首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

2.
The relative reactivities of pulverized samples (100–200 mesh) of 3 marcasite and 7 pyrite specimens from various sources were determined at 25°C and pH 2.0 in ferric chloride solutions with initial ferric iron concentrations of 10?3 molal. The rate of the reaction:
FeS2 + 14Fe3+ + 8H2O = 15Fe2+ + 2SO2?4 + 16H+
was determined by calculating the rate of reduction of aqueous ferric ion from measured oxidation-reduction potentials. The reaction follows the rate law:
?dmFe3+dt = k(AM)mFe3+
where mFe3+ is the molal concentration of uncomplexed ferric iron, k is the rate constant and AM is the surface area of reacting solid to mass of solution ratio. The measured rate constants, k, range from 1.0 × 10?4 to 2.7 × 10?4 sec?1 ± 5%, with lower-temperature/early diagenetic pyrite having the smallest rate constants, marcasite intermediate, and pyrite of higher-temperature hydrothermal and metamorphic origin having the greatest rate constants. Geologically, these small relative differences between the rate constants are not significant, so the fundamental reactivities of marcasite and pyrite are not appreciably different.The activation energy of the reaction for a hydrothermal pyrite in the temperature interval of 25 to 50°C is 92 kJ mol?1. This relatively high activation energy indicates that a surface reaction controls the rate over this temperature range. The BET-measured specific surface area for lower-temperature/early diagenetic pyrite is an order of magnitude greater than that for pyrite of higher-temperature origin. Consequently, since the lower-temperature types have a much greater AM ratio, they appear to be more reactive per unit mass than the higher temperature types.  相似文献   

3.
Stability constants of hydroxocomplexes of Al(III):Al(OH)2+ and A1(OH)4? have been measured in the 20–70°C temperature range by reactions involving only dissolved species. The stability constant 1K1 of the first complex ion is studied by measuring pH of solutions of aluminium salts at several concentrations. 1β4 of aluminate ion is deduced from equilibrium constants of the reaction between the trioxalato aluminium (III) complex ion and Al3+ in acid medium, and between the same complex ion and A1(OH)4? in alkaline medium. The K values and the associated ΔH are 1K1 = 10?5.00 and ΔH1 = 11.8 Kcal; 1β4 = 10?22.20 and ΔH4 = 42.45 Kcal. These last results are not in agreement with the values of recent tables for ΔG0? and ΔH0? of Al3+ and Al(OH)4?. We suggest a consistent set of data for dissolved and solid Al species and for some aluminosilicates.  相似文献   

4.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

5.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

6.
Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq?] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq?] at 298.15 K is ?1305 ± 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 μm.The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are ?9210 ± 5.0, ?918.4 ± 2.1 and ?1153 ± 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq?] calculated in this paper and the acceptance of ?1582.2 ± 1.3 and ?1154.9 ± 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively.Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq?] were also calculated as ?914.2 ± 2.1 and ?830.9 ± 2.1 kJ/mol, respectively. The use of [AlC2 aq?] as a chemical species is discouraged.A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of ?1307.5 ± 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies.Smoothed values for the thermodynamic functions CP0, (HT0 - H2980)T, (GT0 - H2980)T, ST0 - S00, ΔH?,2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 ? 0.78850 T + 3.0340 × 10?4T2 ?1.85158 × 10?4T212 + 8.3341 × 106 T?2.The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite.  相似文献   

7.
The stoichiometric, KHA1, and apparent, K'HA, constants for the ionization of a number of weak acids (NH4+, HSO4?, HF, H2O, B(OH)3, H2CO3, HCO3?, H3PO4, H2PO4?, HPO42, H3AsO4 H2AsO4? and HAsO42?) in seawater at 25°C diluted with water have been fitted to equations of the form (Millero, 1979). In KHA1 = In KHA + AS12 + BS where In KHA is the thermodynamic constant in water, S is the salinity, A and B are adjustable parameters. The validity of this equation in estuarine waters has been examined by using an ion pairing model (Millero and Schreiber, 1981). The calculated values of KHA1 and K'HA at S = 35%. are in good agreement with the measured values for all the systems examined. The equation used to extrapolate the measured values to pure water KHA predicted values that agreed with those determined by using the ion pairing model. The exception was the ionization of HPO42? due to the strong interactions of Ca2+ and Mg2+ with PO43?. The differences in the predicted values of KHA1 in seawater diluted with pure water and average river water were very small for all the acids except HPO42? (the maximum ΔpK = 0.96 in average river water). The larger difference in the KHA1 for HPO42? in river waters is due to the strong interactions of Ca2+ and PO43?.  相似文献   

