首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ...  相似文献   

2.
在单一组合进行高精度定位中,为提高其定位精度,提出了一种获得新的线性组合的方法,并对该组合进行了实例求解与验证。结果表明,该方法绕开了对电离层误差的多频改正,算法简单,精度较优,可应用到不同精度要求下的中长距离快速定位中。  相似文献   

3.
With the introduction of a third frequency on GPS Block IIF satellites and the implementation of Galileo, there will be three freely available carrier phase measurements transmitted from each system. This change in satellite navigation infrastructure will enable the use of linear combinations of the original measurements that are not currently available. As a result, it is conceivable that there may be an optimal choice of combination coefficients for a given positioning campaign. This article outlines some of the motivations of using linear combinations of Global Navigation Satellite System (GNSS) data. For example, linear combinations can be used to eliminate or mitigate individual sources of error, they can be used to alleviate excessive computational burdens, and they can be used to reduce the necessary bandwidth in communication systems. Upon establishing the motivations for using linear combinations of data, the mathematical theory involved in creating linear combinations is given. The variance of the combined signal is shown to be a weighted sum of the variances of the error sources in the untransformed signals. The weights depend on the choice of combination coefficients and the nominal frequencies of the carrier signals. As a result, there are certain choices of combination coefficients that eliminate or mitigate individual sources of error. Three categories of combinations are developed: those that eliminate the ionospheric effect, those that mitigate the effects of thermal noise and multipath, and those that mitigate the tropospheric effects. The relationships between these various categories of linear combinations are shown geometrically and the concept of optimal linear combinations of data is discussed. Finally, experimental results using optimal linear combinations of data are shown. The results are obtained using a commercially available software simulator and a GNSS processing engine from the Mobile Multi-Sensor Research Group in the Geomatics Engineering Department of the University of Calgary. It is shown that there indeed exist combinations that produce approximately the same ambiguity estimation accuracy as the pure L1 (or E1) signals, but that deliver far better baseline precision results. However, like the pure L1 (or E1) signals, instantaneously resolving integer ambiguities with these combinations will be impossible for baselines longer than about 15 km depending on the existing ionospheric conditions.  相似文献   

4.
针对GPS定位测量的信号传播路径误差,分析了电离层电子浓度总含量梯度对差分定位精度的影响,利用L1载波重点讨论了1999年-2000年太阳活动期间低纬度赤道异常地区GPS差分定位精度的问题,同时验证对于长基线采用GPS广域差分技术可以使电离层定位误差得到明显提高。  相似文献   

5.
介绍了GPS载波相位双差观测方程以及误差影响因素,给出GPS三频组合观测量的一般表达式并分析影响组合观测量的主要误差因素,研究了电离层无关线性组合的构建方法及其性能,详细分析几种特殊的线性组合形式及特点,总结了GPS三频组合观测值在电离层误差改正、周跳探测与修复、整周模糊度解算以及精密定位等方面的应用前景。  相似文献   

6.
Coherent GPS reflections from the sea surface   总被引:1,自引:0,他引:1  
In this letter, we explore a method to obtain accurate ocean heights using measurements of the global positioning system (GPS) carrier phase after reflection on the sea surface. A carrier tracking algorithm is employed in measuring travel path differences between GPS direct and reflected signals collected from antennas suspended over a marine estuary, when roughness guarantees partially coherent reflections at the GPS L1 frequency. This technique proves to be sensitive to surface roughness and able to follow tide variations with a precision better than 5 cm (1-sigma) for sea states with significant wave heights below 10 cm. It is expected that this technique could be further extended to rougher sea states using GPS frequency combinations with longer synthetic wavelengths.  相似文献   

7.
北斗三频无几何相位组合周跳探测与修复   总被引:1,自引:0,他引:1  
推导了Compass三频无几何组合周跳探测的理论模型,并分析了探测精度。通过多频组合理论构造了较优的无几何周跳探测检验量,并对存在的不敏感周跳组合进行了分析。为了保证探测的完备性,联合运用两个合适的无几何组合作为探测检验组合进行周跳探测,并筛选了较优的探测检验组合。针对无几何组合最多只能两个线性无关,无法修复三个频点上的周跳的问题,探索了无几何探测检验组合联合一个伪距/载波组合进行周跳修复的方法。最后利用Compass三频实测数据,选用了无几何探测检验组合(-1,-1,2)与(-1,2,-1)和伪距/载波组合(1,3,-4)进行了验证分析。试验表明,该方法能够探测出所有大小的周跳,并且可以单历元修复周跳值,可适用于动态导航定位,有一定的实用性。  相似文献   

