首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption rate constants of Ra and Th were estimated from empirical data from a freshwater lake and its feeding saline springs. We utilized the unique setting of Lake Kinneret (Sea of Galilee, northern Israel) in which most of the Ra and Th nuclides are introduced into the lake by saline springs with high 226Ra activities and a high 224Ra/228Ra ratio of 1.5. The mixing of the Ra enriched saline waters and freshwater in the lake causes the 224Ra/228Ra ratio to drop down to 0.1 in the Kinneret due to preferential adsorption of 228Th. These conditions constitute a “natural experiment” for estimating adsorption rates. We developed a simple mass-balance model for the radionuclides in Lake Kinneret that accurately predicted the Ra isotope ratios and the 226Ra activity in the lake. The model is comprised of simultaneous equations; one for each radionuclide. The equations have one input term: supply of radionuclides from the saline springs; and three output terms: adsorption on particles in the lake, radioactive decay and outflow from the lake. The redundancy in the analytical solutions to the mass balance equations for the relevant nuclides constrained the values of Ra and Th adsorption rate constants to a very narrow range. Our results indicate that the adsorption rate constant for Ra is between 0.005 d−1 and 0.02 d−1. The rate constant for Th is between 0.5 d−1 and 1 d−1, about fifty to a hundred times higher. The estimated desorption rate coefficient for Ra is about 50-100 times larger than its adsorption rate constant. The mass-balance equations show that the residence times of all Ra isotopes (226Ra, 228Ra,223Ra, 224Ra) and of 228Th in the lake are about 95, 92, 14, 6 and 1 d, respectively. These residence times are much shorter than the residence time of water in the lake (about 5.5 y). The steady state activity ratios in Lake Kinneret depend mainly on the adsorption rate constants, decay constants, the outflow rate from the lake and the activity ratios in the saline springs. The activity ratios are independent of the saline springs flow rate.  相似文献   

2.
226Ra, 228Ra and Ba distributions as well as 228Ra/226Ra and 226Ra/Ba ratios were measured in seawater, suspended and sinking particles at the DYFAMED station in the Western Mediterranean Sea at different seasons of year 2003 in order to track the build-up and fate of barite through time. The study of the 228Raex/226Raex ratios (Raex = Ra activities corrected for the lithogenic Ra) of suspended particles suggests that Baex (Baex = Ba concentrations corrected for the lithogenic Ba, mostly barite) formation takes place not only in the upper 500 m of the water column but also deeper (i.e. throughout the mesopelagic layer). Temporal changes in the 228Raex/226Raex ratios of sinking particles collected at 1000 m depth likely reflect changes in the relative proportion of barite originating from the upper water column (with a high 228Ra/226Ra ratio) and formed in the mesopelagic layer (with a low 228Ra/226Ra ratio). 228Raex/226Raex ratios measured in sinking particles collected in the 1000 m-trap in April and May suggest that barite predominantly formed in the upper water column during that period, while barite found outside the phytoplankton bloom period (February and June) appears to form deeper in the water column. Combining ratios of both the suspended and sinking particles provides information on aggregation/disaggregation processes. High 226Raex/Baex ratios were also found in suspended particles collected in the upper 500 m of the water column. Because celestite is expected to be enriched in Ra [Bernstein R. E., Byrne R. H. and Schijf J. (1998) Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Res. II45, 491-505], acantharian skeletons may contribute to these high ratios in shallow waters. The formation of both acantharian skeletons and barite enriched in 226Ra may thus contribute to the decrease in the dissolved 226Ra activity and 226Ra/Ba ratios of surface waters observed between February and June 2003 at the DYFAMED station.  相似文献   

