首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The carbon and nitrogen isotopic compositions of seven of the most abundant alkylporphyrins from the Serpiano oil shale (marine, Triassic) were determined. For the C31 and C32 butanoporphyrins, values of delta 13CPDB and delta 15NAIR averaged -24.0% and -3.1%. In contrast, the C31 and C32 methylpropanoporphyrins, DPEP, and a C30 13-nor etioporphyrin had delta 13C and delta 15N values averaging -27.5 and -3.3%, respectively. Carbon and nitrogen isotopic values for kerogen averaged -30.8 and -0.9, whereas those for total extract averaged -31.6, and -4.0%. The butanoporphyrins apparently derive from a biological source different from that giving rise to the other porphyrins, their 13C enrichment not being related to carbon isotopic fractionation accompanying diagenetic reactions. The delta 15N values for all the porphyrins indicate that the depletion of 15N observed in the kerogen is of primary origin. Consistent with the very high abundance of hopanoids and methyl hopanoids in the aliphatic hydrocarbon fraction, it is suggested that cyanobacterial fixation of N2 may have been the main cause of 15N depletion.  相似文献   

2.
Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges,?6.2 ± 0.2% relative to PDB and +0.2 ± 0.6 %. relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (δ13C = around ?24%.) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm, in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). The δ34S values average +0.3 ± 0.5%. with average fractionation factor between sulfate and sulfide of +7.4 ± 1.6%.. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt.  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(11-12):1805-1813
A comparison of two independent techniques was used to assess the homogeneity of CO2 and H2O concentrations in a number of natural basaltic glasses. Variations in carbon concentration and isotopic ratio were determined by comparison of stepped heating data obtained in two different laboratories. Dissolved volatile concentrations were also obtained by stepped heating and Fourier Transform Infrared (FTIR) spectroscopy. Replicate stepped heating analyses of a mid-ocean ridge basaltic glass show that the concentration and 13C/12C of bulk magmatic and dissolved CO2 vary by less than ±10% and ±0.5‰, respectively. A similar degree of correlation is observed for replicate stepped heating analyses of Mariana Trough glasses conducted in two different laboratories. Dissolved CO2 concentrations determined by stepped heating also correlate well with concentrations measured by FTIR spectroscopy. The correspondence of results obtained in these experiments provide an upper limit to the degree of natural variation in concentrations and isotopic ratios of these volatiles in basaltic glasses and suggest that intrinsic, magmatic carbon has a relatively homogeneous distribution in these glasses. Water concentrations determined through extraction by heating and FTIR also show excellent agreement.  相似文献   

4.
An isotopic biogeochemical study of the Green River oil shale   总被引:4,自引:0,他引:4  
Thirty-five different samples from three different sulfur cycles were examined in this stratigraphically oriented study of the Shell 22x-l well (U.S.G.S. C177 core) in the Piceance Basin, Colorado. Carbon isotopic compositions of constituents of Green River bitumens indicate mixing of three main components: products of primary photoautotrophs and their immediate consumers (delta approximately -30% vs PDB), products of methanotrophic bacteria (delta approximately -85%), and products of unknown bacteria (delta approximately -40%). For individual compounds synthesized by primary producers, delta-values ranged from -28 to -32%. 13C contents of individual primary products (beta-carotane, steranes, acyclic isoprenoids, tricyclic triterpenoids) were not closely correlated, suggesting diverse origins for these materials. 13C contents of numerous hopanoids were inversely related to sulfur abundance, indicating that they derived both from methanotrophs and from other bacteria, with abundances of methanotrophs depressed when sulfur was plentiful in the paleoenvironment. gamma-Cerane coeluted with 3 beta(CH3),17 alpha(H),21 beta(H)-hopane, but delta-values could be determined after deconvolution. gamma-Cerane (delta approximately -25%) probably derives from a eukaryotic heterotroph grazing on primary materials, the latter compound (delta approximately -90%) must derive from methanotrophic organisms. 13C contents of n-alkanes in bitumen differed markedly from those of paraffins generated pyrolytically. Isotopic and quantitative relationships suggest that alkanes released by pyrolysis derived from a resistant biopolymer of eukaryotic origin and that this was a dominant constituent of total organic carbon.  相似文献   

