首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water level fluctuations affect the size of the pelagic zone relative to the size of littoral habitats, and thus may influence the relative abundance of remains from planktonic and littoral cladocerans in sediment. The application of this planktonic/littoral ratio for the reconstruction of past water level changes is discussed using examples of: (1) surficial profundal sediments from lakes of different water depths; (2) Holocene variation in a profundal sediment core; (3) horizontal variation in surficial sediments within a lake; and (4) long term variation in an inshore sediment core. The latter seemed to be the most promising application of this ratio. Maximum effects of water depth changes on the lake fauna are expected in the littoral zone. It is, however, difficult to read this effect directly from subfossil cladoceran and chironomid assemblages from inshore sediments as shown by a sediment profile from a site exposed to a long term decrease of water depth.  相似文献   

2.
Sediment cores from two neighbouring lakes (Viitna Linajärv and Viitna Pikkjärv) in northern Estonia were studied to determine lake-level fluctuations during the Holocene and their impact on biogeochemical cycling. Organic matter and pollen records dated by radiocarbon and radiolead indicated a water level rise in both lakes during the early Holocene (c. 10 000–8000 BP). A regression followed around 7500 BP and several transgressions occurred during the latter half of the Holocene, c. 6500 and 3000 BP. Human impact during the last centuries has caused short-term lake-level fluctuations and accelerated sediment accumulation in the lakes. The differences in water depth led to variations in sediment formation. During 10 000–8000 BP (Preboreal and Boreal chronozones) mineral-rich sediments with coloured interlayers deposited in L. Linajärv. These sediments indicate intensive erosion from the catchment and oxygen-rich lake, which favoured precipitation of iron oxides and carbonates. Fluctuations in water depth, leaching of nutrients from catchment soils and climatic changes increased the trophy of L. Linajärv around 6000 BP. The subsequent accumulation of gyttja, the absence of CaCO3 and the decrease in both the C/N ratio and phosphorus content in the sediments also indicate anoxic conditions in the hypolimnion. The similarity in the development of L. Linajärv and L. Pikkjärv and their proximity made it possible to discern the impact of water depths changes on biogeochemical cycling in lakes.  相似文献   

3.
Primary producer community structure (PPCS) in shallow lakes isinfluenced by phosphorus (P) load and water column P concentration.Theoretically PPCS may shift between phytoplankton and macrophyte states withintermediate P loading, but phytoplankton dominate when P loading exceeds acritical threshold. We analyzed sediment cores from five shallow, eutrophiclakes (size range: 0.6 to 125 km2) that arephytoplankton dominated to determine whether the development of the currentstate was associated stratigraphically with an increase in sediment total P(TP) and a shift in PPCS. We used sponge biogenic silica(BSiSponges) concentrations and total carbon to total nitrogenratios (TC:TN) as proxies for macrophyte abundance and sediment organic mattersource, respectively. Three stratigraphic groups of sediments were identifiedwith k-means cluster analysis. These samples were grouped by increasing TPconcentrations and decreasing age and identified as macrophyte, transitionaland phytoplankton sediments. Results show that as P loading increased in thelate 19th and early 20th centuries, the lakes producedsediments with an increasing contribution from phytoplankton. Four of our lakesmay represent a subset of shallow lakes because of their large size (30 to 125km2) and relatively rapid historic P enrichment. Inthese Florida lakes, PPCS shifted to phytoplankton dominance with nopaleolimnological record of lake-wide alternating stable states or of lake-widephytoplankton dominance before anthropogenic P enrichment.  相似文献   

