首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

2.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

3.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

4.
Major (Al and Fe), minor (Mn) andtrace (As, Cd, Co, Cr, Cu, Hg, Li, Mo, Ni, Pb, Sb, Vand Zn) metals along with material of grain size<63 m, TOC and TN have been determined insediment grab and core samples from the Kara Sea, andthe Ob and Yenisey estuaries, Russia. Surprisingly,the levels of trace metals, with the exception of As,were much lower than was anticipated from speculativereports of extensive contamination in the Arcticmarine areas adjacent to the Siberian coastline ofRussia. Lithium normalization indicates that theabundance and distribution of the metals, with theexception of As and Mo, are controlled by theaccumulation of their fine grained aluminosilicatehost minerals at sites determined by hydrodynamicconditions in the Kara Sea and in the estuaries. Metallevels in the Kara Sea and the Ob and Yeniseyestuaries, except for some anomalous As, Cu and Nivalues, are close to natural baseline levels of otherEurasian Arctic shelf sediments. High levels of As,however, occur in surface and subsurface sediments.The accumulation of As, as well as Mo, can beattributed to the post-depositional diagenetic effectsof Fe-Mn cycling both at and near the sediment waterinterface. Subsurface As and Fe maxima and minimasuggest alternating oxic and anoxic water conditionsduring post-glacial rises in sea level. In contrast tothe results from the adjacent Pechora Sea, in the KaraSea there is no correlation between the levels of Asand radionuclides in the sediments.  相似文献   

5.
Surface sediment samples were collected at 21 offshore sites in western Xiamen Bay, Southeast China. Total concentrations of Li, V, Cr, Co, Ni, Cu, Zn, Sr, Mn, Pb, Ba, Fe, and Ti were determined by inductively coupled plasma-optical emission spectrometry; Hg was determined by atomic fluorescence spectrometry. A modified BCR sequential extraction procedure was used to extract fractions of the above elements. Concentrations of Pb, Cr, and Hg at most sites met the primary standard criteria of Marine Sediment Quality except site S12 for Pb and S7 for Cr, while concentrations of Zn at 17 sites and Cu at seven sites exceeded the criteria. The mean concentration of Hg was three times higher than the background, with a possible source being the Jiulong River. Fe, Ti, Ba, Co, V, and Li dominated the residual phase, mainly from terrestrial input. Ni, Cr, Pb, and Hg in the non-residual phase varied largely between sites. Sr, Mn, Cu, and Zn were mainly in the non-residual fraction. Most sites showed considerable ecological risk; exceptions were site S7 (very high) and sites S10, S11, and S14 (moderate). Cu showed moderate-to-high pollution and Pb exhibited no-to-low pollution, while other metals had a non-pollution status according to their ratios of secondary phase to primary phase (RSP). Results of two assessment methods showed moderate pollution and a very high ecological risk for Cu, Zn, Ni, and Cr at site S7, which might be due to the local sewage treatment plant.  相似文献   

6.
Analysis of ten heavy metals (Ag, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in six sediment cores from Wellington Harbour show both anthropogenic enrichments and diagenetic modifications. Absolute concentrations determined by two methods, x-ray fluorescence and acid leaching for bioavailability, are not comparable. However, vertical trends in concentrations of the cored sediment are comparable. To assess levels of anthropogenic pollution, enrichment factors (enriched concentrations in upper core divided by background levels in lower core) are preferred over index of accumulation (I geo) values because preindustrial or background levels of heavy metals are well constrained. The ten metals are placed into three groups: (1) Cu, Pb, and Zn, which show the most anthropogenic enrichment; (2) As, Cd, Cr, Ni, and Sb, which are often associated with anthropogenic pollution but show only minor enrichment; and (3) Fe and Mn, which are diagenetically enriched. Assuming harbor waters are well mixed, anthropogenic enrichments of Cu, Pb, and Zn, are time correlative, but the degree of enrichment depends on the method of analysis and core location. Levels of As, Cd, Pb, and Zn show small variations in preindustrial sediments that are not related to changes in grain size and probably result from changes in the oxidation-reduction potential of the sediments and salinity of the pore waters.  相似文献   

