首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single‐laser‐shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low‐pressure, olivine‐dominated fractionation of Adirondack (MER) class‐type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe‐rich, relatively low‐Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine‐grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. The Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.  相似文献   

2.
Abstract– Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra‐terrestrial end‐members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low‐temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.  相似文献   

3.
The chemical compositions of shergottite meteorites, basaltic rocks from Mars, provide a broad view of the origins and differentiation of these Martian magmas. The shergottite basalts are subdivided based on their Al contents: high‐Al basalts (Al > 5% wt) are distinct from low‐Al basalts and olivine‐phyric basalts (both with Al < 4.5% wt). Abundance ratios of highly incompatible elements (e.g., Th, La) are comparable in all the shergottites. Abundances of less incompatible elements (e.g., Ti, Lu, Hf) in olivine‐phyric and low‐Al basalts correlate well with each other, but the element abundance ratios are not constant; this suggests mixing between components, both depleted and enriched. High‐Al shergottites deviate from these trends consistent with silicate mineral fractionation. The “depleted” component is similar to the Yamato‐980459 magma; approximately, 67% crystal fractionation of this magma would yield a melt with trace element abundances like QUE 94201. The “enriched” component is like the parent magma for NWA 1068; approximately, 30% crystal fractionation from it would yield a melt with trace element abundances like the Los Angeles shergottite. This component mixing is consistent with radiogenic isotope and oxygen fugacity data. These mixing relations are consistent with the compositions of many of the Gusev crater basalts analyzed on Mars by the Spirit rover (although with only a few elements to compare). Other Mars basalts fall off the mixing relations (e.g., Wishstone at Gusev, Gale crater rocks). Their compositions imply that basalt source areas in Mars include significant complexities that are not present in the source areas for the shergottite basalts.  相似文献   

4.
A possible crater representing the source of Australasian tektites is identified in northeastern Cambodia at longitude, 106° 34′E., and latitude, 13° 55′N. The crater is an incomplete oval ring of hills 10 km long and 6 km wide located near the center of the Muong Nong-type tektite strewnfield. The morphology of the structure may have been significantly changed by relatively recent erosion and deposition processes. The types of rocks in the area of the crater are consistent with the compositional requirements for the tektite source rocks. Collection of impactite material from the vicinity of the structure will be required to confirm its association with Australasian tektites.  相似文献   

5.
Abstract— Terrestrial impact structures provide field evidence for cratering processes on planetary bodies that have an atmosphere and volatiles in the target rocks. Here we discuss two examples that may yield implications for Martian craters: 1. Recent field analysis of the Ries crater has revealed the existence of subhorizontal shear planes (detachments) in the periphery of the crater beneath the ejecta blanket at 0.9–1.8 crater radii distance. Their formation and associated radial outward shearing was caused by weak spallation and subsequent dragging during deposition of the ejecta curtain. Both processes are enhanced in rheologically layered targets and in the presence of fluids. Detachment faulting may also occur in the periphery of Martian impacts and could be responsible for the formation of lobe‐parallel ridges and furrows in the inner layer of double‐layer and multiple‐layer ejecta craters. 2. The ejecta blanket of the Chicxulub crater was identified on the southeastern Yucatán Peninsula at distances of 3.0–5.0 crater radii from the impact center. Abundance of glide planes within the ejecta and particle abrasion both rise with crater distance, which implies a ground‐hugging, erosive, and cohesive secondary ejecta flow. Systematic measurement of motion indicators revealed that the flow was deviated by a preexisting karst relief. In analogy with Martian fluidized ejecta blankets, it is suggested that the large runout was related to subsurface volatiles and the presence of basal glide planes, and was influenced by eroded bedrock lithologies. It is proposed that ramparts may result from enhanced shear localization and a stacking of ejecta material along internal glide planes at decreasing flow rates when the flow begins to freeze below a certain yield stress.  相似文献   

