首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 989 毫秒
1.
In this paper the effect of a delayed onset of glaciation in the Barents Sea on glacial isostatic adjustment is investigated. The model calculations solve the sea-level equation governing the total mass redistributions associated with the last glaciation cycle on a spherically symmetric, linear, Maxwell viscoelastic earth for two different scenarios for the growth phase of the Barents Sea ice sheet. In the first ice model a linear growing history is used for the Barents Sea ice sheet, which closely relates its development to the build-up of other major Late Pleistocene ice sheets. In the second ice model the accumulation of the Barents Sea ice sheet is restricted to the last 6 ka prior to the last glacial maximum.
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum.  相似文献   

2.
The early Russian researchers working in central Siberia seem to have preferred scenarios in which glaciations, in accordance with the classical glaciological concept, originated in the mountains. However, during the last 30 years or so the interest in the glacial history of the region has concentrated on ice sheets spreading from the Kara Sea shelf. There, they could have originated from ice caps formed on areas that, for eustatic reasons, became dry land during global glacial maximum periods, or from grounded ice shelves. Such ice sheets have been shown to repeatedly inundate much of the Taymyr Peninsula from the north-west. However, work on westernmost Taymyr has now also documented glaciations coming from inland. On at least two occasions, with the latest one dated to the Saale glaciation (marine isotope stage 6 [MIS 6]), warm-based, bedrock-sculpturing glaciers originating in the Byrranga Mountains, and in the hills west of the range, expanded westwards, and at least once did such glaciers, after moving 50–60 km or more over the present land areas, cross today's Kara Sea coastline. The last major glaciation affecting south-western Taymyr did, however, come from the Kara Sea shelf. According to optically stimulated luminescence dates, this was during the Early or Middle Weichselian (MIS 5 or 4), and was most probably not later than 70 Kya. South-western Taymyr was not extensively glaciated during the last global glacial maximum ca. 20 Kya, although local cold-based ice caps may have existed.  相似文献   

3.
Abstract:

DAHL, RAGNAR. Late-glacial accumulation forms and glaciation in the Narvik-Skjomen district, Norway. Norsk geogr. Tidsskr. 1967, 21, 157–241.

Late-glacial accumulation forms at corresponding levels are described and discussed. Most of the accumulations are moraine ridges deposited at the lateral margins of the ice flowing in the main valleys or at the lateral and frontal margins of ice tongues branching out into tributaries.

The frontal moraine ridges appear only in small tributary valleys or similar depressions in the terrain. They have an arched form and an advanced position in the depressions and are broken by melt-water channels. Together with the different indications of pressure in the material, this shows that the moraines correspond to phases of the deglaciation period in which the ice masses were temporarily advancing. The calculated gradients of the ice surface and radio-carbon datings indicate that these phases correspond to the two glacial phases of the Tromsø-Lyngen substage, which, according to ANDERSEN (1965), approximately correspond to the Early Dryas and Late Dryas periods.  相似文献   

4.
TheAnturCticisoneofthemostimpohantcoldsourcesonEarth,asabout24.5xlo'km'oficewhichtakes9opeamtoftotalicevolumeontheglobecoveronit.RotreaoradvanceOftheAntarcticIceSheetwillaffatfluCtuationofsealevel.ItiscalculatalthatiftheAntercticIceSheetlscomplotelymeltaw…  相似文献   

5.
Using a combination of geophysical and geotechnical data from Storfjorden Trough Mouth Fan off southern Svalbard, we investigate the hydrogeology of the continental margin and how this is affected by Quaternary glacial advances and retreats over the continental shelf. The geotechnical results show that plumites, deposited during the deglaciation, have high porosities, permeabilities and compressibilities with respect to glacigenic debris flows and tills. These results together with margin stratigraphic models obtained from seismic reflection data were used as input for numerical finite element models to understand focusing of interstitial fluids on glaciated continental margins. The modelled evolution of the Storfjorden TMF shows that tills formed on the shelf following the onset of glacial sedimentation (ca. 1.5 Ma) acted as aquitards and therefore played a significant role in decreasing the vertical fluid flow towards the sea floor and diverting it towards the slope. The model shows that high overpressure ratios (up to λ ca. 0.6) developed below the shelf edge and on the middle slope. A more detailed model for the last 220 kyrs accounting for ice loading during glacial maxima shows that the formation of these aquitards on the shelf focused fluid flow towards the most permeable plumite sediments on the slope. The less permeable glacigenic debris flows that were deposited during glacial maxima on the slope hinder fluid evacuation from plumites allowing high overpressure ratios (up to λ ca. 0.7) to develop in the shallowest plumite layers. These high overpressures likely persist to the Present and are a critical precondition for submarine slope failure.  相似文献   