5.
H. Holail  R. Tony 《GeoJournal》1995,35(4):481-486
The stable isotopic composition (13C and 18O) and elemental (Sr and Mg) of marine molluscs are presented for Carditacea and Solenacea shells collected off the Mediterranean coast of Egypt. Based on shell microstructures and mineralogy, the bivalve shells are preserved in their original mineralogy and chemistry.The Sr and Mg concentrations of the bivalve shells have mean values of 1960 ppm and 226 ppm respectively. The stable isotopic composition generally show high values of 18O and 13C. The 18O values range from +0.1 to –1.8 PDB and most shells are highly enriched in13C; averaging +2.5 PDB. These elemental and isotopic signatures are analogous to modern marine bivalves from other localities.The oxygen and carbon isotopes, together with the calculated temperatures, suggest that the aragonitic bivalve shells were precipitated in isotopic equilibrium from warm marine waters.  相似文献   

6.
The results of studying Hg in an underwater hydrothermal system in the ocean using the Middle Valley of the Juan de Fuca ridge as an example are presented. A significant part of Hg is accumulated in the basalt fundament (Holes 858F, G), forming anomalously high concentrations (up to 29.30 ppm) in certain parts. The high Hg contents were established in metalliferous sediments (323 ppm) of the sedimentary cover (Hole 858D) and in sulfide deposits (up to 10.30 ppm). In other parts of the section, Hg content is 0.02–0.76 ppm (Holes 858B, D, F), background Hg contents in sediments—0.08–0.28 ppm and in basalts—0.17–0.31 ppm (Holes 855A, C, D).  相似文献   

7.
Fourteen ureilites were analyzed for stable C isotopic composition using stepped combustion. The δ13C values over the temperature range 500 to 1000°C are fairly constant for any particular meteorite although there are differences between samples. The similarity in combustion temperatures of pure diamond (600–1000δC) and pure graphite (600–800°C) makes it difficult to ascertain the relative proportions of either component within each sample. However, the constant δ13C values observed over the range 500 to 1000°C strongly suggests that ureilite diamond and graphite have the same isotopic composition. This would seem to confirm that the diamond in ureilites formed from the graphite during a process, presumably an impact event, which did not fractionate C isotopes.There is a variation in C isotopic composition of graphite/diamond intergrowths among ureilites, which is not continuous—the samples fall into two groups, with δ13C values clustered around ?10%. and ?2%. PDB. These groups are also distinguishable on the basis of the Fe content of their olivines, which may reflect the existence of more than one ureilite parent body. The brecciated ureilite North Haig has a δ13C value of ?6.5%. and it is thus possible that this sample contains components from mixed parent materials.Nitrogen abundance and stable isotope measurements were made on five samples using stepped combustion analysis. Nitrogen concentrations range from 25 to 150 ppm and CN ratios are substantially less than for carbonaceous chondrites. Variation in N isotopic composition is wide and there is evidence of different ratios in diamond/graphite, silicate and metal.  相似文献   

8.
Ultrahigh-temperature (UHT) metamorphism in the Madurai Block of the southern Indian granulite terrain has been verified using the calcite-graphite isotope exchange thermometer. Carbon isotope thermometry has been applied to marbles from a locality near the reported occurrence of sapphirine granulites that have yielded temperature estimates of around 1000 degrees C. The delta(13)C and delta(18)O values of calcite are homogenous, implying equilibration of the isotopes during metamorphism. However, the delta(13)C values of single graphite crystals show variations in the order of 1 per thousand within a hand specimen. Detailed isotopic zonation studies indicate that graphite preserves either the time-integrated crystal growth history or reequilibrium fractionation during its cooling history. The graphite cores preserve higher delta(13)C values than the rims. The fractionation between calcite and graphite cores gives the highest metamorphic temperature of about 1060 degrees C, which matches the petrologically inferred temperature estimates in the high-magnesian pelites. The fractionation between graphite rims and calcite suggests a temperature of around 750 degrees C, which is interpreted to reflect retrograde cooling. This event is also observed in the sapphirine granulites. Calcite-graphite thermometry thus provides a useful tool to define UHT metamorphism in granulite terrains.  相似文献   

