首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
The distribution of trace amounts of Na, Rb and Cs, between muscovite, phlogopite, sanidine and hydrothermal solution have been studied by ion exchange in a temperature range from 400 to 800°C.These distributions have been expressed with a partition ratio Paq?mx = (XK)aq(XK)m (where X is Na, Rb or Cs).In the case of Na and Cs in muscovite, even for the dilute solutions, the ratio Paq?mx is not the equilibrium constant kx of exchange reactions. In other cases, Paq?mx does not depend on the trace alkali ion concentration in silicates (X) and is equal to kx. Variations of Px or kx with T are greater for Na and Cs than for Rb. Generally, kx decreases with increase in T. The function log Px = f(1T) is not linear for Na or Cs, but in the case of Rb, f(1T) is linear and the standard enthalpy and entropy of exchange reactions have been estimated by applying the Arrhenius relation.The distribution relations obtained between silicate and vapour phase permit the determination of distributions of Na, Rb and Cs between two minerals mI and mII, relative to K. These have been expressed with the partition ratio Qx =(XK)mI(XK)mII. Variations of Qx with T are not remarkable, and even for Rb between phlogopite and feldspar are negligible. Nevertheless, one may use the distributions of Rb and Cs between muscovite and feldspar for geothermometry. Experimental results have been applied to some rocks by effecting corrections from the major element composition of the natural minerals. Estimated temperatures are near to 400°C in the granites and pegmatite studied here.  相似文献   

2.
Seventy-two basalts from 58 dredge stations located along the Mid-Atlantic Ridge from 29°N to 59°N have been analyzed for 87Sr86Sr and for K, Rb, Cc, Sr and Ba. The Sr-isotope profile along the ridge has three distinct maxima, one coinciding with the Azores platform (0.70345), one at 45°N (0.70340) and the third at 35°N, in the vicinity of the Oceanographer Fracture Zone. Basalts from ridge segments between 29°N and 33°N, and 49°N and 59°N have 87Sr86Sr ratios typical of ‘normal’ mid-ocean ridge basalts (0.70230–0.70280). Profiles of K, Rb, Cs, Sr, Bz, Rb/Sr and Ba/Sr are similar to the 87Sr86Sr profile, but Rb/K, Cs/K and Ba/K show broad maxima between 35°N and 45°N.These variations result from chemical and isotopic heterogeneity in the mantle, and are interpreted as caused by a mantle plume beneath the Azores which mixes with the LIL-element-depleted asthenosphere. Additional plumes may exist beneath 45°N and 35°N.Compared to the LIL-element-depleted asthenosphere, the Azores mantle plume is 10 to 30 times enriched in LIL elements with very small (? 0.1) bulk crystal/melt partition coefficients (Rb, Cs, Ba, La). Mildly incompatible elements (0.1 < D < 1) (Sr, Sm, Yb) are only 0.8–3 times enriched. These, observations suggest that LIL element differences between these two mantle reservoirs resulted from processes involving solid-liquid equilibria and not vapor-solid or vapor-liquid equilibria. Isotope systematics indicate that neither mantle reservoir remained a closed system since the formation of the Earth, but it is not possible to determine the time at which heterogeneity first developed.  相似文献   

3.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

4.
The performance characteristics of PANURGE, a modified CAMECA IMS3F ion microprobe, have been studied at a mass resolving power of 5000 for the purpose of determining isotopic ratios at a precision level approaching that of counting statistics using beam switching. The techniques used for this type of measurement are described. Using this approach, the isotopic composition of Mg and Si and the atomic ratio of AlMg in minerals from the Allende inclusion WA and the Allende FUN inclusion Cl have been measured with the ion microprobe at high mass resolving power. Enrichments in 26Mg of up to 260%. have been found. Mg and AlMg measurements on cogenetic spinel inclusions and host plagioclase crystals yield Mg-Al isochrons in excellent agreement with precise mineral isochrons determined by thermal emission mass spectrometry. The measurements confirm the presence of substantial excess 26Mg in WA (26Mg127Al = 5 × 10?5) and its near absence in Cl (26Mg127Al < 4 × 10?6). In WA plagioclase, data for which 27Al24Mg = 300 to 1000 define a linear array with 26Mg127Al = 3 × 105 and with initial 26Mg24Mg composition 30%. greater than in high Mg phases. This suggests a metamorphic reequilibration of Mg in Allende plagioclase at least 0.6 my after WA formation. There were no variations in detected 26Mg127Al in WA plagioclase associated with concentration of 26Mg1 into isolated clusters. We have confirmed by ion probe measurements that the Mg composition in Allende Cl is highly fractionated and is uniform among pyroxene, melilite, plagioclase, spinel crystals and spinel included in melilite and plagioclase crystals. Likewise, the Si composition is mass fractionated and is the same in pyroxene, melilite and plagioclase.  相似文献   