6.
黄土高原晚更新世的植被与气候环境   总被引:7,自引:2,他引:5  
李秉成  孙建中 《地理研究》2004,23(5):641-648
通过对黄土高原上陕西洛川、富县省等黄土剖面的地质调查、采样和孢粉分析 ,在曾被人们认为孢粉贫乏的黄土中分析出了大量孢粉 ,作出了黄土地层的孢粉浓度图式。结合其他地区数个剖面上孢粉组合的变化 ,阐明了晚更新世的植被与气候在时间上演变与空间上分布的规律 ,证明了各地植被在时间上的演变韵律十分相似 ,说明它们同受全球气候变化的控制 ;但在同一时期各地植被不尽相同 ,则是局部自然环境差异所致。  相似文献   

7.
This study describes shoreline migration paths for late Quaternary sediments on the inner Barents Sea shelf between Kola and the Pechora Sea. The depositional geometries provide an example of stratigraphical architecture in a glacially influenced basin prone to isostatic movements as well as rapid and high-amplitude changes in eustatic sea level. The depositional geometries reflect asymmetrical relative sea level changes characterised by marine inundation upon deglaciation and prolonged forced regressions. Thus, all deposition occurs during the falling stage and lowstand systems tracts. The transgressive and highstand systems tracts are lacking and the maximum landward position of the shoreline is coinciding with the basal surface of forced regression. Shoreline migration is dominated by downward and seaward trajectories, but aggradation occurs on the falling limb of the relative sea level curve due to superimposed eustatic cycles of lower hierarchical order. Fluvial aggradation behind the shoreline takes place during the lowstand systems tract, but is also linked to high sediment supply and may also respond to superimposed lower order sea level fluctuations. Lateral variations in isostatic load due to asynchronous ice advances lead to regional variations in shoreline trajectories. Significant differences in sea level history exist across former ice margins leading to time-transgressive and laterally discontinuous stratigraphical surfaces. Sequence boundaries are not only diachronous along the depositional profile, but also laterally, and basal surfaces of forced regression are strongly diachronous across former ice margins. Absolute age control allows for estimates of the time differences along significant stratigraphical surfaces.  相似文献   

8.
Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice‐marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice‐proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris‐rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations.  相似文献   

9.
The first marine sediment cores from the unexplored Independence Fjord system and the Wandel Sea, North Greenland, have been investigated to reveal the glacial marine history of the region. Two key sites in the Independence Fjord system, and an earlier analysed site from the Wandel Sea continental slope, off the mouth of Independence Fjord, are presented. The Independence Fjord sites reveal an early Holocene record (10.0–8.9 Kya) of fine-grained reddish muds with calcareous microfossils, dominated by the benthic foraminifera Cassidulina neoteretis . We suggest that a semi-permanent fast ice cover characterized the region in the early Holocene, and that the deeper troughs in the mouth region of the Independence Fjord system were intruded by subsurface Atlantic water. A stiff diamicton, at least 1.3 m thick, with coal and sandstone clasts of mainly local origin, and a 0.5-m-thick Holocene cover, are found in one of the sites. The diamicton is assumed to represent a subglacial till predating the early Holocene sediments (>10 Kya). Shallow seismic records off the mouth of Independence Fjord reveal kilometre-sized troughs with signs of glacial erosion, till deposition and a Holocene glaciomarine deposition. These features could indicate that glacial ice debouching from the Independence Fjord system at some time during the last glacial period extended to the mid-outer Wandel Sea shelf. Data from a high-resolution sediment core previously retrieved from the adjacent Wandel Sea slope indicate that the maximum ice sheet advance in this area culminated about 25–20 Kya.  相似文献   

