首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究   总被引:8,自引:1,他引:7  
丁建文  张帅  洪振舜  刘松玉 《岩土力学》2010,31(9):2817-2822
在传统水泥固化处理方法的基础上,提出用水泥-磷石膏双掺固化处理高含水率疏浚淤泥的方法,以期达到以废治废,将废弃高含水率疏浚淤泥经济合理转化为良质土资源的目的。系列室内试验的结果表明,磷石膏对疏浚淤泥固化土的增强效果显著,并存在一最佳掺量,最佳掺量随淤泥初始含水率增大而增大,水泥-磷石膏双掺固化土的应力-应变曲线表明,其破坏应变一般在2%~3%左右,变形系数E50与抗压强度近似呈线性递增关系。  相似文献   

2.
磷石膏是一种固体废弃材料,磷石膏的堆存浪费大量土地资源,严重污染土壤与水环境,并可能引发滑坡溃坝,因此进行磷石膏的资源化利用迫在眉睫。本文采用硅酸钠改良水泥基稳定磷石膏,开展路面基层试验研究。通过无侧限抗压强度试验、水稳定性试验、干缩试验及扫描电镜试验,研究了硅酸钠在不同掺量、掺入方式、养护龄期条件下改良水泥基稳定磷石膏的物理力学特性,揭示了硅酸钠促进水泥水化并产生水化硅酸钙,从而提高混合料强度的改良机理。试验结果表明,当溶于水的硅酸钠掺量为2%~4%时,可有效改良水泥基稳定磷石膏混合料的抗压强度、水稳定性能、失水率及干缩应变,并提出在路面基层施工后的4~5 d内,是有效控制路面基层失水与干缩的最佳时间,从而可避免因水分快速散失导致裂缝的产生。  相似文献   

3.
砾状煤系土改良性能的试验研究   总被引:2,自引:0,他引:2  
针对广梧高速公路沿线的砾状煤系土不能满足路基填料要求的问题,采用室内试验的方法,对其提出了分别掺加生石灰和水泥两种改良方案并进行改良试验对比研究。研究结果表明:经水泥改良后的砾状煤系土的压实性能、承载比和水稳性等方面效果明显优于经石灰改良的;经水泥改良后的抗剪性能、无侧限抗压强度和抗变形能力均有较大程度的提高;在影响砾状煤系土强度的因素中,水泥掺入比的影响最显著,其次是龄期和含水率,并根据无侧限抗压强度试验结果提出了多因素影响拟合公式。砾状煤系土掺加约3%水泥改良后直接作为路基填料可满足要求,为煤系土地区路基处理提供借鉴依据。  相似文献   

4.
水泥加固不同地区软土的试验研究   总被引:1,自引:0,他引:1  
陈慧娥  王清 《岩土力学》2007,28(2):423-426
对不同地区软土经水泥加固后的强度形成特征进行了研究。进行直接剪切试验及无侧限抗压试验测定了水泥加固土的力学指标,发现不同地区的软土经水泥加固后力学性质存在很大差异,从试样的粒度成分、有机质含量及加固后试样的微观结构特征等方面对此进行解释。结果表明,试样的粒度成分及有机质含量会对加固效果产生很大影响,黏粒含量越大,有机质含量越高,对水泥加固土强度的形成越不利。为在用水泥进行不同性质的软土加固处理时采取合理的附加措施提供了理论依据。  相似文献   

5.
The lithomargic clay constitutes an important group of residual soils existing under lateritic soils. This soil is found on the western and eastern coasts of India over large areas. This soil is a problematic one and is very sensitive to water and loses a greater part of its strength when becomes saturated. These high silt deposits have invited many problems such as slope failures, foundation failures, embankment failures, uneven settlements etc. In this investigation an attempt is made to study the effect of cement and quarry dust on shear strength and hydraulic characteristics of the lithomargic clay after the stabilization. Microfabric and mineralogical studies were carried out to find out the reason for the strength development of the stabilized soil using SEM and XRD analysis. The results indicated that there is an improvement in the properties of the lithomargic clay with the addition of cement and quarry dust. The XRD results indicated the formation of CSH and CAH, which are responsible for strength development in the stabilized soil.  相似文献   

