首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
1 IntroductionDifferentgeoidsolutionswerecarriedoutforE gyptusingheterogeneousdataanddifferentmethodologies (El_Tokhey ,1 993) .ThemaingoalofthispaperistodetermineamostaccuratenewgeoidforEgypttakingadvantageofanewupdatedgravitydatabase,theinformationgivenby…  相似文献   

2.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

3.
为解决CORS系统中GNSS高程受技术条件限制精度不高的问题,贵阳市进行了区域似大地水准面精化工作。本文论述了GNSS和水准网的布设及精度,使用了3 877个点重力数据和54个GNSS水准资料,以EIGEN03C地球重力场模型作为参考重力场,由第二类Helmert凝集法完成大地水准面计算,利用球冠谐调和分析方法将GNSS水准与重力似大地水准面联合求解得出的2'!2'格网似大地水准面,在高原高差地区其精度达到"0.010 m。  相似文献   

4.
针对我国大地水准面的研究状况,提出了在国家GPSB级网完成之后,利用GPS水准、天文重力水准与重力大地水准面3类数据确定我国高精度大地水准面的理论和方法。分析了3类数据的误差传播规律,给出了联合平差模型,并用一模拟网进行了试算  相似文献   

5.
为计算深圳精密重力大地水准面,利用62个高精度GPS水准点和4871个实测重力点数据对EGM96,WDM94和GPM98CR全球重力场模型表示深圳局部重力场进行了比较与评价。结果表明,由上述3个重力场模型计算的大地水准面高和重力异常与实测值之间存在明显的系统偏差,当采用GPS水准数据尽可能消除系统偏差以后,大地水准面高的精度得到显著提高,若应用移去-恢复技术确定深圳高精度大地水准面,则WDM94应该是首选的参考重力场模型。  相似文献   

6.
 The latest gravimetric geoid model for Japan, JGEOID2000, was successfully combined with the nationwide net of GPS at benchmarks, yielding a new hybrid geoid model for Japan, GSIGEO2000. The least-squares collocation (LSC) method was applied as an interpolation for fitting JGEOID2000 to the GPS/leveling geoid undulations. The GPS/leveling geoid undulation data were reanalyzed in advance, in terms of three-dimensional positions from GPS and orthometric heights from leveling. The new hybrid geoid model is, therefore, compatible with the new Japanese geodetic reference frame. GSIGEO2000 was evaluated internally and independently and the precision was estimated at 4 cm throughout nearly the whole region. Received: 15 October 2001 / Accepted: 27 March 2002 Acknowledgments. Messrs. Toshio Kunimi and Tadashi Saito at the Third Geodetic Division of the Geographical Survey Institute (GSI) mainly carried out the computations of most of the updated leveled heights. With regard to the reanalysis of GPS data, the discussions with Messrs. Yuki Hatanaka and Shoichi Matsumura of GSI were of great help in building the analysis strategy. Messrs. Kazuyuki Tanaka and Hiromi Shigematsu collaborated in the preparatory stages of GPS data computation. The authors' thanks are extended to these colleagues. Some plots were made by GMT software (Wessel and Smith 1991). Correspondence to: Y. Kuroishi  相似文献   

7.
联合重力异常和GPS水准数据的最小二乘配置方法   总被引:1,自引:1,他引:0  
本文对最小二乘配置的基本方法进行了简要介绍,讨论了局部协方差函数模型的确定方法,并利用GPS水准和重力数据,根据移去恢复法,运用最小二乘配置方法进行重力异常和GPS水准的联合配置计算,确定了某市2′30″×2′30″区域似大地水准面模型,并将最终结果与GPS水准数据进行比较分析,通过检核,精度达到±1.6cm。  相似文献   

8.
为了得到我国某陆海交界区厘米级精度的区域(似)大地水准面,利用43个高精度GPS/水准点和1 045个实测重力点数据对EGM96,WDM94和GFZ计算的局部重力(似)大地水准面进行了比较与评价。结果表明,在该测区用移去-恢复法确定重力(似)大地水准面时,EGM96应该是首选参考重力场模型。该测区处在陆海交界处,海域无GPS/水准数据。经比较发现,采用距离倒数加权平均法将该区重力似大地水准面拟合于GPS/水准数据比在大范围使用的多项式法效果更好。采用该方法计算的测区(似)大地水准面精度优于3cm。  相似文献   