5.
The regular geometry and completeness of the Kiglapait intrusion permit its bulk composition to be obtained by summation, and the composition of successive liquids to be obtained by subtraction. The summations for K and Rb give 1806 and 1.08 ppm, yielding Rfrsol|K/Rb= 1670 for the intrusion, taken as equal to the parent magma. R increases slightly from this initial value to 2000 at the end of crystallization where MgO approaches zero in the rocks. K and Rb are therefore closely coherent and their distribution coefficients can differ only by a small amount in the Kiglapait system.Apparent feldspar/liquid distribution coefficients (DF/L) can be estimated from detailed plots of feldspar and liquid compositions against FL. The Kiglapait data imply that these coefficients are linear 1:1 functions of plagioclase composition within experimental error, having values given by DKF/L = 1.42? XAnDRbF/L = 1.13? XAn with minimum values of 0.75 and 0.49, respectively. The ratio RFRL lies in the range of 1.53± 0.03 for the plagioclase composition range XAn= 0.34 to 0.67 showing that high-R rocks such as anorthosite crystallized from high-R liquids.The apparent feldspar distribution coefficients are much closer to 1.0 than common literature values. They can be reduced by assuming that the cumulate pile was continuously recharged by the circulating magma until an advanced stage of differentiation was reached, and assuming that alkalies were exchanged to the feldspars from the magma. When such an ‘aquifer recharge’ model is calibrated using olivine-liquid equilibria as a time marker for the liquid, the inferred minimum equilibrium values of the distribution coefficients are DKFL= 0.42, DRbFL = 0.25 at the base of the intrusion. Their variation is given by DKFL= 1.66?1.88XAn, DRbFL= 1.17?1.41XAn, The equilibrium values are considered to be appropriate for deducing liquid compositions in plutonic bodies where alkali exchange can be shown or inferred to have been inhibited, such as in small intrusions. The apparent values are considered to be appropriate, even though they may be artificial, for large intrusions similar to the Kiglapait.The bulk K and Rb concentrations in the Kiglapait intrusion are consistent with a plagioclase-rich abyssal tholeiite magma. Clinopyroxene and olivine fractionation in the mantle may contribute to the production of such high-Rmagmas.  相似文献   

6.
K and Rb distributions between aqueous alkali chloride vapour phase (0.7 molar) and coexisting phlogopites and sanidines have been investigated in the range 500 to 800°C at 2000 kg/cm2 total pressure.Complete solid solution of RbMg3AlSi3O10(OH)2 in KMg3AlSi3O10(OH)2 exists at and above 700°C. At 500°C a possible miscibility gap between approximately 0.2 and 0.6 mole fraction of the Rb end-member is indicated.Only limited solid solution of Rb AlSi3O8 in KAlSi3O8 has been found at all temperatures investigated.Distribution coefficients, expressed as Kd = (Rb/K) in solid/(Rb/K) in vapour, are appreciably temperature-dependent but at each temperature are independent of composition for low Rb end-member mole fractions in the solids. The determined KD values and their approximate Rb end-member mole fraction (XRM) ranges of constancy are summarized as follows: (°C)TKDPhlog/Vap.XRMKDSandi/Vap.Xrm
  相似文献   

