首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Following a period of heavy precipitation, a large and complex mass movement, namely the Dagkoy landslide, occurred in the West Black Sea Region of Turkey on May 21, 1998. This paper describes the conditioning factors of the landslide and interprets the mass transport processes in terms of a movement scenario. Geology, geomorphology and vegetation cover were considered as the conditioning factors of the failure. Observations showed that the gently sloping (about 10°) area is mostly covered by dense forest trees at the crown where the motion initiated. Significant intersection of the collapsed slope with dip of the local marls seems to have contributed to the formation and geometry of the landslide. The distance from the crown down to the toe of the landslide measured more than 600 m, with about 0.6 km3 total earth material displaced. The landslide has both a block sliding characteristics in the upper portions and a debris flow/soil flow component around the margins of the sliding blocks in the middle parts and at the toe. The proposed scenario for the landslide reveals that the movement was initiated near crown as a result of the excess water content in the marls at the end of 3 days of heavy rainfall. The early perturbations (transverse cracks, ridges, etc.) lasted for 6–7 h, after which the central part of the zone started to move as a soil flow in which very large intact blocks were transported. Even though the movement was very rapid (1.2 m/min), there was no loss of life. However, the movement destroyed 38 houses, one mosque and a considerable amount of farmland.  相似文献   

2.
高位滑坡的运动转化形式   总被引:1,自引:0,他引:1  
高位滑坡剪出口高于坡脚,它一旦滑离滑坡发生区,运动可能转化成四种形式:1.崩塌:由滑体经分级解体滑过剪出口处依次向前倾倒而成;2.碎屑流动或3.碎屑滑动:由滑动块体经碎屑化而成;4.泥石流:在适当的细粒物质量和水体条件下生成的碎屑流动。  相似文献   

3.
The well preserved and undissected Columbia Mountain landslide, which is undergoing suburban development, was studied to estimate the timing and processes of emplacement. The landslide moved westward from a bedrock interfluve of the northern Swan Range in Montana, USA onto the deglaciated floor of the Flathead Valley. The landslide covers an area of about 2 km2, has a toe-to-crown height of 1100 m, a total length of 3430 m, a thickness of between 3 and 75 m, and an approximate volume of 40 million m3. Deposits and landforms define three portions of the landslide; from the toe to the head they are: (i) clast-rich diamictons made up of gravel-sized angular rock fragments with arcuate transverse ridges at the surface; (ii) silty and sandy deposits resting on diamictons in an internally drained depression behind the ridges; and (iii) diamictons containing angular and subangular pebble-to block-sized clasts (some of which are glacially striated) in an area of lumpy topography between the depression and the head of the landslide. Drilling data suggest the diamictons cover block-to-slab-sized bedrock clasts that resulted from an initial stage of the failure.The landslide moved along a surface that developed at a high angle to the NE-dipping, thinly bedded metasediments of the Proterozoic Belt Supergroup. The exposed slope of the main scarp dips 30–37°W. A hypothetical initial rotational failure of the lower part of a bedrock interfluve may have transported bedrock clasts into the valley. The morphology and deposits at the surface of the landslide indicate deposition by a rock avalanche (sturzstrom) derived from a second stage of failure along the upper part of the scarp.The toe of the Columbia Mountain landslide is convex-west in planview, except where it was deflected around areas now occupied by glacial kettles on the north and south margins. Landsliding, therefore, occurred during deglaciation of the valley while ice still filled the present-day kettles. Available chronostratigraphy suggests that the ˜1-km thick glacier in the region melted before 12,000 14C years BP—within 3000 years of the last glacial maximum. Deglaciation and hillslope failure are likely causally linked. Failure of the faceted interfluve was likely due tensile fracturing of bedrock along a bedding-normal joint set shortly after glacial retreat from the hillslope.Open surficial tension fractures and grabens in the Swan Range are limited to an area above the crown of the landslide. Movement across these features suggests that extensional flow of bedrock (sackung) is occurring in what remains of the ridge that failed in the Columbia Mountain landslide. The fractures and grabens likely were initiated during failure, but their morphologies suggest active extension across some grabens. Continued movement of bedrock above the crown may result in future mass movements from above the previous landslide scarp. Landslides sourced from bedrock above the scarp of the late-glacial Columbia Mountain landslide, which could potentially be triggered by earthquakes, are geologic hazards in the region.  相似文献   