3.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

4.
《Applied Geochemistry》2001,16(1):109-122
The purpose of this study was to elucidate the processes controlling the distribution and behavior of the longer-lived Ra isotopes in continuous Paleozoic carbonate aquifers of parts of Missouri, Kansas, and Oklahoma. Activities of (228Ra) and (226Ra) were analyzed in fresh and saline ground waters, brines, and rocks. The fluids have a wide salinity range (200–250,000 mg l−1 total dissolved solids). The (226Ra) activity ranges from 0.66–7660 dpm kg−1 and correlates with salinity and other alkaline earth element (Ca, Sr, and Ba) concentrations. The range of (228Ra:226Ra) ratios in the fluids (0.06–1.48) is similar to that in the aquifer rocks (0.21–1.53). The relatively low mean fluid (228Ra:226Ra) ratio (0.30) reflects the low Th:U ratio of the predominant carbonate aquifer rock. Radium occurs mostly (≥77%) as Ra2+ species in the fluids. Salinity-dependent sorption–desorption processes (with log K values from 100–104 and negatively correlated with salinity), involving Th-enriched surface coatings on aquifer flow channels, can explain the rapid solid–fluid transfer of Ra isotopes in the system and the correlation of Ra with salinity.  相似文献   

5.
We measured 228Raex/226Raex and 226Raex/Baex ratios in suspended and sinking particles collected at the Oceanic Flux Program (OFP) time-series site in the western Sargasso Sea and compared them to seawater ratios to provide information on the origin and transport of barite (BaSO4) in the water column. The 228Raex/226Raex ratios of the suspended particles down to 2000 m are nearly identical to those of seawater at the same water depth. These ratios are much lower than expected if suspended barite was produced in surface waters and indicate that barite is produced throughout the mesopelagic layer. The 228Raex/226Raex activity ratios of sinking particles collected at 1500 and 3200 m varied mostly between 0.1 and 0.2, which is intermediate between the seawater ratio at these depths (<0.03) and the seawater ratios found in the upper 250 m (0.31-0.42). This suggests that excess Ba (i.e., Baex = Batotal − Balithogenic), considered to be mainly barite, present in the sinking flux is a mixture of crystals formed recently in the upper water column, formed several years earlier in the upper water column, or formed recently in deeper waters. We observe a sizeable temporal variability in the 228Raex/226Raex ratios of sinking particles, which indicates temporal variability in the relative proportion of barite crystals originating from surface (with a high 228Raex/226Raex ratio) and mesopelagic (with a low 228Raex/226Raex ratio) sources. However, we could not discern a clear pattern that would elucidate the factors that control this variability. The 226Ra/Ba ratios measured in seawater are consistent with the value reported from the GEOSECS expeditions (2.3 dpm μmol−1) below 500 m depth, but are significantly lower in the upper 500 m. High 226Raex/Baex ratios and elevated Sr concentrations in suspended particles from the upper water column suggest preferential uptake of 226Ra over Ba during formation of SrSO4 skeletons by acantharians, which must contribute to barite formation in shallow waters. Deeper in the water column the 226Raex/Baex ratios of suspended particles are lower than those of seawater. Since 228Raex/226Raex ratios demonstrate that suspended barite at these depths has been produced recently and in situ, their low 226Raex/Baex ratios indicate preferential uptake of Ba over Ra in barite formed in mesopelagic water.  相似文献   

6.
Radium isotopes were used to determine the crustal residence times of hydrothermal fluids from two geothermal wells (Svartsengi and Reykjanes) from the Reykjanes Peninsula, Iceland. The availability of rock samples from the subsurface (to depths of 2400 m) allowed direct comparison of the radium isotopic characteristics of the fluids with those of the rocks within the high temperature and pressure reaction zone. The 226Ra activity of the Svartsengi fluid was ∼one-fourth of the Reykjanes fluid and the 228Ra/226Ra ratio of the Svartsengi fluid was ∼twice that of Reykjanes. The fluid isotopic characteristics were relatively stable for both sites over the 6 years (2000-2006) of the study. It was determined, using a model that predicts the evolution of the fluid 228Ra/226Ra ratio with time, that both sites had fluid residence times, from the onset of high temperature water-rock reaction, of less than 5 years. Measurement of the short-lived 224Ra and 223Ra allowed estimation of the recoil input parameter used in the model. The derived timescale is consistent with results from similar studies of fluids from submarine systems, and has implications for the use of terrestrial systems in Iceland as an exploited energy resource.  相似文献   