8.
伍岳  刘正平  邱蕾  王海军 《测绘工程》2014,23(11):16-18
GPS现代化计划目前只在几颗卫星上加入了L5信号,第三频率观测数据尚不能进行组网数据处理.如何验证现有多频理论的有效性,以及进行更深入、更广泛的多频数据处理理论应用研究,L5数据的获取成为一个重要问题.文中结合载波相位观测值之间的物理相关性,模拟L5载波相位观测值,对L5载波相位观测值的精度进行了分析,取得了一些有益的结论.  相似文献   

9.
随着大众市场对高精度定位需求增加,基于低成本小型化设备的全球卫星导航系统(GNSS)高精度定位成为研究热点之一. 本文以低成本多系统GNSS接收机μ-blox M8P型号为例,分析其观测数据质量,研究其伪距单点定位和单频载波相对定位的定位性能和特点,为低成本GNSS接收机高精度定位应用提供参考. 实验结果表明,与测量型接收机相比,μ-blox输出GNSS观测值的载噪比略小,伪距和载波相位的测量噪声较大. 静态模式下,μ-blox的单频载波相对定位(基线长度约为430 m)可以提供厘米级的定位精度;城市环境动态模式下,其单频载波相对定位可提供亚米级至米级的定位精度. 信号受限环境下,GPS/GLONASS双系统能够提供更稳定的定位结果.   相似文献   

10.
三频观测量能形成具有更长波长、更小噪声、更小电离层影响等优良特性的组合观测量,有利于提高周跳探测和修复的精度。本文推导了伪距相位组合探测周跳的阈值条件;提出了周跳确定成功率的概念;并从提高周跳确定成功概率出发,给出了伪距相位组合选取的标准和方法;最后利用一组实测GPS三频数据进行了验证。结果表明,在数据采样率较高、历元间电离层延迟变化可忽略时,根据文中提出原则选取的最优伪距相位组合可实时探测和修复三频非差观测数据中的所有周跳。  相似文献   

11.
基于区域参考站网的网络实时动态定位(real-time kinematic,RTK)方法是实现全球定位系统(global positioning system,GPS)、北斗卫星导航系统(BeiDou satellite navigation system,BDS)高精度定位的主要手段.研究了一种长距离GPS/BDS双...  相似文献   

12.
利用GPS载波相位观测值进行基线测定具有重要意义。本文讨论了基线测定中卫星星历误差对定位结果的影响,提出了基线上轨道改进的定位方法,编制了基线测定的定位软件,并使用高精度基线上的实际观测资料进行了计算。计算结果表明在基线上用轨道改进定位方法是可行的,可以提高定位精度。  相似文献   

13.
对于GPS短基线,载波相位双差观测量已基本消除了卫星轨道误差、钟差、大气折射误差等系统偏差的影响,主要包含距离观测量信息及随机测量误差,其中测量误差是高频的测量噪声,小波变换可将GPS载波相位双差观测量中的观测噪声(高频部分)分解出来。本文利用Coiflets小波基函数对GPS快速定位的原始载波相位双差观测量进行5层分解,通过重构第5层低频系数获得去除噪声的"干净"的载波相位双差观测量,然后利用"干净"的双差观测量进行最小二乘参数估计,以减小测量噪声对GPS快速定位病态方程解的扰动。计算结果表明该方法能够显著提高GPS快速定位中模糊度浮点解的精度,仅利用几个观测历元的数据就可以准确地固定模糊度。  相似文献   

14.
 Global positioning system (GPS) carrier phase measurements are used in all precise static relative positioning applications. The GPS carrier phase measurements are generally processed using the least-squares method, for which both functional and stochastic models need to be carefully defined. Whilst the functional model for precise GPS positioning is well documented in the literature, realistic stochastic modelling for the GPS carrier phase measurements is still both a controversial topic and a difficult task to accomplish in practice. The common practice of assuming that the raw GPS measurements are statistically independent in space and time, and have the same accuracy, is certainly not realistic. Any mis-specification in the stochastic model will inevitably lead to unreliable positioning results. A stochastic assessment procedure has been developed to take into account the heteroscedastic, space- and time-correlated error structure of the GPS measurements. Test results indicate that the reliability of the estimated positioning results is improved by applying the developed stochastic assessment procedure. In addition, the quality of ambiguity resolution can be more realistically evaluated. Received: 13 February 2001 / Accepted: 3 September 2001  相似文献   