6.
Amphibole in chassignite melt inclusions provides valuable information about the volatile content of the original interstitial magma, but also shock and postshock processes. We have analyzed amphibole and other phases from NWA 2737 melt inclusions, and we evaluate these data along with published values to constrain the crystallization Cl and H2O content of phases in chassignite melt inclusions and the effects of shock on these amphibole grains. Using a model for the Cl/OH exchange between amphibole and melt, we estimate primary crystallization OH contents of chassignite amphiboles. SIMS analysis shows that amphibole from NWA 2737 currently has 0.15 wt% H2O. It has lost ~0.6 wt% H2O from an initial 0.7–0.8 wt% H2O due to intense shock. Chassigny amphibole had on average 0.3–0.4 wt% H2O and suffered little net loss of H2O due to shock. NWA 2737 amphibole has δD ≈ +3700‰; it absorbed Martian atmosphere‐derived heavy H in the aftermath of shock. Chassigny amphibole, with δD ≤ +1900‰, incorporated less heavy H. Low H2O/Cl ratios are inferred for the primitive chassignite magma, which had significant effects on melting and crystallization. Volatiles released by the degassing of Martian magma were more Cl‐rich than on Earth, resulting in the high Cl content of Martian surface materials.  相似文献   

7.
We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10?3 to 10?2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater‐type fluid formed impure sulfate‐ and silica‐rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate‐rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.  相似文献   

8.
Abstract— Radiometric age dating of Martian rocks and surfaces at known locations for which crater densities can be determined is highly desirable in order to fully understand Martian history. Performing K‐Ar age dating of igneous rocks on Mars by robots, however, presents technical challenges. Some of these challenges can be defined by examining Ar‐Ar data acquired on Martian meteorites, and others can be evaluated through numerical modeling of simulated K‐Ar isochrons like those that would be acquired robotically on Martian rocks. Excess 40Ar is present in all shergottites. Thus for Martian rocks, the slopes of K‐Ar isochrons must be determined to reasonable precision in order to calculate reliable ages. Model simulations of possible isochrons give an indication of some requirements in order to define a precise rock age: Issues addressed here are: how many K‐Ar analyses should be made of rocks thought to have the same age; what range of K concentrations should these analyzed samples have; and what analytical uncertainty in K‐Ar measurements is desirable. Meteorite data also are used to determine the D/a2 diffusion parameters for Ar in plagioclase and pyroxene separates of several shergottites and nakhlites. These data indicate the required temperatures and times for heating similar Martian rocks in order to extract Ar. Quantitatively extracting radiogenic 40Ar could be difficult, and degassing cosmogenic Ar from mafic phases even more so. Considering all these factors, robotic K‐Ar dating of Martian rocks may be achievable, but will be challenging.  相似文献   

9.
Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg–OH and Ca–OH waters with pH values up to ~12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg–Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.  相似文献   

10.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   

11.
We examine the nature of the surface layer in Gale Crater as determined from high-resolution thermal and visible Mars Odyssey Thermal Emission Imaging System (THEMIS) data as well as how our conclusions compare to past analyses. At THEMIS resolution, the thermal surface structure is dominated by local control, thus providing us with detailed images that contain thermophysical information as well. Using these data sets we have created a map of the area, defining units based primarily on their geomorphology as determined from the daytime thermal and visible images and then using the nighttime thermal data to interpret the nature of the surface layer within each unit. Seven units have been defined: (i) partially blanketed knobby plateaus, (ii) crater walls with terrain similar to that on the plateaus on the upper half and exposed, rocky surfaces on the lower half, (iii)-(v) three floor units with varying combinations of bedrock and indurated and/or particulate deposits, (vi) sand sheets, and (vii) a central mound, consisting of indurated and/or rocky material forming layers, terraces, and slides, covered by particulate material that tapers in thickness downslope. Additionally, dozens of channels have been observed on the crater walls and central mound. The results indicate that aeolian processes have played a major role in shaping much of the present surface layer within Gale and may still be active today. Because of the dramatic size and structure of Gale, the winds are most likely controlled by the local topography. Additionally, the presence and frequency of channels within Gale bolster hypotheses involving aqueous episodes in the history of the crater.  相似文献   

12.
Michael Gurnis 《Icarus》1981,48(1):62-75
Improved crater statistics from varied Martian terrains are compared to lunar crater populations. The distribution functions for the average Martian cratered terrain and the average lunar highlands over the diameter range 8–2000 km are quite similar. The Martian population is less dense by approximately 0.70 from 8 to 256 km diameter and diverges to proportionally lower densities at greater diameters. Crater densities on Martian “pure” terra give a lower limit to the Mars/Moon integrated crater flux of 0.75 since the last stabilization of the respective planetary crusts. The crater population >8 km diameter postdating the Martian northern plains is statistically indistinguishable from that population postdating the lunar maria. Monte Carlo simulations were performed to constrain plausible mechanisms of crater obliteration. The models demonstrate that if the crater density difference between the lunar and Martian terra has been due to resurfacing processes, random intercrater plains formation cannot be the sole process. If plains preferentially form in and obliterate larger craters, then the observed Martian distribution retains its “shape” as the crater density decreases. This result is consistent with the morphology of Martian intercrater plains.  相似文献   