7.
Trace metal concentrations were investigated in a recent sediment core collected from the Rehri Creek area of the Karachi coast,Sindh-Pakistan.The core was sliced horizontally at 2.5-cm intervals to determine grain size,sediment composition,pH,organic matter,and acid-leachable trace metals:cadmium,chromium,copper,lead,and zinc.The trace metals were analyzed by ICP.To separate anthropogenic from geogenic input,several approaches were made,including comparison with sediment quality guidelines—ecotoxicological sense of heavy metal contamination and classification by quantitative indexes.Grain-size analysis and sediment composition of core sample show a sandy nature with neutral pH.Elemental sequence(ES)of the trace metals is in the order of Zn(19.2-109.56 ppm)>Si(66.46-101.71 ppm)>Ba(12.05-26.86 ppm)>As(8.18-17.36 ppm)>Ni(4.2-14.69 ppm)>Cr(3.02-9.62 ppm)>Pb(2.79-6.83 ppm)>Cu(2.2-5.29 ppm)>Co(0.9-2.05 ppm).Thus it is likely that the area may face a serious threat of metal pollution with the present deposition rates unless stringent pollution control norms are adopted.The Sediment Geo-accumulation Index shows that there is no Cr,Cu,Ni,Pb,Zn,or Fe pollution;however,the former index and the Pollution Load Index indicate arsenic pollution in the sediments.  相似文献   

8.
The aim of this study was to investigate spatiotemporal variations in groundwater heavy-metal concentrations at the Karaduvar agricultural-industrial district (Mersin, SE Turkey), where parts of the underlying coastal aquifer has been polluted by petroleum hydrocarbons (PHCs) from diverse sources. The water chemistry data for the present study is comprised of 275 samples collected during 2006–2010 from 55 water-supply wells. The samples were analyzed in situ for physical parameters (EC, DO, pH, and temperature) and in the laboratory for As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn using the ICP-MS method. Box–whisker plots and principal components analysis (PCA) method were employed to determine the seasonal changes occurring in heavy-metal concentrations and to identify source apportionment of pollution parameters in groundwater. During the monitoring period, in many wells, heavy-metal concentrations (except for Cd) exceeded the limit values set by Turkish Water Pollution Control Directive (No: 25687). Results from the PCA suggest that elevated Mn, Fe, Co, Ni and As concentrations may be linked to oxidation–reduction of geogenic Mn/Fe oxyhydroxides in PHC-contaminated parts. The high concentrations of Cu, Mo and probably Cd in background areas result from the agricultural and petrochemical activities conducted in the recent past. At the site, high Pb and Zn concentrations are probably related to agricultural activities in PHC-contaminated areas, whereas Cr can be solely attributed to lithogenic sources. At the Karaduvar site, heavy-metal pollution in groundwater is found to be much more persistent than PHC contamination.  相似文献   

9.
The present study to find seasonal (September 2010–June 2011) heavy metal (Cd, Pb, Cr, Co, Ni, Zn, Cu, Fe, As) contamination and the origins thereof in surface sediments of Gökçekaya Dam Lake, as constructed on Sakarya River, the third-longest river in Turkey and the largest river of the Northwestern Anatolia. Upon analyses for the purpose thereof, heavy metal contamination in annual average concentrations in the lake sediment varied, respectively, as Fe > Zn > Cr > Ni > Cu > Pb > Co > As > Cd. Statistical assessments performed in order to see whether the average values of the heavy metal contamination as measured at stations placed in the lake changed by seasonal periods. There found statistically significant differences especially in Cd, Zn, and Pb between seasonal periods. In accordance with the Sediment Quality Index, Gökçekaya Dam Lake sediment was classified as “highly polluted” in terms of the amount of anthropogenic contaminants of As, Cr, Cu, Ni, Pb, and Zn. Enrichment factor and geoaccumulation index values (I geo) were calculated in order to geochemically interpret the source of contamination due to heavy metal concentration in the lake sediment and the level of pollution. The As, Co, Cr, Cu, Ni Pb, and Zn values demonstrated that the sediment was rich for anthropogenic contaminants. The lake was found especially rich for arsenic (14.97–34.70 mg/kg) and lead (68.75–98.65 mg/kg) in accordance with annual average values. In general the lake was geochemically characterized as “moderately contaminated” in terms of As, Co, Cr, Cu, Ni, Pb, and Zn content.  相似文献   