4.
The water chemistry of lake systems on the edge of the Antarctic continent responds quickly to changes in the moisture balance. This is expressed as increasing salinity and decreasing lake water level during dry periods, and the opposite during wet periods. The diatom composition of the lakes also changes with these fluctuations in salinity and lake water depth. This is important, as their siliceous remains become incorporated into lake sediments and can provide long-term records of past salinity using transfer functions. In order to develop transfer functions, diatoms and water chemistry data were inter-calibrated from five different East Antarctic oases, namely the Larsemann Hills, the Bølingen Islands, the Vestfold Hills, the Rauer Islands and the Windmill Islands. Results indicate that salinity is the most important environmental variable explaining the variance in the diatom flora in East Antarctic lakes. In oligo- saline lakes the variance is mainly explained by lake water depth. This dataset was used to construct a weighted averaging transfer function for salinity in order to infer historical changes in the moisture balance. This model has a jack-knifed r2 of 0.83 and a RMSEP of 0.31. The disadvantage of this transfer function is that salinity changes in oligo-saline lakes are reconstructed inaccurately due to the edge effect and due to the low species turnover along the salinity gradient at its lower end. In order to infer changes in the moisture balance in these lakes, a second transfer function using weighted averaging partial least squares (with two components) for depth was constructed. This model has a jack-knifed r2 of 0.76 and a RMSEP of 0.22. Both transfer functions can be used to infer climate driven changes in the moisture balance in lake sediment cores from oligo-, hypo-, meso- and hyper-saline lakes in East Antarctic oases between 102–75°E. The transfer function for lake water depth is promising to track trends in the moisture balance of small freshwater lakes, where changes in shallow and deep-water sediments are readily reflected in changing diatom composition.  相似文献   

5.
Subfossil chironomids in the surface sediments of five small and shallow Norwegian lakes were studied to determine the within-lake variability of fossil assemblages, changes in chironomid assemblages with respect to water depth, and the representativeness of single samples for the entire chironomid fauna of a lake. In each of the lakes studied, six short sediment cores in the deepest part of the lake basin and two littoral to deep-water transects of seven cores each were obtained using a gravity corer, and chironomid assemblages in the uppermost centimetre of sediment were analysed. In three of the five lakes, chironomid concentrations were highest in the deepest parts of the lake basins. In the remaining two lakes, concentrations were either very variable or, in a lake with clear indications of anoxia in the bottom waters, highest at intermediate water depth. Chironomid assemblages tended to be dominated by the same taxa within a lake basin. However, in each of the lakes studied there was a clear and statistically significant shift in chironomid assemblages with respect to water depth. The organic content of the sediments was statistically significant in explaining the variance in the chironomid assemblages only in lakes where organic matter content was closely related to water depth. Only a few chironomid taxa were restricted to the shallowest parts of the lake basins, whereas a number of chironomids were found exclusively in deep-water sediments. Chironomid head capsules of running water taxa and simuliid remains were generally found in sediments close to lake tributaries and in the deepest parts of the lake basins. Although any individual sample contained only a part of the total subfossil chironomid fauna (21–63% of the total taxa per lake), chironomids dominant in any section of the study lakes were found in most of the transect and mid-lake samples.  相似文献   

6.
The quality and interpretability of the paleobiological record depends on the preservation of morphological and geochemical fossils. Siliceous microfossils and sedimentary pigments are often cornerstones in paleoecology, although the microbial and geochemical processes conducive to their preservation remain poorly constrained. We examined sediments from an alpine lake in Banff National Park (Alberta, Canada) where diatom frustules are completely dissolved within 50 years of deposition. Diatom dissolution, silica recycling, and diagenetic alteration of algal pigments were investigated, in conjunction with porewater geochemistry and microelectrode profiling of the sediment–water interface. Analysis of sediment trap material showed ~90% of biogenic silica (BSi) production is lost prior to burial. Silica flux calculations, based on dissolved silica (as H4SiO4) in pore-waters, show a further ~6% of total BSi is returned to the water column from the upper 4 cm of sediments, implying that only ~4% of total BSi is permanently archived in sediments. In situ sediment pH and O2 profiles reveal that aerobic respiration by bacteria fully consumes oxygen by a depth of 4 mm into the sediment, with associated strong pH and redox gradients. During sedimentation and early diagenesis, diatoms undergo loss of extracellular polymeric substances that coat their frustules, promoting silica dissolution and leading to the loss of the microfossil record by a depth of 3.25 cm. Sedimentary pigments similarly undergo rapid degradation, but diatom-related carotenoids persist below the depth of silica dissolution. This work provides new insights on diagenetic processes in lakes, with broad implications for the interpretation of sedimentary proxies for algal production.  相似文献   