6.
Ground improvement with soil solidification has been widely applied and has proven to be an effective pre-treatment of soft soil deposits. The solidification procedure usually involves addition and thorough mixing of hydraulic binders with in situ soils, consequently transforming the soft materials into a stronger and stiffer stratum for load bearing. Much has been done on the binder’s effectiveness and resulting enhanced properties of the soils, but not as much has been reported of the factors governing in situ mixing efficiency in producing uniform mixtures. While advancement in machinery and computerization of operations have significantly improved soil mixing, individual factors contributing to the process can be further examined to refine the effectiveness. This paper describes a series of laboratory tests, mainly unconfined compressive strength tests complemented with X-ray computer tomography, conducted on cement-stabilized dredged Kawasaki clay of different uniformities. A number of factors affecting uniformity were examined, namely the water/cement (WC) ratios, number of cement layers in the initial state as well as the number of mixing cycles adopted. Test specimens were prepared based on a systematic combination of these factors to enable a comprehensive cross-analysis of the results. It was found that the clay’s initial consistency was markedly altered by cement addition, which resulted in either enhanced or reduced workability of the mixture. While increased mixing vigor could apparently overcome poor distribution of binder in the mixture, the resulting strength remained very much affected by the WC ratio, suggesting dependency of the mixture’s overall uniformity on a combination of the factors.  相似文献   

7.
In developing technically viable and economically sustainable methods of improving soil properties to suit the requirements of engineering structures, designers/engineers are to take into consideration the availability and cost effectiveness of materials required for such improvement scheme. In line with this, the present study evaluates stabilization effectiveness of combined quarry fines (QF) and cement kiln dust (CKD) on subgrades dominated by black cotton soil (BC soil). The experimental programme included Atterberg limits, compaction and California bearing ratio (CBR) tests on soil mixtures prepared with a representative BC soil at constant dosage of 10 % QF and 0, 4, 8, 12 and 16 % CKD. Prior to testing, soil mixtures for CBR test prepared at optimum moistures and compacted with British standard light compaction effort were soaked for 96 h after curing for 28 days. Test data show that the addition of QF and CKD together reduced the plasticity index that resulted in rapid textural changes and eventual improvement in constructability, led to an increase in the optimum moisture content and a decrease in the maximum dry unit weight. Furthermore, the coupled effects of QF and CKD resulted in substantial increase in CBR strength of the composite specimens. Overall, mixtures created using the proposed QF and CKD ratios rendered the soil physically and mechanically stable producing results that are compatible with desired values for engineering performance typically required by various user agencies for pavement subgrades. This improvement scheme is not only cost effective, but it is capable of lessening the demand on non renewable resources thereby reducing the footprint of road construction projects in the environment.  相似文献   

8.
Vast expanses of arid, saline soils that occur along the Arabian Gulf seaboard and elsewhere possess a very low density and strength that necessitate improvement before any actual construction takesplace. For large-scale constructions, several field improvement techniques have recently been implemented with various degrees of success. In surficial, small-scale applications, chemical stabilization provides a potential technique to improve the inferior properties of these soils, known locally as sabkha. A literature search indicates that chemical stabilization of soils usingasphalt, lime and cement is usually conducted at lower moisture contents than the optimum. Such moisture contents are also much lower than the natural moisture content of sabkha, and if applied to sabkha in the field, this wouldrequire lowering the moisture content before any stabilization commenced; whichwould be neither feasible nor economical.

In this investigation, an eastern Saudi sabkha soil was chemically stabilized at its natural moisture level, which varies from 16% to 22%. In addition to the characterization of the soil and standard compaction tests, cement and lime sabkha mixtures were prepared at five additions and cured for up to 90 days in plastic wrap. Results indicate that cement-stabilized sabkha gained high strength with time and proved to have a potential use in construction.  相似文献   


9.
Several methods are used to improve mechanical properties of loose soils including rewetting, soil replacement, compaction control, chemical additives, moisture control, thermal methods, and more recently, discrete fibers. All the methods are applied to soft soil to increase load bearing capacity and to improve other properties such as prevention of erosion and dust generation. In the present study, a new method of soil improvement using both discrete polypropylene (PP) fibers and polyvinyl acetate (PVAc) is introduced. The method is applied to improve load bearing capacity of a problematic sandy soil in both dry and saturated states. Based on the results from CBR tests on various specimens, it has been revealed that the combination of PP fiber and PVAc resin with weight percentages of 0.1 and 0.6 %, respectively, had the optimum effect in increasing the CBR value in both saturated and dry soil specimens. It should be mentioned that this method has caused a great increase in the CBR value in the saturated soil.  相似文献   