7.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

8.
Cold Bay and Amak Island, two Quaternary volcanic centers in the eastern Aleutians, are orthogonal relative to the trench and separated by ~50 km. Sr, Nd and Pb isotopic compositions of the calc-alkaline andesite magmas show no sign of contamination from continental crust (average 87Sr86Sr = 0.70323, 143Nd144Nd = 0.51301, 206Pb204Pb = 18.82, 207Pb204Pb = 15.571). These samples plot within the mantle arrays for Sr-Nd and for Pb and are similar to arcs such as the Marianas and New Britain (Sr-Nd) and Marianas and Tonga (Pb). Incompatible element ratios for the Aleutian andesites (K/Rb ~ 332, K/Cs ~ 10,600, K/Sr ~ 22.4, K/Ba ~ 18.3, Ba/La ~ 60) are within the range reported for arc basalts, despite the difference in degree of fractionation.Average K content, K/Rb, K/Ba and K/Sr are approximately the same for basalts from arcs and from oceanic islands (OIB); K/Cs is a factor of 4 lower and Ba/La almost 3 times higher in arcs. Abundance ratio correlations indicate that arcs are enriched in Cs and depleted in La relative to OIB, with other incompatible element abundances very similar. Histograms of Sr and Nd isotopic compositions for MORB, OIB, and intraoceanic arcs show remarkably similar peaks and distribution patterns for intraoceanic arcs and OIB.A “plum pudding” model for the upper mantle best accommodates a) geochemical coherence of OIB and IAV, b) the existence of mantle plumes at some oceanic islands, and c) the presence of a MORB-type source at back arc spreading centers. In this model, OIB plums are imbedded in a MORB matrix; small degrees of melting generate OIB-type magmas while larger degrees of melting dilute the OIB magma with MORB matrix melts.OIB plums are merely less robust lower mantle plumes (i.e., blobs) which are distributed throughout the upper mantle by convection. The existence of at least two types of OIB, as indicated by Sr, Nd, and Pb isotopes, suggests that nuggets of recycled oceanic lithosphère may coexist with lower-mantle plums and that both may be tapped in arcs and intraplate environments.  相似文献   

9.
DH, 18O16O and 13C12C analyses were made of 14 whole rock and 28 mineral samples of rodingites associated dominantly with lizardite-chrysotile serpentinites from the West Coast of the U.S.A., New Zealand, and the Northern Appalachian Mtns. The δD values of the rodingite minerals are in three groupings: 5 monomineralic veins of pectolite, ?281 to ?429; 8 monomineralic veins of xonotlite, ?112 to ?135; all other minerals, including hydrogarnet, idocrase, prehnite, actinolite, nephrite, and chlorite, ?34 to ?80. Most calcites in rodingites have δ18O (+9.3 to +14.4) and (δ13C (?6.7 to +0.9) values similar to calcites in other Franciscan rocks, but distinct from the very low temperature calcite veins in serpentinites. The DH data, combined with δ18O values of xonotlite (+5.7 to +10.9) and pectolite (+8.9 to +12.4) suggest formation from meteoric-type waters at low temperatures; the DH depletion of pectolite, however, is anomalous. Rodingite whole rock values range from δ18O = +4.1 to +11.5 and δD = ?50 to ?86; one sample containing minor amounts of lizardite-chrysotile serpentinite has δD = ?92, outside this range. However, most rodingites of basaltic or gabbroic parentage are more restricted in δ18O (+4.1 to +8.6). Such a wide range in δ18O is consistent with the idea that most rodingites form over a relatively broad range of hydrothermal temperatures. Hydrogen isotopic data for most rodingite minerals (except xonotlite and pectolite) and for whole rocks are suggestive of non-meteoric waters. These DH data overlap those observed for veins of hydrous minerals found in Franciscan igneous rocks studied by Margaritz and Taylor (1976, Geochim. Cosmochim. Acta40, 215–234), possibly suggesting evolved D-enriched, connate type metamorphic waters generated during high P, low T Franciscan-type metamorphism at temperatures (250–500°C) comparable to estimates based on mineral stabilities. Such an interpretation is supported by the 18O16O and 13C12C data for calcite in rodingites.The isotope data appear to contradict some of the conclusions derived from geologic and petrologic studies that indicate concomitant metasomatism and serpentinization of their presently observed host rock. These data appear most consistent with the interpretation that most rodingite minerals, with the exception of late-stage veins of xonotlite and possibly pectolite, may involve metasomatism in association with antigorite serpentinization of ultramafic rock. Subsequent upward tectonic transport in many instances may result in incorporation of the rodingites into their presently observed lizarditechrysotile host rock during or subsequent to pervasive shallow level serpentinization by meteoric waters.  相似文献   