8.
The rate of oxidation of ferrous iron in a seasonally anoxic lake was measured on 39 occasions with respect to both depth and time. Sample disturbance was minimal as only oxygen had to be introduced to initiate the reaction. The data were consistent with the simple rate law for homogeneous chemical kinetics previously established for synthetic solutions. The rate constant for the oxidation reaction in lake water was indistinguishable from that measured in synthetic samples. It did not appear to be influenced by changes in the microbial populations or by changes in any particulate or soluble components in the water, including iron and manganese. Analysis of the errors inherent in the kinetic measurements showed that the estimation of pH was the major source of inaccuracy and that values of the rate constant determined by different workers could easily differ by a factor of six.The present data, together with a comprehensive survey of the literature, are used to suggest a ‘universal’ rate constant of ca. 2 × 1013 M?2 atm?1 min?1 (range 1.5–3 × 1013) in the rate law ?d[Fe II]dt = k[Fe II]pO2 (OH?)2 for natural freshwaters in the pH range 6.5–7.4. Discrepancies in the effects of ionic strength and interfering substances reported in the literature are highlighted. Generally substances have only been found to interfere at concentrations which far exceed those in most natural waters.  相似文献   

9.
Xanthates are used in the flotation of sulfide ores although their aqueous solutions are not stable under certain conditions. Their stability in acidic and weakly acidic aqueous solutions was therefore investigated, as these media are required for some processes.The peak absorbances of ethylxanthate ion and carbon disulfide were first determined in aqueous solution. The decomposition of ethylxanthate ion was analyzed by measuring variations in absorbance (at 301 nm) and pH with respect to time. A pH regulation system was then used while measuring variations in absorbance and productions of protons caused by xanthate decomposition.The results concerning xanthate half-lives show good agreement with the literature, but the kinetic results deviate substantially. The following relation was obtained for half-life:
T12=9.67×10?6(pH)11;4?7;T12in seconds
We established that ethylxanthate decomposition at pH 4 is a first order reaction with respect to ethylxanthate concentration, and postulating this order to the other pH values, the following kinetic relation was found:
v= ?(1.22×104[H+]?1.36×10?2)([EtX?]) (4?pH?7)
where v is the rate of decomposition (mol l?1 min?1), and [EtX?] is the ethylxanthate concentration when the decomposition equilibria are reached (mol l?1). The better concentration was found to obey the law:
[EtX?]=3.142×10?5 pH ? 1.255 × 10?4 (4?pH?6)
  相似文献   

10.
Stable carbon isotope fractionation by seventeen species of marine phytoplankton, representing the classes of Bacillariophyceae, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae and Dinophyceae have been determined in laboratory culture experiments using bicarbonate enriched artificial sea water. The ΔHCO3? values (ΔHCO3? = δ13C of algae vs HCO3?) range from ?22.1 to ?35.5%. Nitzschia closterium shows the smallest fractionation of ? 22.1% and Isochrysis galbana, the greatest of ?35.5%,. Since these algae were cultured under identical laboratory conditions, the wide range of ΔHCO3? values is seemingly due to the presence of different metabolic pathways within these organisms.A temperature dependent fractionation of 0.36% per °C with decreasing temperatures was measured for Skeletonema costatum whereas, smaller temperature dependencies of ?0.13, +0.15 and ?0.07%. per °C were observed for Dunaliella sp., Monochrysis lutheri and Glenodinium foliaceum, respectively.The consistency of ΔHCO3? values of Skeletonema costatum, Dunaliella sp. and Monochrysis lutheri grown at salinities of 22, 26, 32 and 36% indicates that natural salinity variations have negligible effects on the isotopic composition of marine phytoplankton.  相似文献   

