首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese oxides precipitated by bubbling air through 0.01 molar solutions of MnCl2, Mn(NO3)2, MnSO4, or Mn(ClO4)2 at a constantly maintained pH of 8.5 to 9.5 at temperatures of 25°C or higher consisted mainly of hausmannite, Mn3O4. At temperatures near 0°C, but with other conditions the same, the product is feitknechtite, βMnOOH, except that if the initial solution is MnSO4 and the temperature is near 0°C the product is a mixture of manganite, γMnOOH and groutite, αMnOOH.All these oxides are metastable in aerated solution and alter by irreversible processes to more highly oxidized species during aging. A two-step nonequilibrium thermodynamic model predicts that the least stable species, βMnOOH, should be most readily converted to MnO2. Some preparations of βMnOOH aged in their native solution at 5°C attained a manganese oxidation state of +3.3 or more after 7 months. Hausmannite aged at 25°C altered to γMnOOH. The latter is more stable than a or βMnOOH, and manganese oxidation states above 3.0 were not reached in hausmannite precipitates during 4 months of aging. Initial precipitation of MnCO3 rather than a form of oxide is likely only where oxygen availability is very low.Composition of solutions and oxidation state and morphology of solids were determined during the aging process by chemical analyses, X-ray and electron diffraction and transmission electron micrographs.  相似文献   

2.
The initial solid phase oxidation products formed during the oxidation of aqueous Mn(II) at 25°C were studied as a function of time. The analyses included morphology (TEM), mineralogy (x-ray diffraction), OMn ratio (iodometric method), oxidation state of manganese (XPS), and dissolved manganese. The initial solid formed under our conditions was Mn3O4 (hausmannite) which converted completely to γMnOOH (manganite) after eight months. βMnOOH (feitknechtite) appeared to be an intermediate in this transformation. The OMn ratio was initially 1.37 and increased to 1.49 over the same time span. Throughout the course of this study the XPS analyses showed that the surface of the solids (<50 Å) was dominated by Mn(III). The solution pH and dissolved manganese concentrations were consistent with disproportionation and oxidation reactions that favor the transformation of Mn3O4 to γMnOOH but not to γMnO2.  相似文献   

3.
A precipitate of cobalt oxyhydroxides formed by bubbling oxygen through a dilute solution of Co(NO3)2 held at pH 9.0 and 25°C was aged for 23 months in contact with the original solution, with access to atmospheric oxygen. Co3O4 and CoOOH were identified in the precipitate by X-ray diffraction. Chemical equilibria involving these solids were evaluated by measurements of solution pH and Co2+ activities and by redox potential measurements and gave a ΔGcoOOH0 of ?92.3 ± 0.5 kcal/mole. This value and other thermodynamic data show relative feasibility of hypothetical reaction steps and changes in reaction paths during automated coprecipitation titrations and subsequent aging of a precipitate that finally contained βMnOOH, MnO2 (birnessite) and CoOOH.  相似文献   

4.
The Pinal creek drainage basin in Arizona is a good example of the principal non-coal source of mining-related acid drainage in the U.S.A., namely copper mining. Infiltration of drainage waters from mining and ore refining has created an acid groundwater plume that has reacted with calcite during passage through the alluvium, thereby becoming less acid. Where O2 is present and the water is partially neutralized, iron oxides have precipitated and, farther downstream where the pH of the stream water is near neutral, high-Mn crusts have developed.Trace metal composition of several phases in the Pinal Creek drainage basin illustrates the changes caused by mining activities and the significant control Mn-crusts and iron oxide deposits exert on the distribution and concentration of trace metals. The phases and locales considered are the dissolved phase of Webster Lake, a former acid waste disposal pond; selected sections of cores drilled in the alluvium within the intermittent reach of Pinal Creek; and the dissolved phase, suspended sediments, and streambed deposits at specified locales along the perennial reach of Pinal creek.In the perennial reach of Pinal Creek, manganese oxides precipitate from the streamflow as non-cemented particulates and coatings of streambed material and as cemented black crusts. Chemical and X-ray diffraction analyses indicate that the non-cemented manganese oxides precipitate in the reaction sequence observed in previous laboratory experiments using simpler solution composition, Mn3O4 to MnOOH to an oxide of higher oxidation number usually <4.0, i.e. Na-birnessite, and that the black cemented crusts contain (Ca,Mn,Mg)CO3 and a 7-Åphyllomanganate mixture of rancieite ((Ca,Mn)Mn4O9 · (3H2O)) and takanelite ((Mn,Ca)Mn4O9 · (3H2O)). In the laboratory, aerating and increasing the pH of Pinal Creek water to 9.00 precipitated (Ca,Mn,Mg)CO3 from an anoxic groundwater that contained CO2 HCO3, and precipitated Mn3O4 and subsequently MnOOH from an oxic surface water from which most of the dissolved CO2 had been removed.It is suggested that the black cemented crusts form by precipitation of Fe on the Mn-enriched carbonates, creating a site for the MnFe oxidation cycle and thus encouraging the conversion of the carbonates to 7-Åphysllomanganates. The non-magnetic <63-μm size-fractions of the black cemented crusts consisted mostly of the manganese-calcium oxides but also contained about 20% (Ca,Mn,Mg)CO3, 5% Fe (calculated as FeOOH), 2–4% exchangeable cations, and trace amounts of several silicates.  相似文献   