7.
Loss-on-ignition analysis of Quaternary lake sediments provides an inexpensive and easy way to investigate past environmental changes. The mass loss on ignition at 550 °C (LOI) from lake sediment cores may vary because of temporal changes in: (1) sediment composition controlled by factors such as productivity, inorganic inputs, and decomposition; and (2) the patterns of sediment accumulation controlled by factors such as basin morphology and water level. Climatic changes can alter both. Here, modern surface samples and transects of sediment cores, collected across small (<10 ha), shallow (<4 m) lakes in the northeastern United States, show that LOI varies little (2–5%) across the deep portions of these small lakes at a given time. Large changes in LOI occur only at the transition into the littoral (shallow) zone. LOI variations in sediment cores that exceed 2–5%, therefore, appear to represent meaningful environmental changes. However, because of the many possible controls, changes in the LOI of a single core are often hard to interpret. Multiple cores increase the interpretability. At lakes studied here, similar LOI trends among several cores confirm that some LOI changes resulted from basin-wide shifts in sediment composition. Differences among cores, however, developed during the early- and mid-Holocene and indicate that the edge of the littoral zone moved towards the centers of the lakes during two periods of low lake levels, at ca. 11 000–8000 and ca. 5400–3000 cal yr B.P. The basin-wide balance of sediment sources controlled the LOI from deep-water sediments, but sedimentation patterns, which changed as lake levels changed, were also important. LOI differences among cores may therefore help identify past lake-level changes in other lakes.  相似文献   

8.
This study tests the hypothesis that Fourier-transform infrared spectroscopy (FTIRS) of lake sediments can be used to infer past changes in tree-line position and total organic carbon (TOC) content of lake water. A training set of 100 lakes from northern Sweden spanning a broad altitudinal and TOC gradient from 0.7 to 14.9 mg/l was used to assess whether vegetation zones and TOC can be modelled from FTIR spectra of surface sediments (0–1 cm) using principal component analysis (PCA) and partial least squares (PLS) regression. Preliminary results show that FTIRS of lake sediments can be used to reconstruct past changes in tree line and the TOC content of lake water, which is hardly surprising since FTIRS registers the properties of organic and minerogenic material derived from the water mass and the drainage area. The FTIRS model for TOC gives a root mean squared error (RMSECV) of calibration of 1.4 mg/l (10% of the gradient) assessed by internal cross-validation (CV) yielding an Rcv2 of 0.64. This should be compared with a near-infrared spectroscopy (NIRS) and diatom transfer function for TOC from the same set of lakes, which have a Rcv2 of 0.61 and 0.31, and RMSECV of 1.6 and 2.3 mg/l, respectively. The FTIRS-TOC model was applied to a Holocene sediment core from a tree-line lake and the results show similar trends as inferences from NIRS and pollen from the same core. Overall, the results indicate that changes in FTIR spectra from lake sediments reflect differences in catchment vegetation and TOC, and that FTIRS-models based on surface-sediment samples can be applied to sediment cores for retrospective analysis.  相似文献   

9.
Historical phosphorus (P) dynamics were studied using sediment cores from three oligotrophic, acidic lakes in Maine, USA. Long-term oligotrophy of these lakes is consistent with high sediment aluminum (as Al(OH)3) concentrations, as Al inhibits internal P loading, even under reducing conditions. The role of microbially-mediated reactions in controlling redox conditions was evaluated by estimating microbial biomass and relative abundance of specific functional groups. Sediments were fractionated using a sequential chemical extraction technique and all lakes met criteria for P retention based on threshold sediment concentrations of Al, Fe, and P fractions as determined by (Kopáček et al. (2005) Limnol Oceanogr 52: 1147–1155). Sediment NaOH-extractable molybdate-reactive P (rP) and non-reactive P (nrP) represent P associated with non-reducible phases, and organic matter-related P, respectively. Total P (TP) does not decrease with sediment depth, as is typical of eutrophic lake sediments; however, nrP/TP decreases and rP/TP increases for all three lakes, indicating nrP mineralization without any significant upward diffusion and release into the hypolimnion; i.e. diagenesis of P is conservative within the sediment. Two diagenetic models were developed based on nrP and rP concentrations as a function of sediment age. The first model assumes a first-order decay of nrP, the rate coefficient being a function of time, and represents irreversible nrP mineralization, where the produced PO4 is permanently sequestered by the sediment. The second model assumes a first-order reversible transformation between nrP and rP, representing biotic mineralization of organic P followed by incorporation of inorganic P into microbial biomass. Both models reflect preservation of TP with no loss to overlying water. The rate coefficients give us insight into qualities of the sediment that have affected mineralization and sequestration of phosphorus throughout the 210Pb-dateable history of each lake. Similar models could be constructed for other lakes to help reconstruct their trophic histories. Paleolimnological reconstruction of the sediment P record in oligotrophic lakes shows mineralization of nrP to rP, but unlike the case in eutrophic lake sediments, sediment TP is preserved in these sediments.  相似文献   