10.
We present here a revised reconstruction of the Ross ice drainage system of Antarctica at the last glacial maximum (LGM) based on a recent convergence of terrestrial and marine data. The Ross drainage system includes all ice flowlines that enter the marine Ross Embayment. Today, it encompasses one-fourth of the ice-sheet surface, extending far inland into both East and West Antarctica. Grounding lines now situated in the inner Ross Embayment advanced seaward at the LGM (radiocarbon chronology in Denton and Marchant 2000 and in Hall and Denton 2000a, b), resulting in a thick grounded ice sheet across the Ross continental shelf. In response to this grounding in the Ross (and Weddell) Embayment, ice-surface elevations of the marine-based West Antarctic Ice Sheet were somewhat higher at the LGM than at present (Steig and White 1997; Borns et al. 1998; Ackert et al. 1999). At the same time, surface elevations of the East Antarctic Ice Sheet inland of the Transantarctic Mountains were slightly lower than now, except near outlet glaciers that were dammed by grounded ice in the Ross Embayment. The probable reason for this contrasting behavior is that lowered global sea level at the LGM, from growth of Northern Hemisphere ice sheets, caused widespread grounding of the marine portion of the Antarctic Ice Sheet, whereas decreased LGM accumulation led to slight surface lowering of the interior terrestrial ice sheet in East Antarctica. Rising sea level after the LGM tripped grounding-line recession in the Ross Embayment, which has probably continued to the present day (Conway et al. 1999). Hence, gravitational collapse of the grounded ice sheet from the Ross Embayment, accompanied by lowering of the interior West Antarctic ice surface and of outlet glaciers in the Transantarctic Mountains, occurred largely during the Holocene. At the same time, increased Holocene accumulation caused a slight rise of the inland East Antarctic ice surface.  相似文献   

11.
The Holocene glacial and climatic development in Antarctica differed considerably from that in the Northern Hemisphere. Initial deglaciation of inner shelf and adjacent land areas in Antarctica dates back to between 10-8 Kya, when most Northern Hemisphere ice sheets had already disappeared or diminished considerably. The continued deglaciation of currently ice-free land in Antarctica occurred gradually between ca. 8-5 Kya. A large southern portion of the marine-based Ross Ice Sheet disintegrated during this late deglaciation phase. Some currently ice-free areas were deglaciated as late as 3 Kya. Between 8-5 Kya, global glacio-eustatically driven sea level rose by 10-17m, with 4-8 m of this increase occurring after 7 Kya. Since the Northern Hemisphere ice sheets had practically disappeared by 8-7 Kya, we suggest that Antarctic deglaciation caused a considerable part of the global sea level rise between 8-7 Kya, and most of it between 7-5 Kya. The global mid-Holocene sea level high stand, broadly dated to between 8-4 Kya, and the Littorina-Tapes transgressions in Scandinavia and simultaneous transgressions recorded from sites e.g. in Svalbard and Greenland, dated to 7-5 Kya, probably reflect input of meltwater from the Antarctic deglaciation.  相似文献   

12.
Open sections along Kongsfjodhallet, the north-western coast Kongsfjorden, Svalbard, exhibit marine and glacigenic sediments of Early to Late Plestocene age. Glaciatio, deglaciation and subsequent isostatic rebound caused the formation of three sedimentary successions (A, B and C) that comprise till grading upward into glaciomarine mud, followed by shell-bearing sand, and finally littoral sand and gravel. Six major lithostratigraphic units are recognized. Succession C comprises units 1 and 2, which were deposited during an Early Pleistocene glaciation, followed by deglaciation and subsequent beach progradation. Succession B is divisible into units 3 and 4 and reflects glaciation and eventual emergence as a result of isostatic response. The youngest succesion (A) comprises units 5 and 6, and reflects fiord glaciation followed by a regression during an Early Weichselian glaciation-deglaciation episode. Ice-free conditions may have prevailed untill the Late Weichselian, when a glaciation, confined to the fiord trough, covered parts of Kongsfjordhallet. Deglaciation and isostatic rebound are recorded by Holocene marine terraces up to ca 40 m a. s. l.
Marine and glacial events from Kongsfjordhallet are compared with stratigraphic evidence from adjacent regions and it is suggested that the Late Weichselian ice configuration was of a more restricted nature than proposed by previous authors. Glaciers. draining through the larger ford troughs reached the shelf break. while at the same time other parts of western Svalbard could have experienced restricted glaciation.  相似文献   