5.
Summary ?Hydrothermal experiments to synthesize pumpellyite group minerals of the pumpellyite–okhotskite series and to investigate their stability have been carried out at 200, 300 and 400 MPa P fluid and 250–500 °C by using cold-seal pressure vessels and solid buffers of MnO2–Mn2O3, Cu2O–CuO and Cu2O–Cu buffer assemblages. Okhotskite and pumpellyite rich in the okhotskite component crystallized from an oxide mixture starting material of Ca4MgMn3+ 3Al2Si6O24.5-oxide+excess H2O at P fluid of 200, 300 and 400 MPa and temperatures of 300 and 400 °C. However, a single phase of okhotskite was not produced, and associated piemontite, hausmannite, wollastonite, clinopyroxene, corundum, braunite–neltnerite solid solution and alleghanyite also formed. Mn-pumpellyite of the okhotskite–pumpellyite join occurs as aggregates of needle crystals, rounded grains or flaky crystals. Chemical compositions are variable and range from pumpellyite-(Mn2+) to okhotskite: 31–36 SiO2, 13–21 Al2O3, 12–25 total Mn2O3, 0.6–4 MgO and 20–24 wt.% CaO. Reconnaissance experiments using a starting material of synthetic Ca2Mn3+Al2Si3O12(OH)-piemontite at 300 MPa and temperatures of 250, 300, 400 and 500 °C indicate that Mn-rich pumpellyite can crystallize from piemontite at lower temperatures than the stability field of piemontite. The Mn-rich pumpellyite was accompanied by garnet, wollastonite and alleghanyite. The chemical compositions of the Mn-pumpellyites are 32–36 SiO2, 18–27 Al2O3, 8–18 total Mn2O3 and 20–23 wt.% CaO. This study shows that the stability fields of piemontite, piemontite+Mn-pumpellyite, and Mn-pumpellyite range in this order with decreasing temperature under high fO2 conditions. The maximum stability temperature of Mn-rich pumpellyite lies between 400 and 500 °C at 200–400 MPa in high fO2 conditions. Received March 3, 2000; revised version accepted December 28, 2001  相似文献   

6.
A study was made of the adsorption of humic substances (HS) by Mn3O4 and by oxide B, a preparation with the β-MnOOH diffraction pattern but having a manganese oxidation state of 3.4. The interactions follow trends found for other oxides. Thus in 0.01 mol dm?3 NaCl adsorption decreases with increasing pH, while it is enhanced by Ca2+. The HS adsorb more strongly to the oxide with the higher zero point of charge (Mn3O4), while the effect of Ca2+ is greater for oxide B.Microelectrophoretic measurements show that the oxide particles take on the electrokinetic characteristics of the adsorbed HS. However it was found that the magnitude of the mobility depends on the underlying oxide surface and on the source of the HS. The electrokinetic properties of the two oxides dispersed in surface water samples of Esthwaite Water, Cumbria, England, can be accounted for by the adsorbed HS together with coadsorbed Ca2+.  相似文献   

7.
Experimental investigations between 800 ° to 1,100 ° C yielded no evidence for extensive substitution of Mn2++Si4+2Mn3+ in braunite, leading to a complete solid solution series between partridgeite (Mn2O3) and braunites with silica contents up to 40 wt. % as proposed by Muan (1959a, b). In the presence of excess manganese braunite of nearly ideal composition coexists at 800 ° C with partridgeite and at T1,000 ° C with hausmannite (Mn3O4). At 800 ° C and 1,000 ° C braunite coexists, in the presence of excess silica, with a SiO2-polymorph and at 1,100 ° C with rhodonite (MnSiO3). Quantitative analysis of the X-ray patterns of coexisting cristobalite and braunite confirms a maximum silica-excess in braunite of only about 2 wt.% over the ideal composition, Mn2+Mn 6 3+ SiO12.  相似文献   