10.
Coring tips     
This commentary is intended as a practical guide for the non-motorized use of piston corers to obtain undisturbed sections of lake sediments. Good recovery is essential for accurate reconstruction of environmental and limnological history. Emphasis is placed on the square-rod piston corer, which is widely used for acquisition of sediment cores in meter-long sections from lakes as much as 30 m deep. Coring platforms for open water can be easily prepared on pairs of boats or canoes or (in water depth up to 15 m) even a single small rubber raft, but firm anchoring is essenial to maintain the vertical position of the casing and to assure re-entry into a single hole. Incomplete recovery on individual drives is not a result of sediment compaction but rather the build-up of friction on the tube interior, by which the core forms a plug that prevents further recovery.Short cores of soft sediment for the study of recent changes in lakes are also best acquired with a piston corer, for a gravity corer without a piston may be subject to the same type of plug formation. In cases in which the structure of the sediment must be preserved (e.g. annual laminations), freezing the sediment in place with a dry-ice solution is the best procedure.  相似文献   

11.
As part of English Natures Lakes Flagship Project to address adverse environmental impacts on selected, important lakes, a proposal has been made to dredge Aqualate Mere. The site has experienced rapid, recent sedimentation thought to be derived from a nearby canal. The aim of this study has been to determine the recent sedimentation history of the site in order to assess the possibility of the disposal to land of its sediments and the efficacy of this form of lake restoration. A predominantly clayey silt layer was found across the lake beneath which darker, organic-rich sediments were noted. This transition may represent the input of canal-derived sediments, although it may reflect other environmental changes at this time. The radiometric dating technique employed was unable to date this sediment boundary. A further change in the characteristics of the upper part of the clayey silt layer may represent an additional influence of the canal. Heavy metal levels were modest, whereas nutrient levels were relatively high and some pesticides were detected. Topsoil erosion supplying nutrients and other compounds associated with agriculture have been an important source of the lower layers of the clayey silt sediments in particular. The highest levels of most pollutants were found in the finer sediments in the uppermost (post-1950s) part of the sediment profile. These sediments appear to reflect a change in the characteristics of the sediments of the canal, which was associated with a change in the nature of its water supply. The key geochemical properties of the sediments should not preclude the land-based disposal of dredged materials under current UK regulations for waste management. Accurate estimation of sediment quantities was limited, as the interface between the recent and underlying sediments was not positively identified at all sample points.  相似文献   

12.
Glacial landscapes of the Land of Great Masurian Lakes and Suwa?ki Lakelands in northeast Poland are characterized by very high abundance of lakes. These two areas were surveyed for lakes containing laminated sediments. Using bathymetry as a criterion, 60 small, deep lakes, representing preferred conditions for formation and preservation of lacustrine non-glacial varves, were selected for gravity coring. We found laminated sediments in 24 of the lakes, 15 in the Land of Great Masurian Lakes and 9 in the Suwa?ki Lakeland. Seven of these 24 sediment records were laminated in the topmost part only. Analysis of lake morphometric variables showed that the relation between surface area and maximum water depth can be used to identify lakes with laminated sediments. Most of the newly discovered lakes with laminated deposits have surface areas ≤0.3 km2 and maximum depths of 15–35 m. Multivariate statistical analysis (Linear Discriminant Analysis) of the lake dataset identified the morphological features of lake basins and their catchments that largely control preservation of laminated sediments. Microscopic and geochemical analyses revealed a biogenic (carbonaceous) type of lamination typical for lakes in northeast Poland. Such lakes are characterized by a spring-summer lamina that is rich in calcium carbonate and an autumn-winter lamina composed of organic and minerogenic detritus. This pattern may be modified by multiple periods of calcite deposition during a single year or substantial contribution of clastic material. Laminations and high sedimentation rates offer the possibility of high-resolution investigation of past climate and environmental changes through application of myriad biological, isotopic and geochemical proxies.  相似文献   