7.
The fate of dissolved material delivered to the coastal ocean depends on its reactivity and the rate at which it is mixed offshore. To measure the rate of exchange of coastal waters, we employ two short-lived radium isotopes,223Ra and224Ra. Along the coast of South Carolina, shore-perpendicular profiles of223Ra and224Ra in surface waters show consistent gradients which may be modeled to yield eddy diffusion coefficients of 350–540 m2s−1. Coupling the exchange rate with offshore concentration gradients yields estimates of offshore fluxes of dissolved materials. For systems in steady state, the offshore fluxes must be balanced by new inputs from rivers, groundwater, sewers or other sources. Two tracers that show promise in evaluating groundwater input are barium and226Ra. These tracers have high relative concentrations in the fluids and low-reactivity in the coastal ocean. Applying the eddy diffusion coefficients to the offshore gradient of226Ra concentration provides an estimate of the offshore flux of226Ra. Measuring the concentrations of226Ra in subsurface fluids provides an estimate of the fluid flux necessary to provide the226Ra. These estimates indicate that the volume of groundwater required to support these fluxes is of the order of 40% of the surface water flow.  相似文献   

8.
The geochemistry of Ba, Ra, Th, and U and the potential of using 226Ra/Ba ratios as an alternative dating method are explored in modern and Holocene marine mollusc shells. Five modern shells of the Antarctic scallop Adamussium colbecki collected from the present day beach and six radiocarbon dated specimens from Holocene beach terraces of the Ross Sea region (Antarctic) between 700 and 6100 calibrated yr BP old have been analysed by mass spectrometry. In clean shells 226Ra concentrations and 226Ra/Ba ratios show a clear decrease with increasing age, suggesting the possibility of 226Ra dating. Limiting factors for such dating are Ba and 226Ra present in surface contaminants, and ingrowth of 226Ra from U present within the shell. Surface contamination is difficult to clean off entirely, but moderate levels of residual contamination can be corrected using 232Th. Sub-samples from the same shell with different proportions of contamination form a mixing line in a 226Ra/Ba-232Th/Ba graph, and the 226Ra/Ba of the pure shell can be derived from the intercept on the 226Ra/Ba axis. Contaminant corrected 226Ra/Ba ratios of late-Holocene 14C-dated samples fall close to that expected from simple 226Ra excess decay from seawater 226Ra/Ba values. 226Ra ingrowth from U incorporated into the shell during the lifetime of the mollusc can be corrected for. However, the unknown timing of post mortem U uptake into the shell makes a correction for 226Ra ingrowth from secondary U difficult to achieve. In the A. colbecki shells, 226Ra ingrowth from such secondary U becomes significant only when ages exceed ∼2500 yr. In younger shells, 226Ra/Ba ratios corrected for surface contamination provide chronological information. If evidence for a constant oceanic relationship between 226Ra and Ba in the ocean can be confirmed for that time scale, the 226Ra/Ba chronometer may enable the reconstruction of variability in sea surface 14C reservoir ages from mollusc shells and allow its use as a paleoceanographic tracer.  相似文献   

9.
Submarine groundwater discharge (SGD) is herein recognized as a significant pathway of material transport from land to the coastal SW Atlantic Ocean and thus, it can be a relevant factor affecting the marine biogeochemical cycles in the region. This paper focuses on the initial measurements of 226Ra, 228Ra and 222Rn made in Patagonia’s coastal zone of Chubut and Santa Cruz provinces (42°S–48°S, Argentina). 226Ra activity ranged from 2.9 to 73.5 dpm 100 L?1, and 228Ra activity ranged from 11.9 to 311.0 dpm 100 L?1 in groundwater wells. The radium activities found in Patagonia’s marine coastal regions and adjacent shelf indicate significant enrichment throughout the coastal waters. Groundwater samples presented the largest 222Rn activity and ranged from 2.66 to 1083 dpm L?1. Conversely, in the coastal marine environment, the 222Rn activity ranged from 1.03 to 6.23 dpm L?1. The Patagonian coastal aquifer showed a larger enrichment in 228Ra than in 226Ra, which is a typical feature for sites where SGD is dominant, probably playing a significant role in the biogeochemistry of these coastal waters.  相似文献   