10.
长江中游网湖沉积物重金属元素变化特征分析   总被引:12,自引:8,他引:4       下载免费PDF全文
在放射性核素137Cs和210Pb精确计年的基础上,建立了长江中游网湖近代沉积物年代序列。通过对沉积物中金属元素含量和粒度的测定,结合相关的文献资料,分析了100多年来网湖沉积物中重金属元素的垂直分布特征、物源变化,以及自然因素和人类活动对其的影响,最后采用地累积指数法和潜在生态危害指数法进行了重金属污染评价。研究结果表明:  20世纪50年代以前,人类活动对重金属元素沉积影响不大,重金属元素含量低于或接近参考的背景值,主要表现为自然沉积。其中1920~1950年间,流域高频率的洪灾使网湖沉积物中粘土物质减少,战乱和血吸虫病造成阳新县工农业生产衰退,人口急剧下降,受此影响沉积物中重金属含量出现了一段低谷。50年代以后,随着人口的增长、经济的速猛发展,尤其是矿产开发和大规模的水利工程建设,流域水土流失加重,大量陆源物质进入湖泊,使Cu,Ti,Mn,Zn,Co,Fe和Pb含量增加。重金属污染评价结果表明:  100多年来网湖总体上污染较轻,主要污染元素为Pb;   Cu和Zn在60年代后出现轻度污染;   Mn在沉积物表层出现轻度污染。目前,网湖RI=40.83,生态风险较小,但作为水生生物的养殖基地,中国重要的湿地保护区,其重金属污染问题应引起有关方面的关注,以防患于未然。  相似文献   

11.
《Applied Geochemistry》1995,10(2):229-235
A 3.6 m sediment profile from brackish Lake Jinzai in western Japan was studied for Hg and other trace metals (Fe, Mn, Zn, Cu, Pb, Ni, Cr, and Co) in order to understand the level of Hg pollution in the lake which has no point source discharges of municipal or industrial pollutants. Possible sedimentation rate was established based on the activity of137Cs in the sediments. The relative increases in the metal concentration of sediments commenced at the beginning of this century while that of Fe and Cu started 150 years ago. The highest level of Hg (303 ng/g) was reported at the 50–55 cm level and Hg concentration in pre-industrial time was indicated in the deepest parts of the core. It was noted that significant contamination events had occurred in the mid 1950s and 1960s. In Lake Jinzai sediments, Hg appears to be associated mainly with Fe-oxides, hydrated iron or iron sulfides (Fe-phase) coated grains. The relationship among the geochemical variables revealed that Zn, Cu and Pb are seemingly associated with the Fe-phase and Cr, Co are mainly associated with the Mn-phase.  相似文献   

12.
人类活动影响下的胶州湾近百年来环境演变的沉积记录   总被引:13,自引:0,他引:13  
本文报道了胶州湾柱状沉积物中各生源要素(C、N、P、BSi)以及重金属(Cd、Cr、Pb、Cu、Ni、Co、Zn等)的地球化学特征,在210Pb精确定年的基础上计算了各项地球化学参数的埋藏通量,并结合元素间的比值(OC/TN、OC/OP、BSi/N、BSi/P;其中OC为有机碳,TN为总氮,OP为有机磷,BSi为生物源硅)和重金属的某些污染指数,给出了胶州湾环境演变的沉积记录以及人类活动影响因子.结果表明:胶州湾近百年的环境演变大致可以分为三个阶段:1980年以前、1980年到2000年左右和2000年至今,经历了环境的未受污染期污染期治理好转期.这些变化除与自然因素有关外,大部分应该归因于人类活动作用的加强.  相似文献   

13.
The capital city of Botswana, Gaborone, has seen unprecedented population, economic, and industrial growth in recent years. In order to assess how this rapid urbanisation process impacts the environment, 106 silt and clay (particle size <0.053 mm) samples, separated from Gaborone surface soil samples representing urban, agricultural and rural sites, were investigated. The concentrations of nine heavy metals (Sc, Cr, Co, Ni, Cu, Zn, Nb, Cd, and Pb) were measured using ICP–MS and GFAAS, and the resulting patterns were correlated to the bedrock composition and anthropogenic activities. As expected, we found that samples from soils on top of dolerites show higher levels of Cr, Ni, and Cu than those on top of granites and rhyolites. However, our studies also show that Gaborone city centre soils are moderately polluted by Pb (up to 222 mg/kg, i.e. 5.7-fold the concentration in comparable rural soils), as a result of heavy traffic. Furthermore, Cr and Ni pollution originating from agrochemicals were shown to be accumulating in Gaborone crop soils. Our studies also showed moderate levels of Zn pollution and low level, dot-shaped pollution of Cr, Co, Ni, Cu detected in Gaborone residential and industrial soils that are correlated to waste disposal. Interestingly, the highest levels of Sc, Cr, Co, Ni and Zn pollution are found near two abandoned sewage works. The results of sequential extraction indicate that the polluting Co and Ni exist in all speciations; the polluting Cu mainly exists in the residue of the sequential extraction, whereas the polluting Pb is mostly bound to organic matters and Fe- and Mn-oxides. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Gaborone to ensure that pollution does not become a serious problem in the future.  相似文献   