13.
Paleohydrologists sometimes use macrofossils of aquatic vascular plants as one of several independent lines of evidence to infer changes in past lake-levels. Typically, this usage relies on an assumption that the seeds of aquatic species are not dispersed far from the source plants. The water depth over the coring site at the time the seeds were deposited is inferred from the water depth at which the species generally grows today. We determined the water depths at which particular plant-remain types are deposited, and tested whether they can be used successfully as proxy evidence for lake level. The results should aid the interpretation of fossil seeds in paleohydrological studies. A total of 189 surface sediment samples from 13 lakes in Maine and Massachusetts were examined for plant remains, and vegetation was surveyed in the immediate vicinity of each sediment sampling-site. The seeds of some taxa were found in sediment from water-depth ranges much broader than those in which living plants occur. However, in combination, even plant-remain types with broad depth ranges can be used effectively to reconstruct water depth. Presence of plant-remain types can be used to infer water depth regardless of abundance. Test samples indicate that inferring water depth from plant remains works well for shallow, alkaline lakes in New England.  相似文献   

14.
Sediments are typically analyzed for C, N, and P for characterization, sediment quality assessment, and in nutrient and contaminant studies. Cost and time required for analysis of these constituents by conventional chemical techniques can be limiting factors in these studies. Determination of these constituents by near-infrared reflectance spectroscopy (NIRS) may be a rapid, cost-effective method provided the technology can be applied generally across aquatic ecosystems. In this study, we explored the feasibility of using NIRS to predict total C, CO3 –2 organic C, N, and P in deep-water sediment cores from four Canadian lakes varying over 19 degrees of latitude. Concentration ranges of constituents in the samples (dry weight basis) were total C, 12-55; CO3 –2, 6-26; organic C, 7-31; N, 0.6-3.1; and P, 0.22-2.1 mg g–1. Coefficients of determination, r2, between results from conventional chemical analysis and NIR-predicted concentrations, based on calibrations across all the four lakes, were 0.97-0.99 for total C, organic C, and N. Prediction for CO3 –2 was good for the hard water lake from a calibration across all four lakes, but this constituent in the three soft water lakes was better predicted by a calibration across the soft water lakes. The NIR calibration for P fell below acceptable levels for the technique, but proved useful in the identification of outliers from the chemical method that were later removed with the re-analysis of several samples. This study demonstrated that NIRS is useful for rapid, simultaneous, cost-effective analysis of total C, CO3 –2, organic C, N, and P in dried sediments from lakes at widely varying latitudes. Also, this study showed that NIRS is an independent analytical tool useful for the identification of outliers that may be due to error during the analysis or to distinctive composition of the samples.  相似文献   

15.
The Baikal sediment box corer represents an innovation in design of the closing mechanism and involves a single, thin, and flexible stainless steel blade rather than closing jaws. With this light-weight box corer only a relatively small cross-sectional area is offered to the sediment, allowing easier penetration. The closure blade is propelled smoothly across the base of the box in a downwardly convex path by a set of constant force springs. Depending on choice of blade-release mechanisms, the corer can either be triggered immediately as the support cable slackens, after a delay of a few seconds, or immediately upon retrieval. The box corer has been used successfully to sample poorly consolidated sediments in freshwater lakes over a depth range of 8 to 1624 m. Cores of deep-water surficial sediment from Lake Baikal were tested for representativity and replicability by profiling natural and artificial radioisotopes and lithostratigraphic features.  相似文献   