13.
Prediction of future Arctic climate and environmental changes, as well as associated ice-sheet behavior, requires placing present-day warming and reduced ice extent into a long-term context. Here we present a record of Holocene climate and glacier fluctuations inferred from the paleolimnology of small lakes near Istorvet ice cap in East Greenland. Calibrated radiocarbon dates of organic remains indicate deglaciation of the region before ~10,500 years BP, after which time the ice cap receded rapidly to a position similar to or less extensive than present, and lake sediments shifted from glacio-lacustrine clay to relatively organic-rich gyttja. The lack of glacio-lacustrine sediments throughout most of the record suggests that the ice cap was similar to or smaller than present throughout most of the Holocene. This restricted ice extent suggests that climate was similar to or warmer than present, in keeping with other records from Greenland that indicate a warm early and middle Holocene. Middle Holocene magnetic susceptibility oscillations, with a ~200-year frequency in one of the lakes, may relate to solar influence on local catchment processes. Following thousands of years of restricted extent, Istorvet ice cap advanced to within 365 m of its late Holocene limit at ~AD 1150. Variability in the timing of glacial and climate fluctuations, as well as of sediment organic content changes among East Greenland lacustrine records, may be a consequence of local factors, such as elevation, continentality, water depth, turbidity, and seabirds, and highlights the need for a detailed spatial array of datasets to address questions about Holocene climate change.  相似文献   

14.
Above the marine limit in Gangdalen, Nordenskiold Land, a 20 m thick sequence of unconsolidated sediments occurs. On the top of striated bedrock it is composed of a 2m thick till bed, 15m gravel interpreted to be deposited as a sandur, and another till bed on the top. A solifluction deposit is capping the section. Fabric analyses and erratics in the two tills indicate a similar development in glacial transport directions during the two glaciations, starting with a local glaciation which subsequently turns into a larger glaciation centred over the eastern part of Svalbard. Co-existence of different ice domes over Spitsbergen is suggested. The sandur was deposited during an ice free period with a sea-level 40–80 m higher than at present. The section is undated.  相似文献   

15.
新疆阿尔泰山东段冰碛物光释光测年研究   总被引:3,自引:0,他引:3  
贾彬彬  周亚利  赵军 《地理学报》2018,73(5):957-972
冰川是塑造地表形态最积极的外营力之一,对冰川地貌的年代学研究是重建古冰川发展史的关键,也是研究气候变化的重要途径。冰碛物是冰川作用的直接产物,代表过去发生的冰川事件,对冰碛物进行准确测年能够为重建古冰川的进退、理解区域古气候变化提供年代学支撑。本文在新疆阿尔泰山东段采集了8个冰碛物样品以进行光释光测年,利用单片再生剂量法对90~125 μm的石英颗粒进行等效剂量的测定。通过等效剂量值频率分布特征及De(t)坪区图分析得出大部分冰碛物的光释光信号晒退不彻底,所以利用一阶动力学公式对持续激发的光释光信号晒退曲线(CW-OSL)进行多组分拟合拆分,得到快速、中速、慢速3种组分,依据分离出的快速组分确定等效剂量值。研究结果显示,距今32 ka以来阿尔泰山东段区域在MIS3阶段、MIS2阶段、8.2 ka左右、全新世大暖期及新冰期等5个时段有冰川发育,冰川发育与气候变化密切相关。  相似文献   

16.
东南极拉斯曼丘陵地区莫愁湖(69°22.3’ S,76°22.0’ E)沉积柱中的有机生物标志物记录了全新世中晚期该地区气候演变过程。不饱和长链烯酮在沉积柱111-76 cm (6450-5100 cal. yr. BP)和36-30 cm(3700-3500 cal. yr. BP)深度有检出,76 cm深度以上基本消失,表明该地区在5100 cal. yr. BP前后气候开始由冷转暖,冰川消融,陆壳抬升,相对海平面下降,同时大量的冰融水使湖泊逐渐淡化。沉积柱底部长链烯酮的检出阶段与东南极相对海平面较高时期相一致,而沉积柱36-30 cm(3700-3500 cal. yr. BP)深度不饱和长链烯酮的痕量检出则揭示了一个短暂的气候干冷,湖泊盐度升高的时期。沉积物中正构烷烃反映的当地气候变化所控制的湖生植物群落演变过程与上述过程基本一致。  相似文献   