14.
Zn, Cu, Cr and Pb concentrations of the sediment collected from three tidal flat sites of Yangtze estuary were investigated in October 2003. Results showed that the average concentrations of heavy metals in the sediments were two to three times to the environment background values of Yangtze estuary tidal flat sediment. The heavy metal concentrations in the sediments near the Bailonggang (BLG) and Laogang (LG) sewage outfalls were obviously higher than those of Chaoyang (CY) tidal flat where there are no sewage outfalls near the coast. And the concentrations of heavy metals in the surface sediments of LG tidal flat decreased with the increasing of the distance to the sewage outfalls. The heavy metal concentration profile in the sediment core changed with the depth, and generally reached maximum values at the depth of plant roots. The assessment results showed that the sediments of LG, BLG and CY tidal flat had been polluted by heavy metals in different level. The pollution degree of heavy metals in the sediments was as follows: Zn > Cu > Pb > Cr. The potential ecological risks of the four heavy metals in three tidal flat sites sediment were all at a middle level, and Cu and Pb made the main contributions. The adverse ecological effects caused by the four heavy metals did not occur frequently.  相似文献   

15.
The spatial and temporal variations of Fe, K, Co, V, Cr, Cu, Ni, Zn, and Pb were determined in the sediments of Taihu Lake, the third largest freshwater lake in China and categorized into natural origin (Fe, K, Co, and V) and human contamination (Cr, Cu, Ni, Zn, and Pb) groups by principal component analysis. Most of the metals were positively correlated with the clay content (<4???m) and negatively correlated with the >16???m fraction, indicating the dominant role of grain size in regulating metals concentrations. Geochemical normalization and enrichment factors (EFs) were introduced to reduce the confounding of variable grain size and to quantify anthropogenic contributions. Higher EF values for Cr, Cu, Ni, and Zn occurred in the north Zhushan, Meiliang, and Gonghu Bays, indicating a high level of human contamination from the northern cities, such as Wuxi and Changzhou. Higher EF values of Pb were also present in the southwest and east lake areas, denoting the existence of additional anthropogenic sources. Chrome, Cu, Ni, Zn, and Pb showed increasing EF values in the top layers of sediment cores, indicating enhancing contamination since 1970s with rapid economy development in the catchment. These results indicate that geochemical normalization is a necessary and effective method in quantifying heavy metals contamination, and that historic sediment should be used as background values in calculating EFs. Potential risks of the heavy metals were assessed linking the consensus-based sediment quality guidelines and human contamination. Concentrations of Ni and Cr are greater than the threshold effect concentration (TEC) values, even in the sediments before 1970s, due to higher background concentrations in terrestrial parent materials. Concentrations of Ni and Cr are generally lower than the probable effect concentration (PEC) values, and concentrations of Cu and Zn are below the TEC values in the open lake areas. Whereas, concentrations of Ni and Cr are surpassing the PEC values and Cu and Zn are surpassing the TEC values in the north bays due to the high level of human contamination, where they were with EFs over 1.2, denoting higher potential eco-risks.  相似文献   

16.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

17.
 Geochemical characteristics of six trace metals – Cu, Co, Ni, Zn, Cd and Cr – in the bulk sediment and sand, silt and clay fractions of a tropical estuary on the southwest coast of India have been studied and discussed. In bulk sediment, the trace metal concentration is controlled mainly by the textural composition of the sample. Mud, sandy mud and sandy silt register higher concentrations of trace metals than that in sand-dominant sediments. The granulometric partitioning studies also re-affirmed the role of particle size in enriching the trace metals. The silt and clay fractions exhibit 7–8 times the enrichment of Cu and Cd compared to that in sand. The enrichment factors of Zn, Cr, Ni and Co in the silt and clay fractions, compared to that in sand, are 5–6, 4–5, 2–5 and 2–3 times, respectively. The trace metals in the sand fraction, particularly Ni and Cr, exhibit strong positive correlation with the heavy mineral content of the samples. It clearly indicates a heavy mineral pathway to the trace metals in the sand fraction. Cu and Co in silt and clay fractions exhibit a marked decrease towards the high saline zones of the estuary. This is attributed to the desorption of Cu and Co from particulate phases during estuarine mixing. Contrary to Cu and Co, the content of Zn in the clay fraction shows a marginal increase towards the estuarine mouth. This could be explained by the influx of Zn-rich contaminant discharges from Zn-smelting industries located slightly north of the estuarine mouth. The released Zn will effectively be held in the lattices of the clay mineral montmorillonite, which also exhibits a marked increase towards the estuarine mouth. The anomalously high values of Cd in some places of the Central Vembanad estuary is attributed to the local pollution. Received: 10 July 1995 · Accepted: 3 June 1996  相似文献   