4.
陶波  李锋  马威  刘建雄  易守勇 《热带地理》2022,42(10):1761-1770
采用工程地质钻探、物探、地质测绘及室内试验等技术方法探讨飞鹅山Ⅲ号滑坡形成机理与防治技术。结果表明:1)滑坡体主要岩性为泥质粉砂岩,飞鹅山滑坡属于新形成的深层中型牵引式滑坡,在平面上呈圈椅状。2)滑坡属于双层滑面滑坡,主滑面以中型深层滑坡为主,主滑体上部发育中型中厚层滑坡。3)滑坡产生的原因为:(1)泥质粉砂岩倾向与坡向基本一致,且岩层倾角为中等倾角;(2)人工开挖使坡脚形成高陡临空面,抗滑力大为降低;(3)雨水沿层面及节理裂隙入渗至坡体深部,大大增加岩土体容重,同时泥质粉砂岩遇水软化,抗剪强度显著降低。4)结合该滑坡区地质环境条件,采用坡面削坡+锚杆(索)+格构梁+双排预应力锚拉抗滑桩+三维网植草绿化+截排水+毛石挡墙的综合治理方法进行防治,监测结果显示该滑坡变形及位移已得到有效控制,整治效果良好。  相似文献   

5.
A devastating landslide on 18 August 1998 near Malpa Village in Kali Valley of Higher Kumaun Himalaya killed 221 persons. The landslide was a complex rock fall–debris flow. The mass movement generated around one million cubic metres of debris and partially blocked the Kali River, Malpa Gad (a tributary of Kali) being blocked completely. The rock mass failed primarily due to the near vertical slopes hanging over the valley along joints, the formation of structural wedges along the free face, the sheared rock mass due to the close proximity of major tectonic planes, and the enhanced pore–water pressure due to prolonged heavy precipitation in the preceding days. The mesoscopic shear zone, exhibiting ramp and flat structure in quartzites, shows a southward thrust movement that might have generated shear stress in the rocks. The slide clearly demonstrates the distressed state of the rock mass in the Himalayan region due to the ongoing northward drift of the Indian plate.  相似文献   

6.
This paper discusses the occurrence and development of the excavation‐induce deep‐seated landslide, which took place near Dündar village, located west of Orhaneli town in northwestern Turkey. The event occurred in the Bursa‐Orhaneli lignite field, which has been actively operating since 1979. Due to undermining of a gently inclined slope (10°) to extract a coal seam, primary tension cracks, which were precursors of the movement, were first observed in the northern head area in mid‐ to late October 2003. This movement happened simultaneously with precipitation that was significantly above long‐term average measured at a nearby climatology station (Keles). This precipitation amount is characterized statistically by a significant standardized anomaly of 1.6. The majority of the monthly precipitation total in October 2003, which mainly consisted of rain showers and thunderstorms, occurred in the last week of the month. By April 2004, rotational failure continued intermittently. After a relatively wet (rainy and snowy) period from January 2004 to April 2004, the main rotational slump occurred in late April 2004, causing the entire destruction of Dündar village's cemetery. Daily climatic and synoptic meteorological data have proved that heavy showers in late April may had triggered the last slump by producing rain showers of 19.3 mm and 19.9 mm daily total on 27 and 28 April 2004, respectively. Field observations carried out along the main head scarp have shown that the slope failure was facilitated by a pre‐existing normal fault with an east‐ west direction and 80° dip. Grain‐size analysis showed that the failure occurred on clayey silt, which forms 55% of the slip surface material. Based on the evidence from X‐ray fluorescence and energy dispersive X‐ray spectroscopy results, smectite‐type clay ‐ a product of the chemical weathering of tuff ‐ was the main constituent of the slip surface material. The landslide occurred over an area of 600 m × 650 m with a total volume of 8775 000 m3. Approximately 28 hectares of farm land were entirely destroyed and the excavated coal seam was buried. The mining operation was moved to 100 m north of the landslide area near Gümü?p?nar village. From morphological evidence, it is concluded that excavation activities caused the failure to extend in more than one direction as an enlarging sliding mechanism; this produced a high landslide risk for Gümü?p?nar village, where the most significant normal fault with a 75 m vertical displacement in a coal‐bearing sequence is found in the lignite field.  相似文献   