13.
Datasets at resolutions many times greater than previously available were used to study aeolian features within Gale Crater. High resolution thermal inertia data allowed for detailed particle size estimation, with the data sufficient to resolve dunefields. A wide range of grain sizes have now been identified in the Gale Crater dunefields, ranging from medium to very coarse sand. High Resolution Imaging Science Experiment (HiRISE) and THEMIS VIS data allowed for detailed analysis of the dune morphology and slip-faces, which shows that the dunes have responded to topographic influences on prevailing wind directions under a present day wind regime. This result was corroborated by a regional mesoscale model for the crater under dust storm conditions. The central mound and smaller scale crater floor topography has altered the prevailing wind regime and dune patterns. Aeolian activity has thus played, and continues to play, an important role in shaping many of the present surface features of Gale Crater. The arrival of a future lander mission such as the Mars Science Laboratory would be able to sample these surface features directly and add a wealth of data to the understanding of Gale Crater.  相似文献   

14.
Abstract– Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mg‐ and Fe‐contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, especially, the upcoming Mars mission MSL‐2011 and the future international Mars‐2018 mission, it is necessary to synthesize Martian basalts. The aim of this study was therefore to synthesize Martian basalt analogs to the Gusev crater basalts, based on the geochemical data from the MER rover Spirit. We present the results of two experiments, one producing a quench‐cooled basalt (<1 h) and one producing a more slowly cooled basalt (1 day). Pyroxene and olivine textures produced in the more slowly cooled basalt were surprisingly similar to spinifex textures in komatiites, a volcanic rock type very common on the early Earth. These kinds of ultramafic rocks and their associated alteration products may have important astrobiological implications when associated with aqueous environments. Such rocks could provide habitats for chemolithotrophic microorganisms, while the glass and phyllosilicate derivatives can fix organic compounds.  相似文献   

15.
Images from Mars Global Surveyor and later images from Mars Reconnaissance Orbiter reveal that roughly half of the meteoroids striking Mars (at meter to few decameter crater diameters) fragment in the Martian atmosphere, producing small clusters of primary impact craters. Statistics of these “primary clusters” yield valuable information about important Martian phenomena and properties of interplanetary bodies, including meteoroid behavior in the Martian atmosphere, bulk strengths of bodies striking Mars, and the fraction of Martian “field secondary” craters, a datum that would improve crater count chronometry. Many Martian impactors fragment at altitudes significantly higher than 18 km above the mean surface of Mars, and we find that most bodies striking Mars and Earth have low bulk strengths, consistent with crumbly or highly fractured objects. Applying statistics of primary clusters at various elevations and independent diameter bins, we describe a technique to estimate the percentage of semirandomly scattered “field secondary” craters. Our provisional estimate of this percentage, in the diameter range ~250 m down to ~22 m, is ~40% to ~80% of the total impacts, with the higher percentages at smaller diameters. Our data argue against earlier suggestions of overwhelming dominance by either primaries or secondaries in this diameter range.  相似文献   

16.
To assess whether life existed on Mars, it is crucial to identify geochemical biosignatures that are relevant to specific Martian environments. In this paper, thermochemical modeling was used to investigate fluid chemistries and secondary minerals that would have evolved biotically over geological time scales in Martian fluvio-lacustrine and evaporitic settings, and that could be used as potential inorganic biosignatures for life detection on Mars. Modeling was performed using fluid and rock chemistries relevant to Gale crater aqueous environments. Potential inorganic biosignatures were identified investigating alteration deposits found at the surface of a simulant exposed to short-term bio-mediated weathering and comparing experimental and modeling results. In a fluvio-lacustrine setting (water/rock of 2000–278), models suggest that less complex mineral assemblages form during biotic basalt dissolution and subsequent brine evaporation compared to what would happen in an abiotic system. Mainly nontronite, kaolinite, and quartz form under biotic conditions, whereas celadonite, talc, and goethite would also precipitate abiotically. Quartz, sepiolite, and gypsum would precipitate from the evaporation of fluids evolved biotically, whereas nontronite, talc, zeolite, and gypsum would form in an abiotic evaporitic environment. These results could be used to distinguish products of abiotic and biotic processes, aiding the interpretation of data from Mars exploration missions.  相似文献   

