accumulation rate in the less sulfidic sediments. A component of authigenic Mo accumulates with pyrite in an approximately constant Mo:Fe ratio. The accumulation rate of pyrite and associated Mo is insensitive to AVS abundance. Pyrite formation may be limited by the reactivity of iron oxide minerals.  相似文献   

13.
We tested the hypothesis that the distribution and retention of larval smelt (Osmerus mordax) in the middle estuary of the St. Lawrence River is related to the maintenance of other planktonic organisms in the maximum turbidity zone (MTZ). We documented the horizontal and vertical distribution of larval smelt, macrozooplankton, and suspended particulate matter over four tidal cycles at each of three stations located along the major axis of the turbid upstream portion of the middle estuary. During summer, the turbid, warm, and low salinity waters of the two upstream stations were characterized byNeomysis americana, Gammarus sp. (principallyG. tigrinus), larval smelt,Mysis stenolepsis, andCrangon septemspinosus. The more stratified and less turbid waters of the downstream station were characterized by a coastal marine macrozooplanktonic community and the almost total absence of smelt larvae. Within the MTZ, the distribution ofN. americana coincided with the zone of longest average advective replacement times (null zone). Smelt larvae were distributed further upstream within the MTZ thanN. americana. Overall, larger larvae were distributed further upstream than smaller larvae. The relationship between turbidity and larval density at a specific time was weak (due to resuspension of sediments but not larvae), but the mechanism responsible for producing higher residence times for both sediment and larvae on a longer term basis appears the same. The daily movement and skewed nature of the null zone (due to the general cyclonic circulation of the middle estuary) defines a geographic zone over which the larval smelt population oscillates and remains despite the mean downstream velocities over the water column.  相似文献   

14.
Suspended sediment was collected in the South Slough, National, Estuarine Research Reserve, Oregon, over 8 tidal cycles during and following a single runoff event. The sediment was analyzed for its radionuclide signature to determine the relative contributions of different sources of sediment to the efflux from the estuary. Suspended sediment in the estuary is a mixture of sediment from three potential sources: the river system, Coos Bay, and the estuarine bed. Each source material has a distinctive7Be:210Pbxs ratio. The ratios of the source sediments decreased, in magnitude in the following order: riverine >bay>bed. The ratios, of the suspended sediment collected within a subsection of the South Slough estuary reflected the relative mixture of the source areas. The7Be:210Pbxs ratios provided a means of not only differentiating, between resuspended bed sediment and freshly delivered sediment from both the river system and Coos Bay, but also calculating the relative amount of resuspended bed sediment in the suspended sediment collected in the estuary. The sampled subsection of the South Slough estuary was a net sink of sediment during a 100-h sampling period associated with the runoff event, but the radionuclide analysis suggests that approximately 39% of the sediment efflux was resuspended bed sediment.  相似文献   

15.
Continental shelf sediments from nine locations off Washington and Oregon have 239,240Pu inventories which average 8.0 ± 2.6 mCi/km2. The Columbia River and seawaters advecting over the shelf supply Pu which is removed to underlying sediments, principally through scavenging by inorganic paniculate matter. Mass balance calculations argue that less than 20 percent of the advected Pu need be scavenged from the water column to balance river input and total shelf sediment inventories. The percentage of the Pu removed through scavenging is consistent with observed participate concentrations in shelf waters and published sediment/water distribution coefficients.No marked separation of Pu from 137Cs is observed with depth in Pacific shelf sediments as has been reported in Atlantic coastal sediments. This interocean distinctness can be explained by differences in particle mixing and downward diffusion of Cs in sediments of varying porosities. The transuranic inventories and Pu/Cs ratios in the Pacific sediments do not support the hypothesis of Livingston and Bowen that Pu is remobilized within the sediment column by ‘complexone’ formation with (principally) organic substances.Excess 210Pb/239,240Pu inventory ratios in eight representative cores from the Washington shelf average 100 ± 19, even though absolute values of both inventories vary by much larger factors. This reasonably constant ratio, for a given water depth, permits estimation of total Pu inventories and prediction of sites of unusual Pu accumulation from data on the more easily measured natural radionuclide.  相似文献   