7.
The Burtonsville landslide in central New York, USA, is a kilometer-scale rotational block failure in glacial till that was likely initiated by incision of the adjacent Schoharie Creek. Although the timing of initial failure is unknown, relatively fresh scarps and tilted surfaces suggest that movement is post-glacial and active. The river currently erodes the toe slope and it removed significant material during flooding associated with Hurricane Irene (August 2011). We retrieved tree cores from 111 trees across the landslide to reconstruct modern movement and block tilting as it related to moisture conditions in the region. Our data show that trees across the slide are in sync with respect to the stress response indicated by reaction wood. The magnitude of response to slope instability, as inferred from eccentric growth, has varied considerably across the site. We hypothesize that macropore development during the driest periods, and the differential rate at which water has reached subsurface failure planes, has caused the observed slope instability. The combination of a wetter precipitation regime and slope instability leads to higher sediment loads in the adjacent stream and serves as a useful analogy for similar watersheds in the region.  相似文献   

8.
The Lochiel Landslip was initiated in August 1974. It was the result of heavy winter rains, but was facilitated by the occurrence of hydrophilic clay interbedded with the quartzitic country rock. Monitoring has shown that whereas most of the minor features within the mass movement have been degraded and subdued, the headwall region remains active. The backing bluff that defines the tension scar has receded between 5 and 10 m during the last decade. The development of fissures some 90 m upslope from the present headwall suggests that this trend will continue. The widening of fissures located laterally and along the hillslope suggests that it too will fail. These changes illustrate the importance of reinforcement mechanisms in landform development. Seepage was facilitated once fissures had formed and the initial slippage left the strata upslope unbuttressed.  相似文献   

9.
The Tessina landslide is a large, seasonally active slope failure located on the southern slopes of Mt. Teverone, in the Alpago valley of NE Italy, consisting of a complex system that has developed in Tertiary Flysch deposits. The landslide, which first became active in 1960, threatens two villages and is hence subject to detailed monitoring, with high quality data being collected using piezometers, inclinometers, extensometers, and through the use of a highly innovative, automated Electronic Distance Measurement (EDM) system, which surveys the location of a large number of reflector targets once every 6 h. These systems form the basis of a warning system that protects the villages, but they also provide a very valuable insight into the patterns of movement of the landslide.In this paper, analysis is presented of the movement of the landslide, concentrating on the EDM dataset, which provides a remarkable record of surface displacement patterns. It is proposed that four distinct movement patterns can be established, which correspond closely to independently defined morphological assessments of the landslide complex. Any given block of material transitions through the four phases of movement as it progresses down the landslide, with the style of movement being controlled primarily by the groundwater conditions. The analysis is augmented with modelling of the landslide, undertaken using the Itasca FLAC code. The modelling suggests that different landslide patterns are observed for different parts of the landslide, primarily as a result of variations in the groundwater conditions. The model suggests that when a movement event occurs, displacements occur initially at the toe of the landslide, then retrogress upslope.  相似文献   

10.
An extensive ( 25 km2) landslide complex covers a large area on the west side of the Williams Fork Mountains in central Colorado. The complex is deeply weathered and incised, and in most places geomorphic evidence of sliding (breakaways, hummocky topography, transverse ridges, and lobate distal zones) are no longer visible, indicating that the main mass of the slide has long been inactive. However, localized Holocene reactivation of the landslide deposits is common above the timberline (at about 3300 m) and locally at lower elevations. Clasts within the complex, as long as several tens of meters, are entirely of crystalline basement (Proterozoic gneiss and granitic rocks) from the hanging wall of the Laramide (Late Cretaceous to Early Tertiary), west-directed Williams Range thrust, which forms the western structural boundary of the Colorado Front Range. Late Cretaceous shale and sandstone compose most footwall rocks. The crystalline hanging-wall rocks are pervasively fractured or shattered, and alteration to clay minerals is locally well developed. Sackung structures (trenches or small-scale grabens and upslope-facing scarps) are common near the rounded crest of the range, suggesting gravitational spreading of the fractured rocks and oversteepening of the mountain flanks. Late Tertiary and Quaternary incision of the Blue River Valley, just west of the Williams Fork Mountains, contributed to the oversteepening. Major landslide movement is suspected during periods of deglaciation when abundant meltwater increased pore-water pressure in bedrock fractures.A fault-flexure model for the development of the widespread fracturing and weakening of the Proterozoic basement proposes that the surface of the Williams Range thrust contains a concave-downward flexure, the axis of which coincides approximately with the contact in the footwall between Proterozoic basement and mostly Cretaceous rocks. Movement of brittle, hanging-wall rocks through the flexure during Laramide deformation pervasively fractured the hanging-wall rocks.  相似文献   