10.
The Hidra Massif (Rogaland Complex, SW Norway) mainly consists of plagioclase cumulates (anorthosites and leuconorites), which grade progressively into a fine-grained (200 μm). locally porphyritic, jotunitic rock towards the contact with the granulite facies gneisses. The massif is cross-cut by thin (10 cm up to 1 m) charnockitic dykes.The petrographical and geochemical evolution of the Hidra Massif can be explained by fractional crystallization of a jotunitic parental magma. Major and trace element constraints indicate that mafic phases are underabundant in the exposed levels of the massif, most likely as a result of plagioclase flotation in the early stages of solidification. Partitioning into the cumulate minerals (mainly plagioclase and orthopyroxene) governs the trace element contents of the leuconoritic adcumulates. However, the trace element geochemistry of the apparently early formed anorthositic orthocumulates largely depends upon the amount of a trapped intercumulus liquid. On the basis of trace element abundances (high REE, Rb, Th, U; negative Eu anomalies) the silicic charnockitic dykes can be considered as the residual liquid of the anorthositic fractionation trend. The higher initial 87Sr86Sr ratios (0.7086 ± 0.0006 vs 0.7055 ± 0.0004 for the plagioclase cumulates and jotunites) point to contamination of the charnockitic liquids by surrounding gneissic material.  相似文献   

11.
HD Fractionation factors between epidote minerals and water, and between the AlO(OH) dimorphs boehmite and diaspore and water, have been determined between 150 and 650°C. Small water mineral ratios were used to minimise the effect of incongruent dissolution of epidote minerals. Waters were extracted and analysed directly by puncturing capsules under vacuum. Hydrogen diffusion effects were eliminated by using thick-walled capsules.HD Exchange rates are very fast between epidote and water (and between boehmite and water), complete exchange taking only minutes above 450°C but several months at 250°C. Exchange between zoisite and water (and between diaspore and water) is very much slower, and an interpolation method was necessary to determine fractionation factors at 450 and below.For the temperature range 300–650°C, the HD equilibrium fractionation factor (αe) between epidote and water is independent of temperature and Fe content of the epidote, and is given by 1000 In αepidote-H2Oe = ?35.9 ± 2.5, while below 300°C 1000 In αepidote-H2Oe = 29.2(106T2) ? 138.8, with a ‘cross-over’ estimated to occur at around 185°C. By contrast, zoisite-water fractionations fit the relationship 1000 In αzoisite-H2Oe = ? 15.07 (106T2) ? 27.73.All studied minerals have hydrogen bonding. Fractionations are consistent with the general relationship: the shorter the O-H -- O bridge, the more depleted is the mineral in D.On account of rapid exchange rates, natural epidotes probably acquired their H-isotope compositions at or below 200°C, where fractionations are near or above 0%.; this is in accord with the observation that natural epidotes tend to concentrate D relative to other coexisting hydrous minerals.  相似文献   

12.
At 750°C and 4000 bar scapolite is stable relative to plagioclase + calcite over the range of plagioclase compositions An53–An83. The assemblage plagioclase + scapolite + calcite is stable relative to plagioclase + calcite over the ranges of plagioclase composition An48-An53 and An83–An91.5. When NaCl is present in the coexisting fluid the range of scapolite compositions stable relative to plagioclase increases. High mole fractions of NaCl in the fluid stabilize scapolite relative to plagioclases from An25 to An87 in the presence of excess calcite. Determination of the Cl(Cl + CO3) ratios of the synthetic scapolites shows that the range of stable scapolite compositions is significantly larger than heretofore proposed, and that even the chloride and carbonate bearing scapolites must be considered a four component solid solution. The KD for the exchange of NaCl and CaCo3 between coexisting scapolite, fluid and carbonate is given by the equation In KD = (?0.0028) [Al(Al + Si)]?5.5580. This equation implies that Cl-poor natural scapolites coexisted with fluids low in NaCl, and that regional occurrences of Cl-rich scapolites are likely to represent metamorphosed evaporite sequences.  相似文献   