9.
Noncarbonate (combustion) and carbonate (acid decomposition) carbon were separately analyzed in 18 granitic rocks from a group of related Tertiary intrusions near Crested Butte, Colorado, and 14 mafic and ultramafic rocks from various localities in the western United States. Among the granites, carbonate carbon ranges from nil to 0.76 per cent with δC13-values from ?5.6 to ? 9.0‰ (vs PDB); noncarbonate carbon varies from 32–360 ppm with δC13-values from ?19.7 to ?26.6‰, The mafic and ultramafic rocks have carbonate carbon contents ranging from 53 ppm to about 2 per cent with δC13-values from + 2.9 to ?10.3‰; noncarbonate carbon varies from 26 to 150 ppm with δC13-values of ?22.2 to ? 27.l‰ For these samples, carbonate carbon ranges from 12.0 to 29.4‰ heavier than coexisting noncarbonate carbon. This consistent difference between δC13 of carbonate and noncarbonate carbon may be an isotopic fractionation effect. Because the specific indigenous form of noncarbonate (combustion) carbon is in doubt, conclusive interpretations regarding isotopic equilibration and fractionation cannot be made.These results have bearing on the assessment of the isotopic composition of mantle carbon and consequently are germane to the question of the origin (source) and history of crustal carbon. If mantle carbon is isotopically similar to noncarbonate (combustion) carbon, i.e. δC13-values from ?19.7 to ? 27.1‰, then a simple mantle degassing source for crustal carbon is improbable. Such a result would indicate an additional source of crustal carbon such as from a primitive atmosphere or extra-terrestrial accretion.  相似文献   

10.
This study reports new geochemical and Sr and Nd isotope data for 11 samples of hynormative late Miocene (~6.5 Ma) basalt, basaltic andesite, and rhyolitic volcanic rocks from Meseta Rio San Juan, located in the states of Hidalgo and Queretaro, Mexico, in the north-central part of the Mexican Volcanic Belt (MVB). The in situ growth-corrected initial isotopic ratios of these rocks are as follows: 87Sr/86Sr 0.703400-0.709431 and 143Nd/144Nd 0.512524-0.512835. For comparison, the isotopic ratios of basaltic rocks from this area show very narrow ranges as follows: 87Sr/86Sr 0.703400-0.703540 and 143Nd/144Nd 0.512794-0.512835. The available geological, geochemical, and isotopic evidence does not support the generation of the basic and intermediate magmas by direct (slab melting), nor by indirect (fluid transport to the mantle) participation of the subducted Cocos plate. The basaltic magmas instead could have been generated by partial melting of the upper mantle. The evolved basaltic andesite magmas could have originated from such basaltic magmas through assimilation coupled with fractional crystallization. Rhyolitic magmas might represent partial melting of different parts of the underlying heterogeneous crust. Their formation and eruption probably was facilitated by extensional tectonics and upwelling of the underlying mantle. The different petrogenetic processes proposed here for basaltic and basaltic andesite magmas on one hand and rhyolitic magmas on the other might explain the bimodal nature of Meseta Rio San Juan volcanism. Finally, predictions by the author about the behavior of Sr and Nd isotopic compositions for subduction-related magmas is confirmed by published data for the Central American Volcanic Arc (CAVA).  相似文献   

11.
We report the results of SIMS isotopic analyses of carbon, nitrogen, oxygen, and silicon made on 849 small (approximately 1 micrometer) individual silicon carbide grains from the Murchison meteorite. The isotopic compositions of the major elements carbon and silicon of most grains (mainstream) are similar to those observed in larger grain studies suggesting an AGB star origin of these grains. In contrast, the trace element nitrogen shows a clear dependency on grain size. 14N/15N ratios increase with decreasing grain size, suggesting different stellar sources for grains of different size. Typically observed 14N/15N ratios in the small grains of this study are approximately 2700, clearly larger than the values expected from model calculations of AGB stars. In addition to the three dredge-up episodes characteristic for the evolution of AGB stars, extra-mixing of CNO-processed matter in low mass AGB stars appears to be a promising possibility in order to explain the high 14N/15N ratios of the small circumstellar SiC grains. A small fraction of grains shows a silicon isotopic signature not observed in larger circumstellar SiC grains from Murchison. Their stellar origin is still uncertain. The minor type A, B, Y, and X grains were found to be present at a level of a percent, which is similar to their abundance in the larger-grain SiC separates from Murchison. Oxygen isotopic compositions are normal within the experimental uncertainties of several 10%, indicating that oxygen of stellar origin is rare or even absent in the SiC grains. We conclude that most of the oxygen is a contaminant which was introduced into the SiC grains after their formation, e.g., during sample processing in the laboratory. We identified a nitride grain, most likely Si3N4 with little carbon, with highly anomalous isotopic compositions (12C/13C = 157 +/- 33, 14N/15N = 18 +/- 1, delta 29 Si = -43 +/- 56%, delta 30 Si = -271 +/- 50%). The isotopic patterns of carbon, nitrogen, and silicon resemble those of the rare SiC X grains suggesting that these two rare constituents of circumstellar matter formed in the same type of stellar source, namely, Type II supernovae.  相似文献   