11.
《Geomorphology》2006,73(1-2):131-148
This study used airborne laser altimetry (LiDAR) to examine the surface morphology of two canyon-rim landslides in southern Idaho. The high resolution topographic data were used to calculate surface roughness, slope, semivariance, and fractal dimension. These data were combined with historical movement data (Global Positioning Systems (GPS) and laser theodolite) and field observations for the currently active landslide, and the results suggest that topographic elements are related to the material types and the type of local motion of the landslide. Weak, unconsolidated materials comprising the toe of the slide, which were heavily fractured and locally thrust upward, had relatively high surface roughness, high fractal dimension, and high vertical and lateral movement. The body of the slide, which predominantly moved laterally and consists mainly of undisturbed, older canyon floor materials, had relatively lower surface roughness than the toe. The upper block, consisting of a down-dropped section of the canyon rim that has remained largely intact, had a low surface roughness on its upper surface and high surface roughness along fractures and on its west face (unrelated to landslide motion). The upper block also had a higher semivariance than the toe and body. The topographic data for a neighboring, older and larger landslide complex, which failed in 1937, are similarly used to understand surface morphology, as well as to compare to the morphology of the active landslide and to understand scale-dependent processes. The morphometric analyses demonstrate that the active landslide has a similar failure mechanism and is topographically more variable than the 1937 landslide, especially at scales > 20 m. Weathering and the larger scale processes of the 1937 slide are hypothesized to cause the lower semivariance values of the 1937 slide. At smaller scales (< 10 m) the topographic components of the two landslides have similar roughness and semivariance. Results demonstrate that high resolution topographic data have the potential to differentiate morphological components within a landslide and provide insight into the material type and activity of the slide. The analyses and results in this study would not have been possible with coarser scale digital elevation models (10-m DEM). This methodology is directly applicable to analyzing other geomorphic surfaces at appropriate scales, including glacial deposits and stream beds.  相似文献   

12.
滑体运动变形特征是建立滑坡观测系统的主要依据。前者受控于滑面类型。1.直线型滑面上的滑体作整体运动,运动具等效效应;内部变形微弱,观测重点在地表位移;2.折线型滑面上的滑体亦作整体运动,变形较强,观测重点在深部位移和变形;3.凹弧型滑面上的滑体作整体旋转运动,变形较弱,观测重点在后缘和前缘;4.凸弧型滑面上的滑体作破碎旋转运动,变形较明显,观测重点在地表(尤其是剪出口处);5.复合型滑面上的滑体作分级分块运动,变形强烈,宜作综合观测。  相似文献   

13.
The Corvara landslide is an active slow moving rotational earth slide - earth flow, located uphill of the village of Corvara in Badia, one of the main tourist centres in the Alta Badia valley in the Dolomites (Province of Bolzano, Italy). Present-day movements of the Corvara landslide cause National Road 244 and other infrastructures to be damaged on a yearly basis. The movements also give rise to more serious risk scenarios for some buildings located in front the toe of the landslide. For these reasons, the landslide has been under observation since 1997 with various field devices that enable slope movements to be monitored for hazard assessment purposes. Differential GPS measurements on a network of 47 benchmarks has shown that horizontal movements at the surface of the landslide have ranged from a few centimetres to more than 1 m between September 2001 and September 2002. Over the same period, vertical movements ranged from a few centimetres to about 10 cm, with the maximum displacement rate being recorded in the track zone and in the uppermost part of the accumulation lobe of the landslide. Borehole systems, such as inclinometers and TDR cables, have recorded similar rates of movement, with the depths of the major active shear surfaces ranging from 48 m to about 10 m. From these data, it is estimated that the active component of the landslide has a volume of about 50 million m3. In this paper the monitoring data collected so far are presented and discussed in detail to prove that the hazard for the Corvara landslide, considered as the product of yearly probability of occurrence and magnitude of the phenomenon, can be regarded has as medium or high if the velocity or alternatively the volume involved is considered. Finally, it is also concluded that the monitoring results obtained provide a sound basis on which to develop and validate numerical models, manage hazard and support the identification of viable passive and active mitigation measures.  相似文献   