8.
The rare garnet end member calderite, Mn 3 2+ Fe 2 3+ Si3O12, has been synthesized, under the oxygen fugacity of the hematite/magnetite buffer, at pressures not lower than 22 kbar. The synthetic crystals are generally zoned and may contain up to 3 mol% of the Fe2+-(=skiagite-) or 10 mol% of the Mn3+-(=blythite-) end members, but, under equilibrium conditions, the stable garnets have a restricted compositional range with about 1–4 mol% skiagite. Mn3+ represents only a residue of the Mn2O3 used in the starting material. At temperatures above 720° C (at 24 kbar) to 850° C (at 30 kbar) these garnets break down into coexisting pairs of magnetite-jacobsite and pyroxmangite-FeSiO3 solid solutions. No indication for divariancy of this breakdown reaction could be established so that the observed coexistence of garnet and breakdown products over a PT interval must be due to disequilibrium. Although extrapolations of the high-pressure stability data towards lower pressures are hazardous, it is clear that nearly pure calderite garnets can only form in metamorphic environments characterized by geothermal gradients not exceeding some 10°–15° C/km, that is in subduction zone metamorphism. A low-pressure end of the calderite stability is likely because, at temperatures below 250°–300° C, pyroxmangite probably becomes unstable and hydrous Mn2+-silicates appear among the low-temperature breakdown products of calderite. Since the upper temperature stability limits of the common garnet end members spessartine and andradite lie some 800° C above that for calderite, solid solutions with these components will drastically stabilize the garnet phase towards both higher temperatures and lower pressures. This explains why garnets containing around 70 mol% calderite can be formed in amphibolitefacies metamorphism.  相似文献   

9.
Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.  相似文献   

10.
Phosphonoformic acid, oxalic acid, glyoxylic acid, and 10 additional organic compounds that are structurally related to them have been reacted with synthetic MnO2 (birnessite), consisting of 22% MnIII and 78% MnIV, and synthetic MnOOH (manganite), consisting solely of MnIII. Significant concentrations of dissolved MnIII were detected in reactions of phosphonoformic acid with MnOOH, indicating that ligand-assisted dissolution took place. Reaction of phosphonoformic acid with MnO2, and reaction of all other organic reactants with either MnOOH or MnO2, yielded only MnII, indicating that reductive dissolution was predominant. As far as reductive dissolution reactions are concerned, MnO2 yields a range of reactivity that is nearly 20-times greater than that of MnOOH. Oxidation converts phosphonoformic acid into orthophosphate ion, glyoxylic acid into formic acid, pyruvic acid into acetic acid, and 2,3-butanedione into acetic acid. When differences in surface area loading are accounted for, oxalic acid, pyruvic acid, and 2,3-butanedione yield virtually the same dissolution rates for the two (hydr)oxides. At pH 5.0, glyoxylic acid reacts 14-times faster with MnO2 than with MnOOH. MnO2 reacts more slowly than MnOOH by a factor of 1/16th with oxamic acid, 1/20th with lactic acid, and 1/33rd with dimethyl oxalate. Adsorptive, complexant, and reductant properties of the 13 organic reactants are believed responsible for the observed reactivity differences.  相似文献   