10.
226Ra and other uranium-series radionuclides have been measured in a suite of marine phosphorite samples from the upwelling area off Peru/Chile by gamma-ray spectrometry and radiochemical techniques. Our results lead to the following conclusions: (1) phosphorite nodules typically show unidirectional growth at rates of 1 to 10 mm/Kyr; (2) very young samples (less than a few thousand years) contain slight excess amounts of 226Ra probably derived from pore fluids; and (3) slow but persistent leakage of 226Ra out of phosphate nodules occurs resulting in systematically lower 226Ra ages compared to 230Th ages for samples older than about twenty thousand years. Radium fluxes from these phosphate nodules appear to be 1 to 3 orders of magnitude less than those calculated for deep-sea sediments and ferromanganese nodules.  相似文献   

11.
This study was conducted to define the geochemical controls on 226Ra during raffinate (pH = 1.2) neutralization to pH 10 at the Key Lake U mill in northern Saskatchewan, Canada. High activities (120–150 Bq/L) of aqueous phase 226Ra are present in raffinate produced during milling of U ore. The solubility control of 226Ra in the SO4-rich, hydrometallurgical raffinate solutions often involves the addition of BaCl2 to form a radium-barite co-precipitate (Ba(Ra)SO4). As such, neutralization experiments were conducted with samples of mill raffinate using Ca(OH)2 or NaOH with and without the addition of BaCl2. Radium-226 activity decreased from 150 to <4 Bq/L for all combinations of neutralizing agents with Ca(OH)2 + BaCl2 being the most effective combination (final activity ∼1.0 Bq/L; ∼99.3% removal). In the absence of BaCl2, Ca(OH)2 more efficiently removed 226Ra than NaOH between pH 4 and 8, due to the co-precipitation of 226Ra with gypsum. Overall, neutralization with the addition of BaCl2 reduced 226Ra activities at lower pH values (by pH 4.5), due to co-precipitation of 226Ra with BaSO4. At varying concentrations of BaCl2, aqueous phase activities of 226Ra converged, but did not attain steady-state values during neutralization and would continue to decrease with time. Sequential extractions indicated that 226Ra in precipitates formed during neutralization of the mill raffinate is dominated by amorphous and crystalline Fe hydroxide phases, consistent with raffinate neutralization experiments that showed that adsorption onto ferrihydrite can remove most 226Ra in the raffinate. Data generated in this study are being used to define the long-term geochemical controls on 226Ra in U mill processes and tailings.  相似文献   

12.
The increasing interest in radioactivity has brought about the need for an assessment of human exposure to radiation. It is, therefore, necessary to examine naturally occurring radioactivity in the environment, especially its occurrence in groundwater. The aim of this work was then to study the levels and behavior of the most significant natural radionuclides, also in order to improve the knowledge of the hydrochemical processes involved in the selected groundwater systems. Natural radioactivity in fifteen Calabrian groundwaters for human use was investigated through high-resolution gamma spectrometry (with a negative-biased Ortec HPGe detector) and liquid scintillation measurements. Particular attention was given on those radionuclides (3H, 238U, 226Ra, and 228Ra), which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The activity concentration of 238U varied from 1 to 51 mBq/L, as a result of the geology of the investigated area and of the oxidizing conditions that favored U dissolution. 226Ra presented a broad range of activity concentrations (0.011–0.14 mBq/L), lower than uranium ones because radium occurs in groundwater under reducing conditions. Some heavy metals (Cd, Pb, Be, Hg, Ag, As, Tl, Sb, Se, and Ni) were also investigated through ICP-MS measurements and compared with the limits set by the Italian Legislation. Metals are released into the environment by both natural and anthropogenic sources; they leach into underground waters, moving along water pathways and eventually depositing in the aquifer.  相似文献   