16.
Sulfur has played a central role in the acidification of many lakes in Scandinavia and other regions. As part of the research into sulfur cycling, numerous studies have analyzed the sediment record in order to develop insights into past in-lake cycling of sulfur, particularly in the context of reconstructing past deposition rates. Although many of these studies have shown that it is not easy to interpret the sediment record in terms of past sulfur deposition rates, analyses of sulfur in sediment still provide valuable information on the response of lakes to anthropogenic sulfur deposition. Here, we have analyzed sulfur in top and bottom samples from short surface cores (25–35 cm, representing ≥250 years) as well as bulk cores from ∼110 lakes located throughout Sweden, which were collected during 1986, as well as in more-detailed profiles from six lakes. The lakes with the highest surface sediment concentrations (9–24 mg S g−1 dry mass) and the highest calculated inventories of ‘excess’ sulfur (20–180 g S m−2) are found in southern Sweden and around one industrial area along the northeastern coast where sulfur deposition rates and lake-water concentrations have been highest. For many lakes in the central and northern inland region it is common that the sediment cores exhibit either no enrichment or even a decline in sulfur concentrations in near-surface sediments, which we suggest was the pre-pollution norm for lakes. Although interpreting sulfur sediment profiles is problematic for reconstructing deposition, a more-comprehensive spatial sampling approach shows that there is a good geographic agreement between sulfur deposition, lake-water chemistry and sediment sulfur accumulation.  相似文献   

17.
Study of Lake Pepin and Lake St. Croix began more than a century ago, but new information has permitted a closer look at the geologic history of these two riverine lakes located on the upper Mississippi River system. Drainages from large proglacial lakes Agassiz and Duluth at the end of the last glaciation helped shape the current valleys. As high-discharge outlet waters receded, tributary streams deposited fans of sediment in the incised river valleys. These tributary fans dammed the main river, forming riverine lakes. Lake Pepin was previously thought to be a single long continuous lake, extending for 80 km from its dam at the Chippewa River fan all the way up to St. Paul, with an arm extending up the St. Croix valley. Recent borings taken at bridge and dam locations show more than a single section of lake sediments, indicating a more complex history. The Minnesota and Mississippi Rivers did not always follow their current paths. Valleys cut into bedrock but now buried by glacial sediment indicate former river courses, with the most recent of these from the last interglacial period marked at the surface by chains of lakes. The morphology of the Mississippi valley bottom, and thus the morphology of Lake Pepin as it filled the valley, is reflect in part by the existence of these old valleys but also by the presence of glacial outwash terraces and the alluvial fans of tributary streams. A sediment core taken in Lake Pepin near Lake City had a piece of wood in gravels just below lake sediments that dated to 10.3 ka cal. BP, indicating that the lake formed as the Chippewa River fan grew shortly after the floodwaters of Lakes Agassiz and Duluth receded. Data from new borings indicate small lakes were dammed behind several tributary fans in the Mississippi River valley between the modern Lake Pepin and St. Paul. One tributary lake, here called Early Lake Vermillion, may have hydraulically dammed the St. Croix River, creating an incipient Lake St. Croix. The tributary fans from the Vermillion River, the Cannon River, and the Chippewa River all served to segment the main river valley into a series of riverine lakes. Later the growth of the Chippewa fan surpassed that of the Vermillion and Cannon fans to create a single large lake, here called late Lake Pepin, which extended upstream to St. Paul. Sediment cores taken from Lake Pepin did not have significant organic matter to develop a chronology from radiocarbon dating. Rather, magnetic features were matched with those from a Lake St. Croix core, which did have a known radiocarbon chronology. The Pepin delta migration rate was then estimated by projecting the elevations of the top of the buried lake sediments to the dated Lake Pepin core, using an estimated slope of 10 cm/km, the current slope of Lake Pepin sediment surface. By these approximations, the Lake Pepin delta prograded past Hastings 6.0 ka cal BP and Red Wing 1.4 ka cal BP. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