10.
为研究CaO的赋存形态及含量对钙矾石固化/稳定化重金属铅污染土效果的影响,采用高铝水泥提供AlO2-,纯石膏或磷石膏提供SO42-,高铝水泥、石膏、普通硅酸盐水泥或生石灰提供CaO,制备不同组分固化剂配比的固化土,测试试样强度和孔隙溶液pH值等宏观物理力学指标,通过醋酸缓冲溶液法测试试样的铅溶出量,对比分析不同固化剂固化土的矿物成分与微观结构特征。结果表明,钙矾石固化/稳定化重金属铅污染土效果显著;钙矾石对孔隙的填充作用带来的增强效果不能代替水化硅酸钙胶结土颗粒的胶结作用,普通硅酸盐水泥对试样的强度更有利,但其后期强度增幅不大,而生石灰有利于固化土强度的持续增长;生石灰较普通硅酸盐水泥对钙矾石的形成、稳定和重金属Pb2+的固化/稳定化更有利;磷石膏和纯石膏对试样的pH值、无侧限抗压强度及钙矾石固化/稳定化重金属Pb2+的效果影响较小;固化土体微观结构特征表明,CaO含量对钙矾石生成形态及作用效果影响显著。当CaO含量较低时,早期生成的钙矾石将向单硫型硫铝酸钙转化。研究成果可丰富重金属污染场地原位处理技术,具有重要的理论意义和工程应用价值。  相似文献   

11.
Iron filling and iron filling–cement mixture were used to improve the shear strength characteristics of Irbid clayey soil. For this purpose, five types of Irbid clay soils were obtained and mixed with iron filling and iron filling–cement mixture at different percentages. Two sets of prepared samples were mixed with the admixture. The first set was prepared by mixing the soil samples with iron filling alone at 2.5, 5.0, 7.5, and 10% by dry weight of the soil. The second set was prepared by mixing with iron filling–cement mixture at equal ratio of the same percentages of the first set. An unconfined compression test was performed in this study to measure the shear strength properties of the soils. The test results showed that the increase in the percentages of the iron filling and iron filling–cement mixture up to 10% will result in increasing the maximum dry density of the soil and increase the unconfined compressive strength and the secant of modulus of elasticity of the clayey soil. Also, the addition of iron filling–cement mixture increased the unconfined compressive strength and secant modulus of elasticity of the clayey soil higher than the addition of iron filling alone.  相似文献   

12.
Clay soils, especially clay soils of high or very high swelling potential often present difficulties in construction operations. However, the engineering properties of these clay soils can be enhanced by the addition of cement, thereby producing an improved construction material. Higher strength loss of cement stabilized clay soils after soaking in water is attributed to water absorbing capacity of the clay fraction (e.g. montmorillonite). Kaolinite and illitic soils are largely inert and resist to water penetration. These clays generally develop satisfactory strengths resulting to low strength reduction [Croft, 1967]. The swelling clays such as bentonite soaked in water, due to environmental conditions, result to volume increase causing macro and micro-fracturing in engineering structures. These fractures accelerate water penetration and consequently cause greater strength loss [Sällfors and Öberg-Högsta, 2002]. The water intrusion during soaking creates swelling and disrupts the cement bonds. The development of internal and external force systems in soil mass, due to soaking conditions, establish the initiation of slaking. Internal force system of a stabilized clayey soil consists of the resultant stresses established by the bonding potential of a cementing agent and the swelling potential of a clay fraction. In an effort to study this influence of soaking conditions and final absorbed water content on the stabilization parameters (cement, compaction, curing time), both unconfined compressive strength and slaking (durability) tests were carried out on two different cement stabilized clayey mixtures consisted of active bentonite, kaolin and sand.  相似文献   