16.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

17.
Sediment trapping and transport in the ACE Basin,South Carolina   总被引:1,自引:0,他引:1  
A study took place during May 1998 and May 1999 to examine the processes controlling localized accumulation of fine-grained sediments in the lower Ashepoo River. This region, referred to as the Mud Reach, is an area of muddy bottom sediments bounded by fine sands. The Mud Reach is located downstream of the landward extent of the salt intrusion where an estuarine turbidity maximum commonly occurs. Tidal time-series measurements made in the Mud Reach during May 1998, when river discharge was at a 10-yr high, showed high concentrations of suspended sediment (0.05–1 g I−1) during maximum tidal current velocity with concentrations in the bottom 30 cm exceeding 70 g I−1 (fluid mud). A correlation between salinity stratification and increased suspended sediment concentration suggests that inhibited vertical mixing enhances the settling of flocculated sediments to the bed. Measurements made during May 1999 show a two-order-of-magnitude decrease in the concentration of near-bed sediments. A decrease in river discharge during the 1999 observation period of more than 100 m3 s−1 suggests that changes in the hydrography and in the supply of sediments to the system both may be important factors in the trapping of fine-grained sediments in the region. The source of sediments is likely from muddy deposits in the Fenwick Cut, a man-made section of the Atlantic Intracoastal Waterway about 2 km north of the Mud Reach that connects the Ashepoo and Edisto Rivers. The Fenwick Cut appears to be an effective area for trapping sediments where shoaling has increased by 130% in the last decade. Current measurements show that flow velocities decrease through the Cut, likely allowing for the settling of suspended particles that form the thick deposits of unconsolidated mud observed during both years.  相似文献   

18.
The burial characteristics and toxicity risks associated with n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in the riverine and estuarine sediments of the Daliao River watershed were investigated based on three sediment cores. The sum of the n-alkane and PAH concentrations, normalized to organic carbon (OC), ranged from 0.27 to 63.09 μg g?1OC?1 and 6.60 to 366.20 μg g?1OC?1, respectively. The features and the history of industrial activities, such as the oil and chemical industries and port activities near the river and estuary, resulted in different distributions and sources of hydrocarbons. The sources of pollution were identified based on n-alkane indexes and on diagnostic ratios of PAHs. The diagnostic ratios indicated that the n-alkanes were derived from both biogenic and petrogenic sources in different proportions and that the PAHs were derived primarily from petrogenic combustion sources. A hierarchical cluster analysis grouped the core samples into two clusters. The first cluster, river sediments, corresponded to industrial activities; the second cluster, estuarine sediments, corresponded to port shipping activities. The toxic potency of the PAHs in the cores was assessed in terms of toxic equivalents (TEQs) of dibenzo[a,h]anthracene and benzo[a]pyrene. The top layer of the sediment in the cores had a relatively high toxicity. The TEQ values for benzo(a)pyrene (TEQBaP) and dioxins (TEQTCDD) furnished a consistent assessment of the PAHs in the sediment cores.  相似文献   

19.
The distribution of δ13C values for organic seston and sediment was determined in three sounds in the Spartina marsh estuaries along the Georgia coast, which had high, moderate, and low inputs of freshwater. Organic matter in all three sounds had similar carbon isotope compositions, for the most part within the range of marine values (δ13C of ?18%. to ?24%.). It appears that river flow does not introduce significant quantities of particulate C3 plant material (δ13C of ?25%. to ?28%.) to Georgia estuaries. Evaluation of δ13C values of estuarine seston and three size fractions of sediment indicated that while Spartina carbon (δ13C of ?13%.) can be an important component of organic matter in intertidal sediments (mean δ13C of ?14.3%. to ?20.0%.), it is less so in subtidal sediments (mean δ13C of ?18.8%. to ?21.2%.), and it is hardly present at all in the seston (mean δ13C of ?24.5%.). δ13C values of dissolved inorganic carbon (DIC) in several water samples ranged between ?2.5%. and ?5.6%., suggesting that the isotope composition of estuarine DIC is influenced by respiratory CO2 derived from metabolism of 13C-depleted plant carbon. Phytoplankton production utilizing this comparatively light DIC could be a source of relatively negative δ13C carbon in the estuary. Additional origins of estuarine organic matter greatly depleted in 13C compared to Spartina carbon remain to be identified.  相似文献   

20.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号