9.
A gravimetric geoid computed using different techniques has been compared to a geoid derived from Geos-3 altimeter data in two 30°×30° areas: one in the Tonga Trench area and one in the Indian Ocean. The specific techniques used were the usual Stokes integration (using 1°×1° mean anomalies) with the Molodenskii truncation procedure; a modified Stokes integration with a modified truncation method; and computations using three sets of potential coefficients including one complete to degree 180. In the Tonga Trench area the standard deviation of the difference between the modified Stokes’ procedure and the altimeter geoid was ±1.1 m while in the Indian Ocean area the difference was ±0.6 m. Similar results were found from the 180×180 potential coefficient field. However, the differences in using the usual Stokes integration procedure were about a factor of two greater as was predicted from an error analysis. We conclude that there is good agreement at the ±1 m level between the two types of geoids. In addition, systematic differences are at the half-meter level. The modified Stokes procedure clearly is superior to the usual Stokes method although the 180×180 solution is of comparable accuracy with the computational effort six times less than the integration procedures.  相似文献   

10.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

11.
湖南地区2007版似大地水准面模型存在数据源质量相对不高、局部区域存在粗差等问题。通过引入EGM2008地球重力场模型、高分辨率DEM数据、高精度GPS/水准数据等新数据源,采用最小二乘配置法与格林基函数样条插值算法,在原有模型的基础上得到1′×1′分辨率的再精化新模型。精度检测结果表明,新模型的内、外符合精度相较2007模型提升80.7%和22.9%,有效降低汉寿等地区的残差,对湖南省地区的复杂地形具有更好的适用性。  相似文献   

12.
本文利用全球重力位模型、胶州市地面重力观测数据、胶州市GPS水准数据和数字地面模型(DTM),采用组合法应用移去-恢复技术计算剩余大地水准面,并与地球位模型计算的高程异常进行拟合,得到该地区重力似大地水准面,再和布测、计算得到的GPS/水准所构成的几何大地水准面拟合,利用多项式拟合完成系统改正,获得最终的大地水准面结果及相关的精度信息。  相似文献   

13.
邢志斌  李姗姗 《测绘学报》2018,47(5):575-583
基于重力场水平分量-垂线偏差对地形信息敏感的特点,根据边值理论由重力与地形数据确定格网垂线偏差模型,在此基础上,首先利用三维重力矢量-格网垂线偏差与格网重力异常,联合格网高程数据求得格网点间高程异常差,然后通过GPS/水准点的控制,构成紧密的几何条件,进行严密平差,从而获得高分辨率、高精度似大地水准面的数值模型。按照本文方法,利用我国6600多个GPS/水准点、1'×1'的格网垂线偏差、格网重力异常、格网高程数据,整体平差计算了我国陆海统一的似大地水准面模型,经GPS/水准点检核,全国似大地水准面的绝对精度达到了4 cm,相对精度优于7 cm。  相似文献   

14.
R. Kiamehr 《Journal of Geodesy》2006,79(10-11):602-612
The computation of regional gravimetric geoid models with reasonable accuracy, in developing countries, with sparse data is a difficult task that needs great care. Here we investigate the procedure for gathering, evaluating and combining different data for the determination of a gravimetric geoid model for Iran, where limited ground gravity data are available. Heterogeneous data, including gravity anomalies, the high-resolution Shuttle Radar Topography Mission global digital terrain model and different global geopotential models including recently published Gravity Recovery and Climate Experiment models, are combined through least-squares modification of the Stokes formula. The new gravimetric geoid model, IRG04, agrees considerably better with GPS/levelling than any of the other recent local geoid model in the area. Its RMS fit with GPS/levelling is 0.27 m and 3.8 ppm in the absolute and relative view, respectively. The relative accuracy of IRG04 is four times better than the most recently published global and regional geoid models available in this area. This progress shows the practical potential of the method of least-squares modification of Stokes’s formula in combination with heterogeneous data for regional geoid determination  相似文献   

15.
一种有效的区域似大地水准面精度检测方法   总被引:4,自引:1,他引:3  
廖超明  王龙波  覃允森 《测绘科学》2008,33(6):53-54,41
利用大地水准面逼近严密理论Molodenskii级数解,结合GPS、水准、重力和地形资料精化区域似大地水准面,其精度已从分米级向厘米级、高分辨率方向发展。如何客观、高效地评价区域似大地水准面精度是本文研究的主要目的。作者以广西似大地水准面精度检测为例子,给出了一种综合考虑GPS/水准检测点GPS大地高和水准测量误差的区域似大地水准面精度检测方法。利用覆盖广西境内的446个C级GPS控制网和航控GPS控制网GPS/水准检测点,点间距约25km,采用加权平均法计算广西似大地水准面外符合检测精度为±0.041m。  相似文献   