13.
Nowadays, improving the strength and deformation properties of soft soils by deep soil mixing is a commonly used technique. There is also an increasing interest in the use of this technique for foundation/structural elements and excavation retaining walls applications. The compressive strength and elastic modulus of the soil mix material are key parameters in the design of these structures. However, there is very limited information available on the impact of exposure to air drying (in the case of retaining wall) on the strength and stiffness of cement stabilized soils. The aim of this study is to investigate the effects of different curing conditions (immersion in water, cycles of wetting and drying, continuous air drying) on the mechanical properties of soils treated with cement in the laboratory. Free–free resonance tests and unconfined compression tests were performed on specimens of silt and sand treated with blastfurnace slag cement. Strength increases more rapidly than stiffness between 7 and 30 days. The strength of stabilized soils submitted to cyclic wetting and drying before the cement hydration process is complete continues to increase. As long as the periods of drying do not induce microcracks, the stiffness of the treated soil specimens also increases with time. However, the stiffness is lower than for the specimens cured in water indicating a disruptive effect of the imposed wetting–drying cycles on stiffness. Continuous exposure to air drying inhibits strength development due to insufficient water for hydration. Significant stiffness decreases were observed on specimens of stabilized silt and are attributed to microcracking.  相似文献   

14.
弱膨胀土工程特性及其路基处治对策   总被引:3,自引:1,他引:2  
针对湖北襄-荆高速公路膨胀土,在室内开展了弱膨胀土的压实特性、胀缩性状、力学特性试验研究,发现压实膨胀土的工程性状受含水率与压实度的影响,胀缩特性是膨胀土的固有特性,其大小取决于起始湿度和密度;击实膨胀土的最佳含水量和最大干密度随击实功变化而变化,压实功愈大,土的最大干密度也愈大,而对应的最佳含水量愈小;膨胀土的CBR值随其含水率的变化规律类似于击实曲线,但CBR峰值含水率大于最佳含水率,为深入认识膨胀土的工程特性提供了帮助。因此,利用弱膨胀土填筑路堤时,不仅要考虑经过击实后的土的性质,而且还要考虑在填方建成、条件改变后土的性能;膨胀土路堤填筑除考虑压实度与CBR值要求外,尚需考虑胀缩总率的影响。最后,推荐了弱膨胀土路堤结构型式,并提出了弱膨胀土用于路堤填筑的控制标准。  相似文献   

15.
With rapid advancements in technology globally, the use of plastics such as polyethylene bags, bottles etc. is also increasing. The disposal of thrown away wastes pose a serious challenge since most of the plastic wastes are non-biodegradable and unfit for incineration as they emit harmful gases. Soil stabilization improves the engineering properties of weak soils by controlled compaction or adding stabilizers like cement, lime etc. but these additives also have become expensive in recent years. This paper presents a detailed study on the behavior and use of waste plastic in soil improvement. Experimental investigation on reinforced plastic soil results showed that, plastic can be used as an effective stabilizer so as to encounter waste disposal problem as well as an economical solution for stabilizing weak soils. Plastic reinforced soil behaves like a fiber reinforced soil. This study involves the investigation of the effect of plastic bottle strips on silty sand for which a series of compaction, direct shear and California bearing ratio (CBR) tests have been performed with varying percentages of plastic strips and also with different aspect ratios in terms of size. The results reflect that there is significant increment in maximum dry unit weight, Shear Strength Parameters and CBR value with plastic reinforcement in soil. The quantum of improvement in the soil properties depends on type of soil, plastic content and size of strip. It is observed from the study that, improvement in engineering properties of silty sand is achieved at 0.4% plastic content with strip size of (15 mm?×?15 mm).  相似文献   

16.
Wei  Xiao  Ku  Taeseo 《Acta Geotechnica》2020,15(4):999-1011

Cement stabilization of soil is a useful method to improve the mechanical behaviors and engineering performance of soils in geotechnical design and construction projects involving weak or liquefiable soils. Among the factors affecting the strength of cement-stabilized soils, water content and water–cement ratio are important but less well understood because of controversial views. This paper presents a systematic laboratory study to investigate the effects of water content and water–cement ratio on the unconfined compressive strength, with good control of the packing density and void ratio of the tested specimens. The effects of void ratio and cement content are also investigated. The strength of the cement-stabilized sand continuously decreased with increasing water–cement ratio within the range of 0.5 to about 3. A general equation is suggested to evaluate the unconfined compressive strength of cement-stabilized soil. Finally, a new conceptual characterization chart is proposed with consideration of the effects of cement content, water content, and water–cement ratio.