12.
《Organic Geochemistry》1999,30(8):881-889
The 13C/12C isotopic ratios for coal-derived polycyclic aromatic hydrocarbons (PAHs) from a number of processes encompassing low and high temperature carbonisation, gasification and combustion have been determined using gas chromatography–isotope ratio mass spectrometry (δ13C GC–IRMS). The results, in conjunction with those for PAHs released under controlled laboratory pyrolysis conditions, indicate that the primary control on the isotopic values of coal-derived PAHs is likely to be the extent of ring growth required to form PAHs during processing. Thus, for relatively mild conversion processes such as low temperature carbonisation where the major aromatics are alkyl substituted 2–3 ring PAHs, the isotopic signatures are similar to those of the parent coals (−24 to −25‰ for UK bituminous coals). However, the δ13C values for the PAHs become lighter in going to high temperature carbonisation (−25 to −27‰), gasification (−27 to −29‰ for old Town gas plants in the UK) and combustion (−29 to −31‰) as the extent of ring condensation increases and confirming that the PAHs are not released as primary volatiles. To demonstrate the potential of applying these differences to source apportion environmental PAHs where major inputs from coals can be expected, soil and vegetation samples taken close to a low temperature carbonisation plant (Bolsover, North Derbyshire) have been analysed. In addition to low temperature coal tar, significant inputs of PAHs from transport fuels, high temperature carbonisation and possibly combustion (coal/biomass) have been inferred from the isotopic ratios, taken in conjunction with the differences in alkyl substitution patterns.  相似文献   

13.
The Quesnel River gold deposit (1.2 million tonnes grading 5.22 g/t Au in three separate zones) occurs within Takla Group volcanic rocks of Upper Triassic age proximal to an alkalic stock. The deposit occurs in amphibole-augite phyric, fragmental, basaltic rocks. Alteration has produced an assemblage of epidote-chloritetremolite-calcite-quartz with lesser pyrite, chalcopyrite, pyrrhotite, sphalerite, marcasite, galena, arsenopyrite and gold.The West Zone comprises a tabular, conformable sulfide body underlain by bedded, variably altered fragmental basaltic rocks and overlain by siltstone and argillite. In the Main Zone, highest gold grades occur adjacent to a sharp discordant alteration front with barren, strongly carbonatized, pyritic basaltic lapilli-tuff. It is overlain by siltstone and argillite and bounded to the east and a depth by a west dipping reverse fault. To the west the auriferous, propylitically altered, rocks grade laterally into lower grade and barren basaltic rocks.Oxygen(18O = + 9 to + 15) and carbon (13O= -14 to –7) isotopic signatures of calcite from carbonate-altered and propylitically altered rocks are similar. However, sulfur isotopic values for pyrite are different, with gold-associated pyrite (34S = –7 to –3) distinct from pyrite in carbonate altered rocks with (34S = + 8 to + 13).The carbonization occurred before complete induration of the basaltic fragmental rocks, whereas propylitization and gold plus sulfide precipitation is clearly epigenetic.  相似文献   

14.
Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions ('13C: peridotitic -5.4 to -2.2‰; eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side ('13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (̿,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards isotopic heavier compositions suggests a common carbon source, which may have inherited an isotopic heavy composition from a component consisting of subducted carbonates.  相似文献   

15.
祁连山冻土区天然气水合物分解气碳氢同位素组成特征   总被引:4,自引:0,他引:4  
开展祁连山冻土区天然气水合物气体同位素研究,是解决其气体成因、来源等科学问题的一个重要手段。本研究采集祁连山南麓多年冻土区水合物科学钻探DK2和DK3孔共8个含水合物的岩芯样品,采用真空顶空法收集样品中水合物的分解气,分别用气相色谱(GC)、气相色谱同位素比值质谱(GC-IRMS)测定其气体成分和同位素组成,测试结果表明:祁连山冻土区天然气水合物样品的气体碳氢同位素变化较大,甲烷、乙烷和丙烷的碳同位素(δ13C)变化范围分别为-52.6‰~-48.1‰、-38.6‰~-30.7‰和-34.7‰~-21.2‰,而二氧化碳的碳同位素(δ13C)最低为-27.9‰,最高为16.7‰;甲烷、乙烷和丙烷的氢同位素(δD)变化范围分别为-285‰~-227‰、-276‰~-236‰和-247‰~-198‰。通过对这些碳氢同位素进行综合研究,包括气体分子组成与同位素的关系分析、甲烷的碳氢同位素之间的关系判断等,结果表明研究区天然气水合物的气体主要来源于热解气,而且是在淡水环境中形成的有机成因气。  相似文献   