18.
The intention of the European Water Framework Directive (WFD) and the national guidelines that implement the WFD is that present-day conditions and future management strategies are to be based on an understanding of reference conditions for the particular water body of interest. In the context of non-synthetic pollutants such as lead, mercury and cadmium, the criteria for a high ecological status are that “concentrations [are] within the range normally associated with undisturbed conditions”. How this normal range is to be defined is open to interpretation; for example, in Sweden reference conditions based on sediment records are defined as the conditions prior to modern industrialization, i.e. prior to the mid-1800’s. These pre-industrial reference conditions would correspond to sediments 15–30 cm depth. However, ‘reference conditions’ are not always synonymous with ‘natural background conditions’. Analyses of long sediment profiles from Swedish lakes and from a few other areas, however, have shown that pre-industrial pollution—at least with regard to lead—was extensive. Atmospheric lead pollution has its origin in antiquity, with a small, well-defined peak already during the Greek-Roman period 2,000 years ago. Sediments deposited 300–500 years in Sweden and Scotland, for example, show a dominance of pollution lead, and in some sediment records also cadmium and copper pollution was extensive. Thus, in order to characterize natural background concentrations of metals, long sediment profiles are needed to reach sediments unaffected by pollution (>3,000 years BP); this can correspond to sediments below 50 cm in some lakes, but in others sediments below 300 cm or more.  相似文献   

19.
Cores of recent sediments were sampled along a depth gradient in a 23 m deep kettle lake with stagnant deep waters containing exceptionally high concentrations of dissolved iron and manganese. Sediment cores were taken on two occasions, in 1978 and 1997, before and after an incidence of full circulation. The aims of this study are to see how oxic and anoxic conditions in the water column influence stratigraphy and sediment focusing and, to compare cores from 1979 and 1998 to see how measured element fluxes and external events are reflected in the chemical stratigraphy. Element analyses show characteristic stratigraphic patterns that depend on the ability to undergo redox transformations, sorptive properties and chemical equilibria in the anoxic deep waters and porewaters. In sediments from the oxic part of the lake Al, Cr, Co, Ni, Zn Cu, Cd, and Pb were well correlated. Positive correlations are seen between elements associated with primary production and sulphur. In the anoxic part of the lake most metals were positively correlated with carbonate. Phosphorus correlated positively with iron in sediments from oxic waters and negatively with manganese and iron deep-water sediments. Porewater analyses indicate that recycling from the deep-water sediments was negligible. The stratigraphy of lead agrees with the historic variation in atmospheric input and is used as a chronological marker. Assessed deposition rates agree with measurements in sediment traps. Most elements more than double their rates of deposition towards the deepest point of the lake, while sulphur, manganese and carbonate had maxima around the depth of the redoxcline in the water. Variations in the external loading and variable redox conditions in the deep waters explain variations in the chemical composition of recent sediments.  相似文献   

20.
Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes   总被引:1,自引:1,他引:0  
Fifty-seven surface sediment samples from 35 Florida lakes were collected to study testate amoebae. Seven genera, 17 species, and 28 strains were identified in the 46 sediment samples from 31 lakes that contained testate rhizopods. Seven species accounted for ≥90% of the individuals in all samples. Sediment total phosphorus (TPsed), organic matter (OM), and total carbon:total nitrogen ratio (TC:TN) were measured to assess the effect of these variables on thecamoebian assemblages. OM content was the only sediment variable that influenced presence/absence of thecamoebians. Samples with <5% OM contained no thecamoebians. Lakes with multiple surface sediment samples showed high Morisita–Horn similarity values (0.74–0.99), indicating that all sites at which samples were collected in a lake provided representative thecamoebian assemblages. No relationship was observed between thecamoebian diversity indices and sediment variables. Lake trophic state and pH were examined to explore potential water column influences on thecamoebian communities. Highest thecamoebian diversity indices were found in mesotrophic to eutrophic lakes with pH near 8.0. These results suggest that water column conditions have a greater influence on thecamoebian assemblages than do sediment variables. We used multivariate analysis to evaluate the relations between water quality variables and testate rhizopod assemblages. Canonical correspondence analysis (CCA) showed that alkalinity and pH are the water column variables that most influence the relative abundance of species. Thecamoebians thus hold promise as bioindicators of acidification in Florida lakes. Thecamoebian remains in lake sediment cores should be useful to infer past anthropogenic shifts in lake pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号