11.
Summary The crystal structure of hausmannite from Langbån, Sweden, was refined with 462 independent X-ray diffraction data toR = 0.036 (RW = 0.034). The Jahn-Teller distortion of the Mn3+O6 octahedron is relatively strong: Mn3+ -O = 1.930 (1) Å (4 x), 2.282 (1) Å (2 x), and the anisotropies of the thermal vibrations of Mn3- and O differ clearly from those of the corresponding atoms in cubic spinels. It is shown that, from a stereochemical point of view, the hausmannite structure-type is not the only geometrically possible Jahn-Teller distortion of the spinel-type. The reflectance of hausmannite was measured on an oriented cut plate with polarized light (k = 400–700 nm) in air and in oil immersion, and the refractive indices and absorption coefficients were derived.
Kristallstrukturverfeinerung und reflexionsmessungen am Hausmannit, Mn3O4
Zusammenfassung Die Kristallstruktur eines Hausmannits von Langbån, Schweden, wurde an Hand von 462 unabhängigen Einkristall-Röntgendiffraktometerdaten zu einemR = 0.036 (R w = 0.034) verfeinert. Die Jahn-Teller-Verzerrung des Mn3+O6-Oktaeders ist relativ stark: Mn3--O = 1.930 (1) Å (4 x); 2.282 (1) Å (2 x), und die Anisotropien der thermischen Schwingungen von Mn3 und O unterscheiden sich deutlich von denen analoger Atome in kubischen Spinellen. Es wird gezeigt, daß aus einer stereochemischen Sicht der Strukturtyp des Hausmannits nicht die einzig geometrisch mögliche JahnTeller-Verzerrung des Spinell-Typs ist. Das Reflexionsvermögen des Hausmannits wurde an einer orientiert geschnittenen Platte mit polarisiertem Licht ( = 400–700 nm) in Luft und in Ölimmersion gemessen und Brechungsindizes und Absorptionskoeffizienten wurden bestimmt.


With 2 Figures  相似文献   

12.
Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10?8.00 or 10?9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10?9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems.  相似文献   

13.
Supergene manganese oxides, occurring in shales, breccias and dolomites of Proterozoic Age, in the Western Australian Pilbara Manganese Group, have Mn/Fe ranging from 1.9 to 254 and Mn4+ to Mn (Total) of 0.49–0.94. The manganese mineralogy is dominated by tetravalent manganese oxides, especially by cryptomelane, with lesser amounts of pyrolusite, nsutite, manjiroite, romanechite and other manganese oxide minerals. The manganese minerals are commonly associated with iron oxides, chiefly goethite, indicating incomplete separation of Mn from Fe during Tertiary Age arid climate weathering of older, manganiferous formations. These manganese oxides also contain variable amounts of braunite and very minor hausmannite and bixbyite. The braunite occurs in three generations: sedimentary-diagenetic, recrystallised sedimentary-diagenetic, and supergene. The mode of origin of the hausmannite and bixbyite is uncertain but it is possible that they resulted from diagenesis and/or low-grade regional metamorphism. The supergene manganese deposits appear to have been derived from manganiferous Lower Proterozoic banded iron formations and dolomites of the Hamersley Basin and overlying Middle Proterozoic Bangemali Basin braunite-containing sediments.  相似文献   

14.
Sequestration of Ce3+ by biogenic manganese oxides (BMOs) formed by a Mn(II)-oxidizing fungus, Acremonium strictum strain KR21-2, was examined at pH 6.0. In anaerobic Ce3+ solution, newly formed BMOs exhibited stoichiometric Ce3+ oxidation, where the molar ratio of Ce3+ sequestered (Ceseq) relative to Mn2+ released (Mnrel) was maintained at approximately two throughout the reaction. A similar Ce3+ sequestration trend was observed in anaerobic treatment of BMOs in which the associated Mn(II) oxidase was completely inactivated by heating at 85 °C for 1 h or by adding 50 mM NaN3. Aerobic Ce3+ treatment of newly formed BMO (enzymatically active) resulted in excessive Ce3+ sequestration over Mn2+ release, yielding Ceseq/Mnrel > 200, whereas heated or poisoned BMOs released a significant amount of Mn2+ with lower Ce3+ sequestration efficiency. Consequently, self-regeneration by the Mn(II) oxidase in newly formed BMO effectively suppressed Mn2+ release and enhanced oxidative Ce3+ sequestration under aerobic conditions. Repeated treatments of heated or poisoned BMOs under aerobic conditions confirmed that oxidative Ce3+ sequestration continued even after most Mn oxide was released from the solid phase, indicating auto-catalytic Ce3+ oxidation at the solid phase produced through primary Ce3+ oxidation by BMO. From X-ray diffraction analysis, the resultant solid phases formed through Ce3+ oxidation by BMO under both aerobic and anaerobic conditions consisted of cerianite with crystal sizes of 5.00–7.23 Å. Such nano-sized CeO2 (CeO2,BMO) showed faster auto-catalytic Ce3+ oxidation than that on well-crystalized cerianite under aerobic conditions, where the normalized pseudo-first order rate constants for auto-catalytic Ce3+ oxidation on CeO2,BMO was two orders of magnitude higher. Consequently, we concluded that Ce3+ contact with BMOs sequesters Ce3+ through two oxidation paths: primary Ce3+ oxidation by BMOs produces nano-sized crystalline cerianite, and subsequent auto-catalytic Ce3+ oxidation efficiently occurs using dissolved oxygen as the oxidizing agent. Pretreatment of newly formed BMOs with La3+ solution resulted in decreased rate constants for primary Ce3+ oxidation by BMO due to site blocking by La3+ sorption. The results presented herein increase our understanding of the role of BMO in oxidative Ce3+ sequestration process(es) through enzymatic and abiotic paths in natural environments and provide supporting evidence for the potential application of BMOs towards the recovery of Ce3+ from contaminated waters.  相似文献   