11.
Solubility curves were determined for a synthetic gibbsite and a natural gibbsite (Minas Gerais, Brazil) from pH 4 to 9, in 0.2% gibbsite suspensions in 0.01 M NaNO3 that were buffered by low concentrations of non-complexing buffer agents. Equilibrium solubility was approached from oversaturation (in suspensions spiked with Al(NO3)3 solution), and also from undersaturation in some synthetic gibbsite suspensions. Mononuclear Al ion concentrations and pH values were periodically determined. Within 1 month or less, data from over-and undersaturated suspensions of synthetic gibbsite converged to describe an equilibrium solubility curve. A downward shift of the solubility curve, beginning at pH 6.7, indicates that a phase more stable than gibbsite controls Al solubility in alkaline systems. Extrapolation of the initial portion of the high-pH side of the synthetic gibbsite solubility curve provides the first unified equilibrium experimental model of Al ion speciation in waters from pH 4 to 9.The significant mononuclear ion species at equilibrium with gibbsite are Al3+, AlOH2+, Al(OH)+2 and Al(OH)?4, and their ion activity products are 1K50 = 1.29 × 108, 1Ks1 = 1.33 × 103, 1Ks2 = 9.49 × 10?3 and 1Ks4 = 8.94 × 10?15. The calculated standard Gibbs free energies of formation (ΔG°f) for the synthetic gibbsite and the A1OH2+, Al(OH)+2 and Al(OH)?4 ions are ?276.0, ?166.9, ?216.5 and ?313.5 kcal mol?1, respectively. These ΔG°f values are based on the recently revised ΔG°f value for Al3+ (?117.0 ± 0.3 kcal mol?1) and carry the same uncertainty. The ΔG°f of the natural gibbsite is ?275.1 ± 0.4 kcal mol?, which suggests that a range of ΔG°f values can exist even for relatively simple natural minerals.  相似文献   

12.
The synthetic chelating agent ethylenediaminetetraacetic acid (EDTA) has been used to evaluate the stoichiometric solubility product of galena (PbS) at 298°K: Ks2 = aPb2+aHS?aH+ This method circumvents the possible uncertainties in the stoichiometry and stability of lead sulfide complexes. At infinite dilution, Log Ks2 = ?12.25 ±0.17, and at an ionic strength corresponding to seawater (I = 0.7 M), Log Ks2 = ?11.73 ± 0.05. Using the value of Ks2 at infinite dilution, and the free energies of formation of HS? and Pb2+ at 298°K (literature values), the free energy of formation of PbS at 298°K is computed to be ?79.1 ± 0.8 KJ/mol (?18.9 Kcal/mol). Galena is shown to be more than two orders of magnitude more soluble than indicated by calculations based on previous thermodynamic data.  相似文献   

13.
The distribution coefficients of Eu and Sr for plagioclase-liquid and clinopyroxene-liquid pairs as a function of temperature and oxygen fugacity were experimentally investigated using an oceanic ridge basalt enriched with Eu and Sr as the starting material. Experiments were conducted between 1190° and 1140°C over a range of oxygen fugacities between 10?8 and 10?14 atm.The molar distribution coefficients are given by the equations: log KEuPL = 3320/T?0.15 log?o2?4.22log KCPXEu = 6580/T + 0.04 log?o2?4.37logPLSr = 7320/T ? 4.62logKCPXSr = 18020/T ? 13.10. Similarly, the weight fraction distribution coefficients are given by the equations: log DPLEu =2460/T ? 0.15 log?o2 ? 3.87log DCPXEu = 6350/T + 0.04 log?o2 ? 4.49logDPLSr = 6570/T ? 4.30logDCPXSr = 18434/T ? 13.62.Although the mole fraction distribution coefficients have a smaller dependence on bulk composition than do the weight fraction distribution coefficients, they are not independent of bulk composition, thereby restricting the application of these experimental results to rocks similar to oceanic ridge basalts in bulk composition.Because the Sr distribution coefficients are independent of oxygen fugacity, they may be used as geothermometers. If the temperature can be determined independently — for example, with the Sr distribution coefficients, the Eu distribution coefficients may be used as oxygen geobarometers. Throughout the range of oxygen fugacities ascribed to terrestrial and lunar basalts, plagioclase concentrates Eu but clinopyroxene rejects Eu.  相似文献   