17.
中国第四纪冰川作用与深海氧同位素阶段的对比和厘定   总被引:1,自引:0,他引:1  
随着冰期(阶)与间冰期(阶)旋回的不断细化,第四纪冰期系列与深海氧同位素阶段(MIS)对比之间所反映的问题开始逐步显现。通过中国第四纪冰期与MIS阶段对比,结合分析气候旋回与构造运动对地貌演化的控制作用,研究表明:①冰期(阶)或者间冰期(阶)发生的时段应尽可能对应于MIS的偶数或奇数阶段,有助于MIS框架下新的冰期(阶)的发现;②中更新世以来,中国第四纪冰期-间冰期旋回可能受控于100 ka轨道偏心率变化的气候大背景,昆仑冰期-倒数第二次冰期的冰川规模总体上与全球冰量变化一致。然而,末次冰期早、中期的冰川规模却与MIS所记录的全球冰量变化不尽一致,强烈显示气候与构造环境对冰川作用的影响;③目前在中国第四纪冰期划分方案中,存在着冰期系列由时间和地点双重命名的现象,建议用大理冰期、古乡冰期分别代替末次冰期和倒数第二次冰期。  相似文献   

18.
The last British Ice Sheet: growth, maximum extent and deglaciation   总被引:2,自引:0,他引:2  
The growth, maximum lateral extent and deglaciation of the last British Ice Sheet (BIS) has been reconstructed using sediment, faunal and stable isotope methods from a sedimentary record recovered from the Barra Fan, north-west Scotland. During a phase of ice sheet expansion postdating the early "warmth" of Marine Isotope Stage 3 (MIS 3), ice rafting events, operating with a cyclicity of approximately 1500 years, are interspersed between warm, carbonate-rich interstadials operating with a strong Dansgaard-Oeschger (D-O) cyclicity. The data suggest that the BIS expanded westwards to the outer continental shelf break shortly after 30 Ky BP (before present) and remained there until about 15 Ky BP. Within MIS 2, as the ice sheet grew to its maximum extent, the pronounced periodicities which characterize MIS 3 are lost from the record. The exact timing of the Last Glacial Maximum is difficult to define in this record; but maxima in Neogloboquadrina pachyderma (sinistral) Ø18O are observed between 21-17 Ky BP. A massive discharge of ice-rafted detritus, coincident with Heinrich event 1, is observed at about 16 Ky BP. Deglaciation of the margin is complete by about 15 Ky BP and surface waters warm rapidly after this date.  相似文献   

19.
Analysis of shelf‐edge trajectories in prograding successions from offshore Norway, Brazil, Venezuela and West Africa reveals systematic changes in facies associations along the depositional dip. These changes occur in conjunction with the relative sea‐level change, sediment supply, inclination of the substratum and the relief of the margin. Flat and ascending trajectories generally result in an accumulation of fluvial and shallow marine sediments in the topset segment. Descending trajectories will generally result in erosion and bypass of the topset segment and deposition of basin floor fans. An investigation of incised valley fills reveals multiple stages of filling that can be linked to distinct phases of deepwater fan deposition and to the overall evolution of the margin. In the case of high sediment supply, like the Neogene Niger and Orinoco deltas, basin floor fans may develop systematically even under ascending trajectory styles. In traditional sequence stratigraphic thinking, this would imply the deposition of basin floor fans during a period of relative sea‐level highstand. Facies associations and sequence development also vary along the depositional strike. The width and gradient of the shelf and slope show considerable variations from south to north along the Brazilian continental margin during the Cenozoic. During the same time interval, the continental shelf may display high or low accommodation conditions, and the resulting stacking patterns and facies associations may be utilized to reconstruct palaeogeography and for prediction of lithology. Application of the trajectory concept thus reveals nuances in the rock record that would be lost by the application of traditional sequence stratigraphic work procedures. At the same time, the methodology simplifies the interpretation in that less importance is placed on interpretation and labelling of surface boundaries and systems tracts.  相似文献   

20.
Terrace remnants close to the marine limit as well as two separate moraine ridges are observed in front of the glacier Albrechtbreen. The stacking of marine sediments from an original elevation of ca. 60–80 m a.s.l. into the Little Ice Age Moraine gives evidence for a considerably smaller glacier following the early Holocene deglaciation compared to that of the present. The outer moraine is composed of glacial diamicton. Radiocarbon datings of whale ribs, shell fragments and a log taken from sediment in front of Albrechtbreen indicate that the initial deglaciation occurred before 9, 400 B.P. and that the outer moraine was formed during a younger Holocene glacial advance. Lithological differences between the two moraine ridges suggest that the first ice advance occurred during a period with limited permafrost, whereas permafrost was more extensive during the Little Ice Age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号