13.
High precision mass spectrometric determination of calcium isotope ratios allows the 40K → 40Ca radioactive decay to be used for dating a much broader range of geologic materials than is suggested by previous work. 40Ca42Ca is used to monitor enrichments in 40Ca and can be measured to ±0.01% (2σ) using an exponential mass discrimination correction (Russell et al., 1978) and large ion currents. The earth's mantle has such a low KCa (~0.01) that it has retained “primordial” 40Ca42Ca = 151.016 ± 0.011 (normalized to 42Ca44Ca = 0.31221), as determined by measurements on two meteorites, pyroxene from an ultramafic nodule, metabasalt, and carbonatite. 40Ca42Ca ratios can be conveniently expressed relative to this value as ?Ca in units of 10?4. To test the method for age dating, a mineral isochron has been obtained on a sample of Pikes Peak granite, which has been shown to have concordant KAr, RbSr, and UPb ages. Plagioclase, K-feldspar, biotite, and whole rock yield an age of 1041 ± 32 m.y. (2σ) in agreement with previous age determinations (λK = 0.5543 b.y.?1, λβ?λK = 0.8952, 40K = 0.01167%). The initial 40Ca42Ca of 151.024 ± 0.016 (?Ca = +0.5 ± 1.0), indicates that assimilation of high K/Ca crust was insufficient to affect calcium isotopes. Measurements on two-mica granite from eastern Nevada indicate that the magma sources had K/Ca ≈ 1, similar to intermediate-composition crustal rocks. These results show that the KCa system can be used as a precise geochromometer for common felsic igneous and metamorphic rocks, and may prove applicable to sedimentary rocks containing authigenic K minerals. The relatively short half-life of 40K, the non-volatile daughter, and the fact that potassium and calcium are stoichiometric constituents of many minerals, make the KCa system complementary to other dating methods, and potentially applicable to a variety of geologic problems.  相似文献   

14.
Differences in the chemical composition of metamorphic and igneous pyroxene minerals may be attributed to a transfer reaction, which determines the Ca content of the minerals, and an exchange reaction, which determines the relative Mg:Fe2+ ratios. Natural data for associated Ca pyroxene (Cpx) and orthopyroxene (Opx) or pigeonite are combined with experimental data for Fe-free pyroxenes, to produce the following equations for the Cpx slope of the solvus surface: > 1080°C: T = 1000(0.468 + 0.246XCpx ? 0.123 ln (1–2 [Ca]))< 1080°C: T = 1000(0.054 + 0.608XCpx ? 0.304 ln (1–2 [Ca])), and the following equation for the temperature-dependence of the Mg-Fe distribution coefficient: T = 1130(ln Kp + 0.505), where T is absolute temperature, X is Fe2+(Mg + Fe2+)), [Ca] is Ca(Ca + Mg + Fe2+) in Cpx, and KD is the distribution coefficient, defined as XOpx/(1 ? XOpx) ÷ XCpx/(1 ? Cpx).The transfer and exchange equations form useful temperature indicators, and when applied to 9 sets of well-studied rocks, yield pairs of temperatures that are in good agreement. For example, temperatures obtained for the Bushveld Complex are 1020°C (solvus equation) and 980°C (exchange equation), based on 7 specimens. The uncertainty in these numbers, due to precision and accuracy errors, is estimated to be ±60°.  相似文献   

15.
The Rameka Gabbro, emplaced 367 Ma ago, experienced a well documented reheating on intrusion of the Separation Point Batholith 114 Ma ago. 40Ar39Ar age spectrum analyses of hornblende from the Rameka Gabbro show diffusion gradients which provide information on the 40Ar boundary concentration during reheating.Three samples of hornblende exhibit age spectra that conform to a model of 40Ar loss by diffusion, implying a zero 40Ar boundary concentration during heating. The calculated 40Ar loss from these samples, together with a model of heat flow in the aureole, provide estimates of diffusion coefficients of 40Ar in Mg-rich hornblende which correspond to an activation energy, E, of ~60 kcal-mol?1 and a frequency factor. D0, of ~ 10?3 cm2-sec?1. When combined with laboratory diffusion results, these data yield a well defined diffusion law (E = 63.3 ± 1.7 kcal-mol?1, D0 = 0.022 +0.048?0.010cm2-sec?1).The age spectra of the eight other samples record steep gradients of excess 40Ar over the first few percent of gas release. Although this effect causes high apparent conventional K-Ar ages, the plateau segments of many sampes still record the crystallization age of 367 ± 5 Ma. These measurements show that the excess 40Ar phase developed locally in the intergranular regions of the gabbro, following intrusion of the batholith. on time scales that varied from 104 to 106years. The minimum average 40Ar36Ar ratio of this component was found to be 1300 ± 400. The partial pressure of Ar was at least 10?2 bars in some places.A single 40Ar39Ar age spectrum analysis of plagioclase reveals a ‘saddle-shaped” release pattern with a minimum at 140 Ma.In conjunction with theoretical diffusion models and a diffusion law, 40Ar39Ar age spectrum analysis of hornblende that has experienced a post-crystallization heating can provide close estimates of the maximum temperature of the thermal event as well as both age of crystallization and reheating.  相似文献   