  相似文献   

17.
张亭亭  李江山  王平  黄茜  薛强 《岩土力学》2016,37(Z2):279-286
采用磷酸镁水泥(MPC)对铅污染土进行固化/稳定化处理。基于无侧限抗压强度试验和渗透试验,研究了MPC添加量、水土比对固化污染土强度及渗透特性的影响规律。结果表明,固化土的强度随MPC添加量增加而增大,渗透系数减小;水土比对固化土的强度及渗透特性的影响均存在临界值,为0.45。低于临界值时,固化土的强度随着水土比的增加而增加,渗透系数随着水土比的增加而减小。压汞试验(MTP)结果表明,随MPC添加量的增大,固化土孔隙体积减小,水土比不超过临界值时,固化土孔隙体积随着水土比的增大而减小。扫描电镜试验结果表明,随着MPC添加量的增加,土颗粒团聚化越明显,胶结程度加强;水土比不超过临界值时,土颗粒团聚体增多。镁钾磷酸盐晶体(MKP)主要通过减少孔径大于1 ?m的孔隙体积来影响固化土的强度和渗透特性。  相似文献   

18.
Clay soil with low-bearing capacities can present great problems underlying pavement and light structures due to uncertainty associated with their performance. This paper describes a sonic based testing methodology for quality control of a surface stabilized soil. From an engineering aspect, an increase in water content has a number of disadvantageous consequences: cohesion decreases, the soil swells, the alternating dry-out/shrinkage and wetting/swelling effects destroy the rock or a soil structure. Cement is mixed into the soil to increase both the strength and the usability of local soils in constructions purposes. This is to overcome the problems by strengthening the soil underlying the structure or diminishing the leads transmitted from the foundation to the soil. The compressive strength of the stabilized soil is highly dependent on the type of soil, moisture content, cement content, and compaction work, and can therefore vary significantly in the field. The authors performed the quality control by measuring the sonic and tensile strength velocity in the stabilized soil that has been correlated to compressive strength in native materials. The improvement of the soil materials by the addition of cement could make the material suitable as filling materials, foundation and/or a road base construction. The quality control for the stabilized soils was investigated using sonic measurements and strength gain. The test methods were performed to evaluate the degree of improvement achieved through the measurement of compression and shear-wave velocities of the soil under study. Scanning electron microscopy and electron dispersive X-ray analyses were performed on raw and laboratory treated for qualitative understanding the strength minerals formed during stabilization. The sonic test showed a considerable improvement with curing time and percentages of stabilizer. Mineralogical studies indicated the formation of silica and alumina hydrates along with interwoven structure of cement treated clay particles suggesting adequate mixing of the soil and binder owing to the strength of the soil materials.  相似文献   

19.
聚丙烯纤维加固软土的试验研究   总被引:6,自引:0,他引:6  
唐朝生  施斌  蔡奕  高玮  陈峰军 《岩土力学》2007,28(9):1796-1800
为了研究聚丙烯纤维加固软土的效果和机制,改善石灰土和水泥土的脆性破坏形式。在试验中将纤维按质量百分比为0.05 %,0.15 %和0.25 %的掺量分别掺入到素土、石灰土和水泥土中,按不同的配比配制了20组试样,进行了无侧限抗压强度试验。试验结果显示:纤维的加入能在小范围内提高素土的无侧限抗压强度,并且强度值随纤维掺量的增加而增加;而在石灰土和水泥土中只要掺入少量的纤维就能使无侧限抗压强度值得到极大的提高,增加了石灰土和水泥土的抗拉强度,改善了它们的脆性破坏形式,并使其水稳性得到改善。  相似文献   

20.
滨海盐渍土的固化方法及固化土的偏应力-应变   总被引:2,自引:0,他引:2  
王沛  王晓燕  柴寿喜 《岩土力学》2010,31(12):3939-3944
滨海盐渍土可使用水泥、石灰、粉煤灰和高分子材料SH固土剂单独及联合固化,以提高土的强度、抗变形能力和水稳性。为研究各种固化方法固化盐渍土的抗变形能力和偏应力-应变特征,通过三轴UU压缩试验得到盐渍土和6种固化盐渍土的偏应力-应变曲线。曲线显示:水泥+石灰类固化土呈应变软化型、石灰+粉煤灰类固化土呈应变软化型、石灰类固化土呈应变硬化型。掺入SH固土剂,提高了固化土的浸水前后的强度,同时也增强了固化土的水稳性。掺入SH固土剂使固化土达到偏应力峰值所需的应变增加,即抗变形能力增强;0.9%SH固土剂+12%石灰+36%粉煤灰固化土具有适中的强度、良好的弹性变形和水稳性的优点,作为轻质路堤填料使用,还可减少滨海地区软土路基的沉降量,这使其成为滨海盐渍土的6种固化方案中的最适宜方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号