13.
228Ra, 226Ra, and 222Rn activities were determined on over 150 ground water samples collected from drilled, public water supply wells throughout South Carolina. A wide range of aquifer lithologies were sampled including the crystalline rocks of the Piedmont and sedimentary deposits of the Coastal Plain. A significant linear relationship between log 228Ra and log 226Ra (n = 182, r = 0.83) was indistinguishable between Piedmont and Coastal Plain ground water. Median 228Ra226Ra activity ratios for the Piedmont, 1.2, and Coastal Plain, 1.3, ground water are close to estimated average crustal 232Th238U activity ratios of 1.2 to 1.5 corresponding to Th/U weight ratios of 3.5 to 4.5. A linear correlation was also found between log 222Rn and log 226Ra for Piedmont (n = 68, r = 0.62) and Coastal Plain (n = 89, r = 0.64) ground water. However, the median 222Rn226Ra activity ratio for Piedmont ground water, 6100, was much higher than for Coastal Plain ground water, 230. Higher excess 222Rn activities may be due to greater retention of 226Ra by the chemically active Piedmont aquifers compared to the more inert sand aquifers sampled in the Coastal Plain. The relationship between log 228Ra and log 226Ra was used to predict total Ra (228Ra + 226Ra) distributions in Appalachian and Atlantic and Gulf Coastal Plain ground water. Predictions estimate that 2.4% of Appalachian and 5.3% of Atlantic and Gulf Coastal Plain ground water supplies contain total Ra activities in excess of the 5 pCi/l limit established by the U.S. Environmental Protection Agency. These predictions also indicate that 40–50% of these ground water wells may be overlooked using the presently suggested screening activity of 3.0 pCi/l of 226Ra for 228Ra analysis.  相似文献   

14.
Analyses have been made of many groundwater samples, some of which were collected from the vicinity of uranium deposits and others from unmineralized areas, for dissolved uranium and for the four naturally occurring isotopes of radium: 226Ra (238U decay series, y), 228Ra and 224Ra (232Th decay series, y and 3.8 d) and 223Ra (235U decay series, d). The radium isotopes 226Ra, 224Ra and 223Ra, are measured by alpha-spectrometry after extraction from a water sample soon after collection and 228Ra at a later time by determining the amount of ingrown 212Po.  相似文献   

15.
The recent chemical dynamics of a podzolic forest soil section (from the Strengbach watershed, France) was investigated using U- and Th-series nuclides. Analyses of (238U), (230Th), (226Ra), (232Th), (228Ra) and (228Th) activities in the soil particles, the seepage waters, and the mature leaves of the beech trees growing on this soil were performed by TIMS or gamma spectrometry. The simultaneous analysis of the different soil (sl) compartments allows to demonstrate that a preferential Th leaching over Ra must be assumed to explain the (226Ra/230Th), (228Ra/232Th) and (228Th/228Ra) disequilibria recorded in the soil particles. The overall Ra- and Th- transfer schemes are entirely consistent with the prevailing acido-complexolysis weathering mechanism in podzols. Using a continuous open-system leaching model, the (226Ra/230Th) and (228Ra/232Th) disequilibria measured in the different soil layers enable dating of the contemporary processes occurring in this soil. In this way, we have determined that a preferential Th-leaching from the shallow Ah horizon, due to a strong complexation with organic colloids, began fairly recently (18 years ago at most). The continual increase in pH recorded in precipitations over the last 20 years is assumed to be the cause of this enhanced organic complexation. A lower soil horizon (50-60 cm) is also affected by preferential Th leaching, though lasting over several centuries at least, with a much smaller leaching rate. The migration of Th isotopes through this soil section might hence be used as a tracer for the organic colloids migration and the induced radioactive disequilibria demonstrate to be useful for assessing the colloidal migration kinetics in a forested soil.Ra and Th isotopic ratios also appear to be valuable tracers of some mineral-water-plant interactions occurring in soil. The (228Ra/226Ra) ratio enables discrimination of the Ra flux originating from leaf degradation from that originating from mineral weathering in shallow −10 cm seepage soil waters. It appears that, at least in some cases, the Ra-isotopic ratio measured in forest-soil seepage waters may not be representative of the Ra-isotopic ratio released from mineral weathering, indicating that the different origins of the dissolved 226Ra and 228Ra must be taken into account.  相似文献   