17.
Comparing craters of identical diameter on a planet is an empirical method of studying the effects of different target and impactor properties while holding total impact energy nearly constant. We have analyzed the Martian crater population within a narrow diameter range (7 km < crater diameter < 9 km) at the simple‐complex crater transition using three approaches. We looked for correlations of morphology with surface geology using a global crater database and global geologic map. We examined selected regions in detail with high‐resolution images to further understand the relationship between crater morphology and bulk target properties. Finally, we examined craters in close proximity to each other in order to hold target properties constant, so that we could isolate impactor effects on crater morphology. We found a strong correlation between target properties and interior crater morphology, and we found little evidence that impactor properties (other than impact angle) affect crater appearance. Central uplift and wall slumping are enhanced for less consolidated targets. Layered targets affected both the excavation and modification stages of complex crater formation; the resulting craters have pseudoterraces, flat floors, and central pits.  相似文献   

18.
This paper presents the water and chlorine content estimates on the bottom of the Martian crater Gale obtained by processing the data of active neutron sensing with the DAN experiment onboard theNASA “Curiosity”Mars rover at 412 spots along the 11-kilometer track. For 78% of the examined spots the water distribution in depth is found to be homogeneous with a mean content of 2.1±0.5% by mass (here and elsewhere variations correspond to the mean square deviations). For 22% of the examined spots the data require a two-layer model of water distribution down to the sensitivity limit of about 60 сm. The mean water content in upper layer of these spots is about 2?3% by mass, which is close to the content for spots with the homogeneous water distribution. In 8% of the examined spots the water content in the bottom layer at a depth of 27 ± 18 сm increases to 5.6 ± 2.7%. In 14% of the examined spots the water content in the bottom layer at a depth of 14 ± 7 сm decreases to 1.2 ± 0.5%. For interpretation of these results we conclude that the Gale crater has areas both with high and low water content, which correspond to distinct sedimentary layers from different past epochs, when sedimentation process took place underwater and in air correspondingly.  相似文献   

19.
The recent witnessed fall of the meteorite Tissint represents the delivery of a pristine new sample from the surface of Mars. This meteorite provides an unprecedented opportunity to study a variety of aspects about the planet's evolution. Using the Rb–Sr and Sm–Nd isotopic systems, we determined that Tissint, a depleted shergottite, has a crystallization age of 574 ± 20 Ma, an initial ε143Nd = +42.2 ± 0.5, and an initial 87Sr/86Sr = 0.700760 ± 11. These initial Nd and Sr isotopic compositions suggest that Tissint originated from a mantle source on Mars that is distinct from the source reservoirs of the other Martian meteorites. The known crystallization ages, geochemical characteristics, ejection ages, and ejection dynamics of Tissint and other similarly grouped Martian meteorites suggest that they are likely derived from a source crater up to approximately 90 km in diameter with an age of approximately 1 Ma that is located on terrain that is approximately 600 million years old.  相似文献   

20.
Abstract— Until recently, the SNC meteorites represented the only source of information about the chemistry and petrology of the Martian surface and mantle. The Mars Exploration Rovers have now analyzed rocks on the Martian surface, giving additional insight into the petrology and geochemistry of the planet. The Adirondack basalts, analyzed by the MER Spirit in Gusev crater, are olivine‐phyric basaltic rocks which have been suggested to represent liquids, and might therefore provide new insights into the chemistry of the Martian mantle. Experiments have been conducted on a synthetic Humphrey composition at upper mantle and crustal conditions to investigate whether this composition might represent a primary mantle‐derived melt. The Humphrey composition is multiply saturated at 12.5 kbar and 1375 °C with olivine and pigeonite; a primary anhydrous melt derived from a “chondritic” mantle would be expected to be saturated in orthopyroxene, not pigeonite. In addition, the olivine and pigeonite present at the multiple saturation are too ferroan to have been from a Martian mantle as is understood now. Therefore, it seems likely that the Humphrey composition does not represent a primary anhydrous melt from the Martian mantle, but was affected by mineral/melt fractionations at lower (crustal) pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号