15.
针对常规模式下。单系统实时精密单点定位精度受接收机环境和可视卫星数量影响严重等问题,研究了GPS/BDS双系统实时精密单点定位,采用非差无电离层组合载波和伪距观测值,详细推论了Kalman滤波参数估计方法的基本原理,并利用其进行参数估计,最后通过IGS站和实测数据进行了实时PPP实验,实验表明:GPS/BDS双系统定位模式较GPS单系统有明显改善,在E、N、U方向收敛后RMS值分别达到0.125 m、0.117 m、0.289 m,较单系统在各方向分别改善了11.9%、18.1%、22.5%。证明了GPS/BDS实时PPP能够达到分米级到厘米级定位精度。  相似文献   

16.
The linear combinations of multi-frequency carrier-phase measurements for Global Navigation Satellite System (GNSS) are greatly beneficial to improving the performance of ambiguity resolution (AR), cycle slip correction as well as precise positioning. In this contribution, the existing definitions of the carrier-phase linear combination are reviewed and the integer property of the resulting ambiguity of the phase linear combinations is examined. The general analytical method for solving the optimal integer linear combinations for all triple-frequency GNSS is presented. Three refined triple-frequency integer combinations solely determined by the frequency values are introduced, which are the ionosphere-free (IF) combination that the Sum of its integer coefficients equal to 0 (IFS0), the geometry-free (GF) combination that the Sum of its integer coefficients equal to 0 (GFS0) and the geometry-free and ionosphere-free (GFIF) combination. Besides, the optimal GF, IF, extra-wide lane and ionosphere-reduced integer combinations for GPS and BDS are solved exhaustively by the presented method. Their potential applications in cycle slip detection, AR as well as precise positioning are discussed. At last, a more straightforward GF and IF AR scheme than the existing method is presented based on the GFIF integer combination.  相似文献   

17.
针对单历元RTK定位中受到卫星升起、周跳频发等外界条件干扰时,整周模糊度长时间不能固定,严重影响RTK定位实时精度的问题。文中提出一种用载波相位约束整周模糊度的方法来提高模糊度固定率、Ratio值和解算精度,并且结合GPS单系统、GPS/GLONASS双系统两组实测数据进行未加入和加入载波相位约束整周模糊度的比较实验。结果表明该方法可行。  相似文献   

18.
The impact of observation selection, observation combination and model parameterization on GPS carrier phase ambiguity resolution and position accuracy under operational conditions is investigated. The impact of an ionospheric bias for a generic linear combination of L1 and L2 measurements is assessed and the results are used to clearly outline the desirable characteristics for improving ambiguity resolution versus positioning accuracy performance. Ambiguity resolution performance and position accuracy are shown for widelane (WL), L1-only, and ionospheric-free (IF) combinations. Several techniques for dealing with the ionospheric bias are also presented and compared, including stochastic ionospheric modelling. Multiple carrier phase combination solutions estimated in the same filter are also compared. The concept of an optimal processing strategy—in terms of both reliable ambiguity resolution and high accuracy positions—is presented. In total, eight strategies, which vary in observables and parameters, are tested on several datasets ranging from 13 km to 43 km.  相似文献   

19.
Variable length LMS adaptive filter for carrier phase multipath mitigation   总被引:2,自引:1,他引:1  
Multipath on carrier phase measurements is among the major error sources for short baseline positioning. A new method is proposed to improve the accuracy of the positioning results by mitigating the multipath effects on carrier phase measurements using the variable length Least Mean Square (VLLMS) adaptive filter. The performance of the filter is analyzed as well as compared with that of the standard LMS adaptive filter using a set of carrier phase observation data of two consecutive days collected in a short baseline experiment. Because the two antennas are static, the multipath error is the only dominant component in the carrier phase double-differenced residuals and indicates a repeated pattern. The numerical results show that both filters can significantly mitigate the multipath effects in carrier phase double-differenced residuals, and hence improve the positioning results. Furthermore, the VLLMS filter that reduces up to about 47.4% of the multipath effects on 3D positioning performs better than the LMS filter that only reduces 22.0%. Both filters are suitable for real-time applications.  相似文献   

20.
The narrowlane (NL) linear carrier phase combination is commonly used to obtain the highest positioning accuracy using the Global Positioning System because it is capable of mitigating the effect of measurement noise and multipath. However, after reviewing the effect of various error sources on linear carrier phase combinations, it is shown herein that it is theoretically possible to obtain marginally better positioning accuracy using the L1 and L2 carrier phase data independently. Numerical results indicate no difference in performance. With this in mind, the paper investigates the practical benefits of the L1 and L2 approach over the NL combination including; less reliance on L2 phase continuity; easier ambiguity resolution; and simpler navigation filter development.All theses from the Department of Geomatics Engineering at the University of Calgary are downloadable from  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号