16.
Radioactivity levels in aquatic environments can be assessed through the study of superficial sediments. Anthropogenic activities may alter radioactivity levels leading to the anomalous accumulation of natural radionuclides in coastal areas. In this work, marine sediments from a significant area subjected to severe industrial development were collected in order to measure activity concentrations of 226Ra, 232Th and 40K by gamma spectrometry. Radium equivalent index (Raeq), absorbed gamma dose rate in air (D) and annual effective dose equivalent (H) were also calculated and used as risk assessment tools. Results showed low levels of radioactivity in marine sediments from the Bay of Algeciras, discarding any significant radiological risks. Furthermore, the obtained data set could be used as background levels for future research applications and development of environmental regulatory frameworks.  相似文献   

17.
Two samples of produced-water collected from a storage tank at US Geological Survey research site B, near Skiatook Lake in northeastern Oklahoma, have activity concentrations of dissolved 226Ra and 228Ra that are about 1500 disintegrations/min/L (dpm/L). Produced-water also contains minor amounts of small (5–50 μm) suspended grains of Ra-bearing BaSO4 (barite). Precipitation of radioactive barite scale in the storage tank is probably hindered by low concentrations of dissolved SO4 (2.5 mg/L) in the produced-water. Sediments in a storage pit used to temporarily collect releases of produced-water have marginally elevated concentrations of “excess” Ra (several dpm/g), that are 15–65% above natural background values. Tank and pit waters are chemically oversaturated with barite, and some small (2–20 μm) barite grains observed in the pit sediments could be transferred from the tank or formed in place. Measurements of the concentrations of Ba and excess Ra isotopes in the pit sediments show variations with depth that are consistent with relatively uniform deposition and progressive burial of an insoluble Ra-bearing host (barite?). The short-lived 228Ra isotope (half-life = 5.76 a) shows greater reductions with depth than 226Ra (half-life = 1600 a), that are likely explained by radioactive decay. The 228Ra/226Ra activity ratio of excess Ra in uppermost pit sediments (1.13–1.17) is close to the ratio measured in the samples of produced-water (0.97, 1.14). Declines in Ra activity ratio (excess) with sediment depth can be used to estimate an average rate of burial of 4 cm/a for the Ra-bearing contaminant. Local shallow ground waters contaminated with NaCl from produced-water have low dissolved Ra (<20 dpm/L) and also are oversaturated with barite. Barite is a highly insoluble Ra host that probably limits the environmental mobility of Ra at site B.  相似文献   

18.
A total of 1270 raw-water samples (before treatment) were collected from 15 principal and other major aquifer systems (PAs) used for drinking water in 45 states in all major physiographic provinces of the USA and analyzed for concentrations of the Ra isotopes 224Ra, 226Ra and 228Ra establishing the framework for evaluating Ra occurrence. The US Environmental Protection Agency Maximum Contaminant Level (MCL) of 0.185 Bq/L (5 pCi/L) for combined Ra (226Ra plus 228Ra) for drinking water was exceeded in 4.02% (39 of 971) of samples for which both 226Ra and 228Ra were determined, or in 3.15% (40 of 1266) of the samples in which at least one isotope concentration (226Ra or 228Ra) was determined. The maximum concentration of combined Ra was 0.755 Bq/L (20.4 pCi/L) in water from the North Atlantic Coastal Plain quartzose sand aquifer system. All the exceedences of the MCL for combined Ra occurred in water samples from the following 7 PAs (in order of decreasing relative frequency of occurrence): the Midcontinent and Ozark Plateau Cambro-Ordovician dolomites and sandstones, the North Atlantic Coastal Plain, the Floridan, the crystalline rocks (granitic, metamorphic) of New England, the Mesozoic basins of the Appalachian Piedmont, the Gulf Coastal Plain, and the glacial sands and gravels (highest concentrations in New England).  相似文献   