15.
The thermally induced reductive decomposition of a natural near end-member almandine [VIII(Fe2.85Mg0.11Ca0.05Mn0.02)VI(Al1.99)IV(Si2.99)O12] and possible hydrogen diffusion into its structure have been carried out at temperatures up to 1,200°C, monitored by simultaneous thermogravimetric analysis and differential scanning calorimetry (DSC), infrared and 57Fe Mössbauer spectroscopy and X-ray powder diffraction. Below 1,000°C, evidence for hydrogen diffusion into almandine structure was not observed. At temperatures above 1,000°C, reductive decomposition sets in, as displayed by a sharp endothermic peak at 1,055°C on the DSC curve accompanied by a total mass loss of 3.51%. We observe the following decomposition mechanism: almandine + hydrogen → α-Fe + cristobalite + hercynite + water. At higher temperatures, fayalite and sekaninaite are formed by consecutive reaction of α-Fe with cristobalite and water, and cristobalite with hercynite, respectively. The metallic α-Fe phase forms spherical and isolated particles (~1 μm).  相似文献   

16.
The compressibility and structure of a 2M1 paragonite with composition [Na0.88K0.10Ca0.01Ba0.01] [Al1.97Ti0.007Fe0.01Mn0.002Mg0.006]Si3.01Al0.99O10OH2 were determined at pressures between 1 bar and 41 kbar, by single crystal X-ray diffraction using a Merrill-Bassett diamond anvil cell. Compressibility turned out to be largely anisotropic, linear compressibility coefficients parallel to the unit cell edges being βa=3.5(1)·10?4, βb=3.6(1)·10?4, βc=8.3(3)·10?4 kbar?1ab·βc=1:1028:2.371). The isothermal bulk modulus, calculated as the reciprocal of the mean compressibility of the cell volume, was 650(20) kbar. The main features of the deformation mechanism resulting from structural refinements at pressures of 0.5, 25.4, 40.5 kbar were: –?variation in sheet thickness, showing that compression of the c parameter was mainly due to the interlayer thickness reduction from 3.07 Å at 0.5 kbar to 2.81 Å at 40.5 kbar; –?the compressibility of octahedra was greater than that of tetrahedra, the dimensional misfit between tetrahedral and octahedral sheets increased with P, so that tetrahedral rotation angel α increased from 15° at 0.5 kbar to 21.6° at 40.5 kbar; –?the basal surface corrugation (Δz) of the tetrahedral layer, due to the different dimensions of M1 and M2 octahedra and to the octahedral distortion, decreased with Pz=0.19 and 0.12 Å at 0.5 and 40.5 kbar respectively). Comparison of the new data on paragonite with those of a K-muscovite and a Na-rich muscovite (Comodi and Zanazzi 1995) revealed a clear trend toward decreasing of compressibility when Na substitutes for K atoms in the interlayer sites.  相似文献   

17.
The assemblage tephroite-hausmannitess-galaxitess has been found in a granulite-facies manganese ore body associated with metabasites and quartzrich lithologies. The metamorphic rocks are located in the Khawr Fakkan massif near the northern end of the Semail Ophiolite, United Arab Emirates (U.A.E.), metamorphosed at 800–850°C and 6.5–9 kbar. The galaxite shows approximately 35% solid solution of hausmannite, similar to that reported for jacobsite and franklinite whereas the solid solution of galaxite in hausmannite is maximally 7%. The assemblage of tephroite-hausmannite and hausmannite-galaxite indicates a restricted log fO2 of-9 to-11 which is outside the stability of braunite under similar physico-chemical conditions. The modal abundance of the minerals and bulk rock chemistry indicate that the present assemblage was formed from the breakdown of Fe-poor braunitess+hausmannitess.  相似文献   