14.
A linear correlation exists between the standard Gibbs free energies of formation of calcite-type carbonates (MCO3) and the corresponding conventional standard Gibbs free energies of formation of the aqueous divalent cations (M2+) at 25 °C and 1 bar ΔGMCO30 = m(ΔGf,M2+0) ? 141,200 cal · mole?1 where m is equal to 0.9715. This relationship enables prediction of the standard free energies of formation of numerous hypothetical carbonates with the calcite structure. Associated uncertainties typically range from about ± 250 to 600 cal · mole?1. An important consequence of the above correlation is that the thermodynamic equilibrium constant for the distribution of two trace elements M and N between carbonate mineral and aqueous solution at 25 °C and 1 bar is proportional to the free energy difference between the corresponding two aqueous ions: In KM-N = m ? 1298.15RG?f,M2+0 ? ΔG?f,N2+0)Combination of predicted standard free energies, entropies and volumes of carbonate minerals at 25°C and 1 bar with standard free energies of aqueous ions and the equation of state in Helgesonet al. (1981) enables prediction of the thermodynamic equilibrium constant for trace element distribution between carbonates and aqueous solutions at elevated temperatures and pressures. Interpretation of the thermodynamic equilibrium constant in terms of concentration ratios in the aqueous phase is considerably simplified if pairs of divalent trace elements are considered that have very similar ionic radii (e.g., Sr2+Pb2+, Mg2+Zn2+). In combination with data for the stabilities of complex ions in aqueous solutions, the above calculations enable useful limits to be placed on the concentrations of trace elements in hydrothermal solutions.  相似文献   

15.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

16.
17.
In a soil developed on the Cretaceous chalk of the Eastern Paris basin, calcite dissolution begins at the surface. The soil water is rapidly saturated in calcite. Calcite dissolution follows two different pathways according to seasonal pedoclimatic conditions.During winter: the soil is only partly saturated in water and the CO2 partial pressure is low (Ca 10?3 atm.). As a consequence total inorganic dissolved carbon (TIDC) is a hundred times the carbon content of the gaseous phase. Equilibrium is usually observed between the two phases. It is a closed system. The measured carbon 14 activity (87,5%) and 13C content (δtidc13C = ?12,2%0) of the drainage water are very close to theoretical values calculated for an ideal mixing system between gaseous and mineral phases (respectively characterized by the following isotopic values: δG13C = ?21,5%0; AG14C = 118%; δM13C = +2,9%0; AM14C = 28%).During spring and summer: the soil moisture decreases, the input of biogenic CO2 induces an increase of the soil CO2 partial pressure (Ca from 3.10?3 atm to 7.10?3 atm). The carbon content of the gaseous phase is higher by an order of magnitude compared to winter conditions. Therefore the aqueous phase is undersaturated in CO2 with respect to the latter. This disequilibrium occurs as a result of unbalanced rates of CO2 dissolution and CO2 effusion toward atmosphère. It is an open system. The carbon isotopic ratio of the aqueous phase is regulated by that of the gaseous phase, as demonstrated by the agreement between measured and calculated isotopic compositions (respectively δL mes = from ?9,4%0 to ?11,5%0, δl calc = from ?9,8%0 to ?13,9%0 AL mes = 119%, AL calc = from 119% to 125%).The solutions originating from both systems (open and closed) move downwards without significant mixing together. It has also been observed that no significant variation of the TIDC isotopic composition occurs during precipitation of secondary calcite.  相似文献   