14.
Old landslides are prominent features in the landscape around Hagere Selam, Tigray Highlands, Ethiopia. The available evidence suggests their Late Pleistocene to Middle Holocene age and conditions of soil humidity. The affected geological layers, often silicified lacustrine deposits prone to sliding, rest upon or above the water holding Amba Aradam sandstone aquifer.Three examples of present-day (remobilisation of old) mass movements are illustrated and discussed. The aims of the study were to unravel the environmental conditions of the present-day remobilisation of ancient flows, as well as those of first-time landslides. The first two mass movements discussed are slumps, located in areas with vigorous regeneration of (grassy) vegetation. Their activation is thought to be the consequence of an increase in infiltration capacity of the soils under regenerating vegetation. One of these slumps had a horizontal movement of the order of 10–20 m in 1 day.The other case is the remobilisation of the May Ntebteb debris flow below the Amba Aradam sandstone cliff. The debris flow presently creeps downslope at a rate of 3–6 cm year−1. Palynological evidence from tufa shows that the reactivation of the flow started 70 years ago. Shear resistance measurements indicate the danger for continuous or prefailure creep. From the soil mechanics point of view, the reactivation of the debris flow is due to the combination of two factors: (1) the reduction of flow confining pressures as a result of gully incision over the last hundred years, and (2) the increase of seepage pressure as a consequence of the cumulative effect of this incision and the increase in infiltration rates on the lobe since grazing and woodcutting have been prohibited 8 years ago. The role of such exclosures as possible landslide triggers is discussed.From the geomorphological point of view, the ancient movements and their present-day reactivation cannot be compared: the ancient movements led to the development of debris flows, whereas the reactivations relate to the dissection of these mass movement deposits.  相似文献   

15.
This study attempts to reconstruct the history of the Collinabos landslide, a landslide with a fresh morphology that is representative for more than 150 dormant, deep-seated (> 3 m) landslides in the Flemish Ardennes (Belgium). A geomorphological map was created based on LIDAR (Light Detection and Ranging)-derived maps and detailed field surveys. The map showed that the landslide consisted of three zones with significant differences in surface topography. The northern landslide zone 1 is characterised by at least five reverse slopes, whereas zones 2 and 3, the southern landslide zones, have only two reverse slopes and a convex foot. Electric resistivity profiles measured in zones 1 and 2 revealed that the differences in surface topography were not related to differences in internal structure as both parts of the landslide were initiated as a rotational earth slide with a surface of rupture at 15 m deep, where the displaced material broke apart in two blocks. However, two shear surfaces of reactivations within landslide debris were only distinguished in the accumulation area of zone 1. The observed differences in surface morphology can be caused by a temporary conversion of a forest into cropland in zone 2. It is suggested that reverse slopes of smaller reactivations within landslide debris were obliterated during the agricultural activities. AMS radiocarbon dating of organic material found in ponds located in reverse slopes generally resulted in relatively recent dates (i.e. 1400–1950 Cal AD) suggesting that several of the small local reactivations occurred in that period. One dating at 8700–8440 Cal BP of organic matter collected in a reverse slope in zone 1 suggests that an initiation under periglacial conditions cannot be excluded for the Collinabos landslide. By combining different technologies, this study provides valuable information for a better understanding of dormant landslides.  相似文献   

16.
降雨型浅层滑坡的变形预测模型   总被引:1,自引:0,他引:1  
滑坡是边坡被某些诱发因素激发失稳产生滑动的一种地质现象。它是地质灾害的主要类型,尤其以降雨滑坡数量最多,其中浅层滑坡分布最广。通过对降雨型浅层滑坡的变形进行分析,建立了基于功能原理的滑坡一维运动方程,并结合太沙基固结原理,研究滑坡运动过程中孔隙水压力的消散,揭示了滑坡从运动-停止的动力演化过程,构建了降雨型浅层滑坡的位移预测模型,并以都江堰塔子坪滑坡为例进行分析,通过mathmatic给出了滑坡运动的速率、位移与降雨量的量化关系式。  相似文献   