18.
Parallel electron energy-loss spectroscopy (PEELS) in a scanning transmission electron microscope (STEM) was used to record the Mn L2,3-edges from a range of natural and synthetic manganese containing materials, covering valences 0, II, III, IV and VII, with an energy resolution of ca. 0.5 eV. The Mn L2,3 electron-loss near-edge structure (ELNES) of these edges provided a sensitive fingerprint of its valence. The Mn2+ L2,3-edges show little sensitivity to the local site symmetry of the ligands surrounding the manganese. This is illustrated by comparing the Mn L2,3-edges from 4-, 6- and 8-fold coordinated Mn2+. In contrast, the Mn L3-edges from Mn3+ and Mn4+ containing minerals exhibited ELNES that are interpreted in terms of a crystal-field splitting of the 3d electrons, governed by the symmetry of the surrounding ligands. The Mn L3-edges for octahedrally coordinated Mn2+, Mn3+ and Mn4+ showed variations in their ELNES that were sensitive to the crystal-field strength. The crystal-field strength (10Dq) was measured from these edges and compared very well with published optically determined values. The magnitude of 10Dq measured from the Mn L3-edges and their O K-edge prepeaks of the manganese oxides were almost identical. This further confirms that the value of 10Dq measured at the Mn L3-edge is correct. Selected spectra are compared with theoretical 2p atomic multiplet spectra and the differences and similarities are explained in terms of the covalency and site symmetry of the manganese. The Mn L3-edges allow the valence of the manganese to be ascertained, even in multivalent state materials, and can also be used to determine 10Dq.  相似文献   

19.
Strong enrichments of cobalt occur in marine manganese nodules, soils, wads, and natural and synthetic minerals such as hollandite, cryptomelane, psilomelane, lithiophorite, birnessite, and δ-MnO2. Previously, it was suggested that Co3+ ions in these minerals replace either Mn3+ or substitute for Fe3+ in incipient goethite epitaxially intergrown with δ-MnO2. Neither of these interpretations is now considered to be satisfactory on account of the large discrepancy of ionic radius between octahedrally coordinated low-spin Co3+ and high-spin Mn3+ or Fe3+ in oxide structures. The close agreement between the ionic radii of Co3+ and Mn4+ suggests that some cobalt substitutes for Mn4+ ions in edge-shared [MnO6] octahedra in many manganese(IV) oxide mineral structures. It is proposed that hydrated cations, including Co2+ ions, are initially adsorbed on to the surfaces of certain Mn(IV) oxides in the vicinity of essential vacancies found in the chains or sheets of edge-shared [MnO6] octahedra. Subsequently, fixation of cobalt takes place as a result of oxidation of adsorbed Co2+ ions by Mn4+ and replacement of the displaced manganese by low-spin Co3+ ions in the [MnO6] octahedra or vacancies.  相似文献   

20.
Partitioning of manganese between forsterite and silicate liquid   总被引:1,自引:0,他引:1  
Partition coefficients for Mn between forsterite and liquid in the system MgO-CaO-Na2O-Al2O3-SiO2 (+ about 0.2% Mn) were measured by electron microprobe for a variety of melt compositions over the temperature range 1250–1450°C at one atm pressure. The forsterite-liquid partition coefficient of Mn (mole ratio, MnO in Fo/MnO in liquid, designated Dmnfo?Liq) depends on liquid composition as well as temperature: at 1350°C, DMnFo?Liqranges from 0.60 (basic melt, SiO2 = 47wt%) to 1.24 (acidic melt, SiO2 = 65wt%). At lower temperatures, the partition coefficient is more strongly dependent on melt composition.The effects of melt composition and temperature on DMnfo?Liq can be separately evaluated by use of the Si:O atomic ratio of the melts. A plot of DmnFo?Liq measured at various temperatures vs melt Si:O for numerous liquid compositions reveals discrete, constant-temperature curves that are not well defined by plotting DMnFo?Liq against other melt composition parameters such as melt basicity or MgO content. For constant Si:O in the melt, In DMnFo?Liq vs reciprocal absolute temperature is linear; however, the slope of the plot becomes more positive for higher values of Si:O, indicating a higher energy state for Mn2+ ions in acidic melts than in basic melts.Comparison of Mn partitioning data for the iron-free system used in this study with data of other workers on iron-bearing compositions suggests that the effect of iron on Mn partitioning between olivine and melt is small over the range of basalt liquidus temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号