18.
The apparent constants (K'i) for the ionization of carbonic acid in seawater at various salinities (S,%.) have been fit to equations of the form ln K'i = ln Ki + AiS12 + BiSwhereKi is the thermodynamic ionization constant in water, Ai, and Bi are adjustable parameters. The temperature dependence (TK) of Ki, Ai and Bi were of the form, a0 + a1/T + a3 ln T. Equations of similar forms have been used to analyze the ionization constants for water and boric acid and the solubility product of calcite in seawater. The effect of pressure on the apparent constants (KpiKoi) have been fit to equations of the form ln (KpiKoi) = ? (ΔVP + 0.5 ΔK P2)/RT where the volume (ΔV) and compressibility (ΔK) changes are polynomial functions of temperature. The equations generated for various açids in seawater have been used to examine the carbonate system in seawater. Equations relating the NBS and Tris pH scales have been derived as well as equations of pH as a function of temperature and pressure. The equations from Hansson (1972, Ph.D. Thesis, University of Göteborg, Sweden) and Mehrbachet al. (1973, Limnol. Oceanogr.18, 897–907) have been used to examine the components of the carbonate system. At a fixed total alkalinity and total carbon dioxide, differences of ±0.01 m-equiv kg?1 in HCO?3 and CO2?3 were found; however, the [CO2] and Pco2 are nearly the same. The contribution of borate ion, B(OH)?4 determined from the equations of Hansson (1972, Ph.D. Thesis, University of Göteborg, Sweden) and Lyman (1957, Ph.D. Thesis, University of California, Los Angeles) differ by ±0.01 m-equiv kg?1 for waters with the same salinity and temperature.  相似文献   

19.
The stability of the amphibole pargasite [NaCa2Mg4Al(Al2Si6))O22(OH)2] in the melting range has been determined at total pressures (P) of 1.2 to 8 kbar. The activity of H2O was controlled independently of P by using mixtures of H2O + CO2 in the fluid phase. The mole fraction of H2O in the fluid (XH2O1fl) ranged from 1.0 to 0.2.At P < 4 kbar the stability temperature (T) of pargasite decreases with decreasing XH2O1fl at constant P. Above P ? 4 kbar stability T increases as XH2O1fl is decreased below one, passes through a T maximum and then decreases with a further decrease in XH2O1fl. This behavior is due to a decrease in the H2O content of the silicate liquid as XH2O1fl decreases. The magnitude of the T maximum increases from about 10°C (relative to the stability T for XH2O1fl= 1) at P = 5 kbar to about 30°C at P = 8 kbar, and the position of the maximum shifts from XH2O1fl ? 0.6 at P = 5 kbar to XH2O1fl? 0.4 at P = 8 kbar.The H2O content of liquid coexisting with pargasite has been estimated as a function of XH2O1fl at 5 and 8 kbar P, and can be used to estimate the H2O content of magmas. Because pargasite is stable at low values of XH2O1fl at high P and T, hornblende can be an important phase in igneous processes even at relatively low H2O fugacities.  相似文献   

20.
The effect of ionic interactions of the major components of natural waters on the oxidation of Cu(I) and Fe(II) has been examined. The various ion pairs of these metals have been shown to have different rates of oxidation. For Fe(II), the chloride and sulfate ion pairs are not easily oxidized. The measured decrease in the rate constant at a fixed pH in chloride and sulfate solutions agrees very well with the values predicted. The effect of pH (6 to 8) on the oxidation of Fe(II) in water and seawater have been shown to follow the rate equation
-d in [Fe(II)]/dt = k1β1αFe/[H+] + k2β2αFe/[H+]2
where k1 and k2 are the pseudo first order rate constants, β1 and β2 are the hydrolysis constants for Fe(OH)+ and Fe(OH)0. The value of αFE is the fraction of free Fe2+. The value of k1 (2.0 ±0.5 min?1) in water and seawater are similar within experimental error. The value of k2 (1.2 × 105 min?1) in seawater is 28% of its value in water in reasonable agreement with predictions using an ion pairing model.For the oxidation of Cu(I) a rate equation of the form
?d ln [Cu(I)]/dt = k0αCu+ k1β1αCu[Cl]
was found where k0 (14.1 sec?1) and k1 (3.9 sec?1) are the pseudo first order rate constants for the oxidation of Cu+ and CuCl0, β1 is the formation constant for CuCl0 and αCu is the fraction of free Cu+. Thus, unlike the results for Fe(II), Cu(I) chloride complexes have measurable rates of oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号