19.
Water samples from saline seepages in the south-western Yilgarn Block of Western Australia contain high activities of the four naturally-occurring radium isotopes. Activities of up to 310 pCil for 226Ra and 1720 pCil for 228Ra were measured and the 228Ra226Ra ratio averaged 6.1. Activities of the two short-lived radium isotopes were also high. 223Ra activities of up to 94 pCil were found with an average 226Ra223Ra ratio of 3.3, considerably lower than the natural abundance ratio of 21.4. Activities of up to 23 pCil227Ac, the long-lived (t12 = 22 years) grandparent of 223Ra, were also measured. The analysis of surface granite samples, the probable source rocks of the radium, gave ThU activity ratios of around 1.5. The higher 228Ra226Ra ratios of the waters were attributed to readily leached 228Ra in the weathered granites as a result of thorium remaining after weathering. Leach experiments on U-Th ore by NaCl solutions showed that all four radium isotopes were equally leached. Sulphate anions reduced the 226Ra and 228Ra leaching to a greater extent than for 223Ra and 224Ra, suggesting that the latter isotopes were being supported in solution by parent isotopes. In particular this suggested 227Ac was leached into the sulphate solution but this does not fully account for the amount of 227Ac seen in the seepage waters.  相似文献   

20.
In order to determine the geochemical evolution of a freshwater limestone cave system located in central Switzerland (Hell Grottoes at Baar/Zug,) young postglacial tufaceous limestone and travertine precipitates were investigated using the 230Th/234U ingrowth system. Additional analyses of further radionuclides within the 238U decay chain, i.e. 226Ra and 210Pb, showed that the Th/U chronometer started with insignificant inherited 230Th over the entire formation period of the travertine setting (i.e. 230Th(0)=0). A contribution from detrital impurities with 230Th/234U in secular equilibrium could be precisely subtracted by applying isochron dating of cogenetic phases and recently formed travertine. The resulting precise 230Th/234U formation ages were found to be consistent with the geological stratigraphy and were furthermore used to demonstrate the applicability of the next geologically important chronometer in the 238U-decay series, based on decay of excess 226Ra normalized to the initial, i.e.226Raex/226Ra(0). This system is suitable for dating phases younger than 7000 yr when the correction of a detritus component increasingly limits the precision of the 230Th/234U chronometer. Analytical solutions of the coupled 234U/230Th/226Ra radionuclide system predicted that the 226Raex/226Ra(0) chronometer is independent of the actual 230Th activity build up from decay of 234U, if the systems starts with zero inherited 230Th(0). The data set confirmed this hypothesis and showed furthermore that the initially incorporated 226Ra excess must have remained almost uniform in all limestone over a period of at least 7000 yr, i.e. 4–5 half-lives of 226Ra. This is concluded because (i) the 226Raex/226Ra(0) ages agreed well with those derived from 230Th/234U, (ii) all data plot within uncertainty on the 226Raex/226Ra(0) decay curve and (iii) the atomic Ba/Ca ratio was found to be constant in the travertine material independent of the sample ages. Provided that such boundary conditions hold, 226Raex/226Ra(0) should be applicable to materials which are suitable for 230Th/234U dating in sedimentology and oceanography, i.e. travertine, corals, phosphorites, etc., and should strongly support 230Th/234U for samples that have been formed a few thousand years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号