17.
During the last decade the frequency of landslides at river valley slopes eroding into the glaciolacustrine plain in western Estonia has grown considerably. We studied in detail nine recent landslides out of 25 known and recorded sliding events in the area. All landslides occurred at the river banks in otherwise almost entirely flat areas of proglacial deposits capped with marine sands. Glaciolacustrine varved clay is the weakest soil type in the area and holds the largest landslides. Slope stability modelling shows that critical slope gradient for the clay is ≥ 10° and for the marine sand ≥ 20°. Fluvial erosion is the main process in decreasing slope stability at the outer bends of the river meanders. An extra shear stress generated by groundwater flow following the high stand of the groundwater level or rapid water level drawdown in the river channels are responsible for triggering the landslides. Consecutive occurrence of small-scale slides has a direct effect in triggering the large, retrogressive complexes of slides in the glaciolacustrine clay. A landslide hazard zonation map was composed based on digital elevation model and the data on spatial distribution of glaciolacustrine clays and marine sands, and on existing and critical slope angles of these deposits.  相似文献   

18.
In steep and rocky terrains, their rough surfaces make it difficult to create landslide inventories even with detailed maps/images produced from airborne LiDAR data. To provide objective clues in locating deep-seated landslides, the surface textures of a 5 km2 steepland area in Japan was investigated using the eigenvalue ratio and slope filters calculated from a very high resolution LiDAR-derived DEM. The range of filter values was determined for each of a number of surface features mapped in the field and these included: cracked bedrock outcrops, coarse colluvial deposits, gently undulating surfaces, and smooth surfaces. Recently active slides commonly contained patches of ground in which deposition and erosion occurred together near the erosion front, or where cracked bedrock outcrops and coarse colluvial deposits coexisted under a gently undulating surface. The characteristic eigenvalue and slope filter values representing this sliding process were applied to maps of the DEM derived filter values to extract potential sites of recent landslide activity. In addition, the relationships between the filter values of deep-seated landslides at various stages of evolution within the field mapped area were extended to the entire study area, to assess the contribution that landslide evolution makes to change in the landscape as a whole. While landslide components made up the steepest as well as the gentlest parts of the landscape depending on their evolutionary stage, landslides were constantly coarsened and steepened by progressive erosion, probably initiated by river bank erosion at the foot of slopes.  相似文献   

19.
何毓蓉  廖超林 《山地学报》2006,24(5):I0001-I0002,F0003
长江上游地区的侵蚀、滑坡和泥石流发生普遍而严重。选择典型区对侵蚀、滑坡和泥石流土体的微形态及与之紧密相关的土性进行比较研究,有重要意义。在贡嘎山东坡、川中丘陵盐亭、三峡库区云阳、云南东川蒋家沟分别采集代表性侵蚀、滑坡和泥石流土体剖面进行了研究。主要取得下述研究结果:(1)不同侵蚀强度的研究区土体特性有所不同,但共同特征是发育浅、颗粒粗、易分散等,有利于侵蚀形成;也相应形成一些侵蚀土体的微形态特征,如粗骨颗粒聚积状微形态、细土物质微区淋蚀现象、埋藏土层微形态特征等。(2)在滑坡土体,发现一些有利于滑坡形成的土体特性和微形态特征,如骨骼颗粒细化和蚀圆化、吸水性强的指纹状微结构等。在滑塌面上形成特殊的土体微形态,如拉张微裂隙、强光性定向粘粒集合体、玻璃质形成物、铁锰分离物等。(3)泥石流土体土性特殊,并形成了一些特殊的土体微形态特征,如湖泥状基质、骨骼颗粒泥质包裹体、错断微裂隙等。结果表明:在不同的环境条件下,三类土体的土性和土体微形态也有异同。对侵蚀、滑坡和泥石流的形成机制、活动性等都有一定的诊断意义。  相似文献   

20.
Giant landslides, which usually have volumes up to several tens of km3, tend to be related to mountainous reliefs such as fault scarps or thrust fronts. The western flank of the Precordillera in southern Peru and northern Chile is characterized by the presence of such mega-landslides. A good example is the Latagualla Landslide (19°15′S), composed of ~ 5.4 km3 of Miocene ignimbritic rock blocks located next to the Moquella Flexure, a structure resulting from the propagation of a west-vergent thrust blind fault that borders the Precordillera of the Central Depression. The landslide mass is very well preserved, allowing reconstitution of its movement and evolution in three main stages. The geomorphology of the landslide indicates that it preceded the incision of the present-day valleys during the late Miocene. Given the local geomorphological conditions 8–9 Ma ago (morphology, slopes and probably a high water table), large-magnitude earthquakes could have provided destabilization forces enough to cause the landslide. On the other hand, present seismic forces would not be sufficient to trigger such landslides; therefore the hazard related to them in the region is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号