18.
Ten heavy metals, namely, Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn were partially extracted using aqua regia digestion method and analysed by ICP-AES from 56 stream sediment samples collected from River Orle, Igarra area, southwestern Nigeria. The analytical results were used to produce geochemical distribution maps for the elements and were subjected to univariate statistical analysis in order to evaluate the distribution and abundance of the heavy metals in the study area. The degree of pollution of these stream sediments by these heavy metals was evaluated by calculating such parameters as enrichment factors (EF), as well as pollution load and geo-accumulation indices (PLI and Igeo). Co, Cr, Cu, Ni, Pb and Zn are widely distributed in the drainage system while the distribution of Ag, Cd, As and Hg is restricted to only parts of the drainage system with Ag and Cd being localized to one sample site each near Epkeshi in the southern part of the study area. Cr and Pb display anomalously high concentrations, each from a site, also in the same locality where Ag and Cd were detected, indicating the likelihood that the four elements, Cr, Pb, Ag and Cd, are genetically related. Calculation of the enrichment factor (EF), pollution load index (PLI) and geo-accumulation index (Igeo) yielded results that indicate that all the 56 stream sediment sites, except one located about 4 km southeast of Epkeshi in the southern part of the Orle drainage system, are practically unpolluted by heavy metals. The relatively high metal concentration of this anomalous site having Pb EF of 62.5, PLI of 1.14 and Pb Igeo of 2.44 signifies Pb pollution. Both natural and anthropogenic sources of the Pb contamination around Epkeshi locality are possible. In conclusion, the levels of concentrations of heavy metals in the study area, in general, do not constitute any serious environmental risk except for Pb which needs to be monitored at only one site in the study area. Therefore the concentration ranges for the different heavy metals in the study area can serve as baseline environmental data against which the degree of pollution of these heavy metals can be evaluated in future.  相似文献   

19.
长江沉积物环境地球化学特征及生态风险评价   总被引:1,自引:0,他引:1  
为了进行长江流域沉积物生态风险评价,对长江流域干流以及主要支流的沉积物统一进行采样分析。首先对其元素的组成特征及重金属元素的富集特征进行分析。常量元素含量在流域空间上的变化主要受其携带矿物含量变化的影响;Cu、Pb、Cd、As、Hg 5种微量元素富集程度较大,存在异常。同时采用潜在生态风险指数法对长江沉积物Cr、Mn、Co、Ni、Cu、Zn、Pb、Cd、As、Hg 10种元素进行了评价研究。结果表明,潜在生态风险指数较大的地区分布在湖南湘江、安徽铜陵等地区,中等的地区分布在四川、重庆及江西等地区,这些潜在污染指数与矿产的开采冶炼以及工业的布局有一定的关系,很大程度上是由人为因素造成的。从元素的潜在污染程度看,长江流域Cd、As、Hg污染程度较重,Cu、Zn、Pb次之,而Cr、Mn、Co、Ni基本没有污染。本研究为探讨长江流域沉积地球化学过程和环境保护提供了科学依据。  相似文献   

20.
Elemental accumulation, distribution and relationship profiles for sediment samples taken at 81 localities in the Köyce?iz Lake were investigated. Spatial distribution maps for ten elements (Cu, Pb, Zn, Ni, Cr, Co, Mn, Mo, Al, Fe) were created using the ordinary kriging interpolation method. Statistical tests revealed that the sediments taken from areas close to the Namnam (NamSM) and Karg?cak (KarSM) stream mouths have the highest element content. In addition, sediments close to NamSM have the highest contamination, according to contamination degree and modified contamination degree values. On the other hand, sediments close to KarSM have the highest value on the pollution load index. The enrichment factor and contamination factor values of Cr and Co, and especially Ni, close to NamSM are striking and have significantly higher values compared to the rest of the lake. There are strong correlations between these three elements, which were also confirmed by cluster analysis. Ni is the element having the highest value on the geoaccumulation index. In addition, according to the toxic unit results, it was found that 84–89% of the element-based toxic effect in the lake is due to Ni alone. According to the mean effect range median quotient values, the sediments of Köyce?iz Lake have a potential to show toxic effects of at least 76% in living organisms, which is due to the high levels of Ni. According to the mean probable effect low quotient value, it has been determined that Köyce?iz Lake is at a “highly impacted” level, which is the worst possible value on the quality scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号