16.
The stoichiometric, KHA1, and apparent, K'HA, constants for the ionization of a number of weak acids (NH4+, HSO4?, HF, H2O, B(OH)3, H2CO3, HCO3?, H3PO4, H2PO4?, HPO42, H3AsO4 H2AsO4? and HAsO42?) in seawater at 25°C diluted with water have been fitted to equations of the form (Millero, 1979). In KHA1 = In KHA + AS12 + BS where In KHA is the thermodynamic constant in water, S is the salinity, A and B are adjustable parameters. The validity of this equation in estuarine waters has been examined by using an ion pairing model (Millero and Schreiber, 1981). The calculated values of KHA1 and K'HA at S = 35%. are in good agreement with the measured values for all the systems examined. The equation used to extrapolate the measured values to pure water KHA predicted values that agreed with those determined by using the ion pairing model. The exception was the ionization of HPO42? due to the strong interactions of Ca2+ and Mg2+ with PO43?. The differences in the predicted values of KHA1 in seawater diluted with pure water and average river water were very small for all the acids except HPO42? (the maximum ΔpK = 0.96 in average river water). The larger difference in the KHA1 for HPO42? in river waters is due to the strong interactions of Ca2+ and PO43?.  相似文献   

17.
Ammonium contents of biotites from metamorphic and granitic rocks of Japan have been determined, and correlated with the 18O16O ratios of the rocks.NH4 contents of biotites averaged 22 ppm in granitic rocks of non-metamorphic terranes, 67 ppm in granitic rocks in the Ryoke metamorphic belt, and 279 ppm in metamorphosed sedimentary rocks of the Ryoke belt. In granitic rocks, enrichment of NH4 in biotites is a result of the interaction between the granitic magma and surrounding sedimentary rocks. In metasedimentary rocks, the high NH4 content in biotites is due to inheritance from original organic material in sedimentary rocks.Biotites from migmatites of the Ryoke belt contain more NH4 (average, 475 ppm) than those from metasedimentary rocks. This suggests the existence of a metamorphic fluid or anatectic magma enriched in NH4.  相似文献   

18.
The decay constant 87Rb has been redetermined by measuring the amount of radiogenic 87Sr produced over a period of 19 years, in 20 g samples of purified RbClO4, using isotope dilution techniques. The rubidium sample was spiked with 84Sr and the nanogram quantities of strontium separated by coprecipitation with Ba(NO3)2. Analyses were carried out on a 25cm, 90° sector mass spectrometer equipped with a Spiraltron electron multiplier. Measurement of three independent ratios permitted continuous monitoring of the ion beam fractionation. The average of nine determinations gives a value for the decay constant of 1.419(±0.012) × 10?11 yr?1 (2σ). [τ12 = 4.89(±0.04) × 1010yr.]  相似文献   

19.
Morphological, mineralogical, chemical and RbSr isotopic studies have been made on Fesmectites (nontronites) from southern Pacific red clays cored near the Marquisas Islands. These minerals have at the top of the core, an 87Sr86Sr ratio of 0.70917 ± 0.00007, which indicates an authigenic origin in isotopic equilibrium with seawater. Weak leaching experiments with 1N HCl show that the nontronites also contain a volcanic component with a lower 87Sr86Sr ratio which, combined with the morphology of the particles, suggests a transportation by bottom currents of clay formed elsewhere.During burial, the nontronites experience diagenetic modifications resulting in an increase in Fe, K and Rb contents, a concomitant decrease of Mg, Ca, Ti, Na and Sr, and a preferential migration of radiogenic 87Sr from the clays into the surrounding pore waters.The 87Sr86Sr ratio of the Sr adsorbed on the outermost surfaces of the nontronites does not change with depth in the core, and is, therefore, independent of diagenetic influence, which is rather characterized by the 87Sr86Sr ratios of the interstitial waters. The isotopic composition of both the adsorbed Sr and that of the pore fluids may yield useful information on the crystallization environment and subsequent history of deep sea red clays.  相似文献   

20.
(°C)TKDPhlog/Vap.XRMKDSanid/Vap.XRM
5000.64 ± 0.110–0.20.17 ± 0.040–0.07
7001.11 ± 0.110–0.20.33 ± 0.040–0.1
8001.28 ± 0.030–0.20.45 ± 0.060–0.1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号