16.
A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discussed. Single-and dual-satellite crossovers were performed, and components of deflections of the vertical were determined at the crossover positions using Sand-well's computational theory, and gridded onto a 2.5′×2.5′resolution grid by employing the Shepard's interpolation procedure. 2.5′×2.5′grid of EGM96-derived components of deflections of the vertical and geoid heights were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Molodensky-like formula via 1D-FFT technique to predict the geoid heights over the South China Sea and the Philippine Sea from the gridded altimeter-derived components of deflec-tions of the vertical. Statistical comparisons between the altimeter-and the EGM96- derived geoid heights showed that there was a root-mean-square agreement of ±0.35 m between them in a region of less tectonically active geological structures. However, over areas of tectonically active structures such as the Philippine trench, differences of about -19.9 m were obtained.  相似文献   

17.
A detailed gravimetric geoid in the North Atlantic Ocean, named DGGNA-77, has been computed, based on a satellite and gravimetry derived earth potential model (consisting in spherical harmonic coefficients up to degree and order 30) and mean free air surface gravity anomalies (35180 1°×1° mean values and 245000 4′×4′ mean values). The long wavelength undulations were computed from the spherical harmonics of the reference potential model and the details were obtained by integrating the residual gravity anomalies through the Stokes formula: from 0 to 5° with the 4′×4′ data, and from 5° to 20° with the 1°×1° data. For computer time reasons the final grid was computed with half a degree spacing only. This grid extends from the Gulf of Mexico to the European and African coasts. Comparisons have been made with Geos 3 altimetry derived geoid heights and with the 5′×5′ gravimetric geoid derived byMarsh andChang [8] in the northwestern part of the Atlantic Ocean, which show a good agreement in most places apart from some tilts which porbably come from the satellite orbit recovery.  相似文献   

18.
A new gravimetric geoid model, USGG2009 (see Abbreviations), has been developed for the United States and its territories including the Conterminous US (CONUS), Alaska, Hawaii, Guam, the Commonwealth of the Northern Mariana Islands, American Samoa, Puerto Rico and the US Virgin Islands. USGG2009 is based on a 1′ × 1′ gravity grid derived from the NGS surface gravity data and the DNSC08 altimetry-derived anomalies, the SRTM-DTED1 3′′ DEM for its topographic reductions, and the global geopotential model EGM08 as a reference model. USGG2009 geoid heights are compared with control values determined at 18,398 Bench Marks over CONUS, where both the ellipsoidal height above NAD 83 and the Helmert orthometric height above NAVD 88 are known. Correcting for the ellipsoidal datum difference, this permits a comparison of the geoid heights to independent data. The standard deviation of the differences is 6.3 cm in contrast to 8.4 cm for its immediate predecessor— USGG2003. To minimize the effect of long-wavelength errors that are known to exist in NAVD88, these comparisons were made on a state-by-state basis. The standard deviations of the differences range from 3–5 cm in eastern states to about 6–9 cm in the more mountainous western states. If the GPS/Bench Marks-derived geoid heights are corrected by removing a GRACE-derived estimate of the long-wavelength NAVD88 errors before the comparison, the standard deviation of their differences from USGG2009 drops to 4.3 cm nationally and 2–4 cm in eastern states and 4–8 in states with a maximum error of 26.4 cm in California and minimum of −32.1 cm in Washington. USGG2009 is also compared with geoid heights derived from 40 tide-gauges and a physical dynamic ocean topography model in the Gulf of Mexico; the mean of the differences is 3.3 cm and their standard deviation is 5.0 cm. When USGG2009-derived deflections of the vertical are compared with 3,415 observed surface astro-geodetic deflections, the standard deviation of the differences in the N–S and E–W components are 0.87′′ and 0.94′′, respectively.  相似文献   

19.
利用了双输入单输出法,融合处理了我国某地区的重力异常和地形资料两类数据,结合WDM94地球重力场模型和63个高精度GPS水准数据,计算了该区域的似大地水准面。  相似文献   

20.
应用GPS水准与重力数据联合解算大地水准面   总被引:1,自引:0,他引:1  
GPS水准大地水准面与重力大地水准面之差不仅由基准不同引起,而且也包含重力与GPS水准观测值的误差。建立了这两个水准面之差与基准转换参数、重力和GPS水准观测值的残差之间的关系,并基于最小二乘准则解算了基准转换参数和重力与GPS水准观测值的残差,即计算转换参数及重力与GPS观测值的改正。尤其当GPS水准精度远高于重力水准面时,联合解算模型可固定GPS水准大地水准面,只对重力观测值进行改正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号