16.
本研究设计并制造了一套可在真空条件下粉碎页岩样品并释放其中残留气的装置,该装置的粉碎系统与富集模块和气相色谱联用后,可实现残留气的有机、无机气体化学成分定量分析;同时,封存在玻璃管内的另一部分残留气可进一步开展稳定碳同位素分析,从而获得页岩残留气完整的化学成分和碳同位素组成特征。利用混合标准气体标定该装置,烃类和无机气体浓度与气相色谱响应相关系数达0.999,表明仪器状态稳定,残留气定量数据准确可信。使用不同露头页岩样品(贵州习水县下志留统龙马溪组、南京幕府山下寒武统牛蹄塘组和延安上三叠统延长组)检测该装置,页岩残留气量和碳同位素测试结果平行性良好,表明该装置系统可用于分析页岩残留气。对川南钻井龙马溪组样品残留气的测试结果表明:龙马溪组页岩残留气化学成分主要为CO2和N2等无机气体,烃类组分以CH4为主,C2H6及更高碳数烃类含量极少;其甲烷碳同位素值为-38.1‰~-33.9‰,均值为-35.8‰,该甲烷碳同位素值与已发表的同地区页岩生产气非常接近,表明了二者的同源性,川南页岩气田中的页岩气来源于龙马溪组,符合页岩气的严格定义。此外,本研究还对宜昌地区浅钻五峰组和龙马溪组页岩开展了残留气分析,结果表明:残留烃气量与总有机碳质量分数、碳酸盐岩质量分数成呈弱正相关关系,与DFT(密度泛函理论)比表面积和BJH(Barrett-Joyner-Halenda)孔体积呈负相关关系,分析认为残留气并不是简单地以吸附或游离形式存在,而是封存于封闭孔中的极少量烃类和无机气体。  相似文献   

17.
The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with those of total organic carbon. A resistant aliphatic biomacromolecule produced by microalgae is, therefore, probably an important component of the kerogen. These variations reflect changes in the depositional environment and early diagenetic transformations. Changes in the concentrations of S-bound lipids induced by variations in conditions favourable for sulphurization were discriminated from those related to variations in primary producer assemblages. The water column of the lagoonal basin was stratified and photic zone anoxia occurred during the early and middle stages of marl deposition. During the last stage of the marl deposition the stratification collapsed due to a significant shallowing of the water column. Contributions from anaerobic photoautotrophs were apparently associated with variations in depth of the chemocline.  相似文献   

18.
Controls on the carbon isotopic signatures of methanotroph biomarkers have been further explored using cultured organisms. Growth under conditions which select for the membrane-bound particulate form of the methane monooxygenase enzyme (pMMO) leads to a significantly higher isotopic fractionation than does growth based on the soluble isozyme in both RuMP and serine pathway methanotrophs; in an RuMP type the delta delta 13Cbiomass equaled -23.9% for pMMO and -12.6% for sMMO. The distribution of biomarker lipids does not appear to be significantly affected by the dominance of one or the other MMO type and their isotopic compositions generally track those of the parent biomass. The 13C fractionation behaviour of serine pathway methanotrophs is very complex, reflecting the assimilation of both methane and carbon dioxide and concomitant dissimilation of methane-derived carbon. A limitation in CH4 availability leads to the production of biomass which is 13C-enriched with respect to both carbon substrates and this occurs irrespective of MMO type. This startling result indicates that there must be an additional fractionation step downstream from the MMO reaction which leads to incorporation of 13C-enriched carbon at the expense of dissimilation of 13C-depleted CO2. In these organisms, polyisoprenoid lipids are 13C-enriched compared to polymethylenic lipid which is the reverse of that found in the RuMP types. Serine cycle hopanoids, for example, can vary anywhere from 12% depleted to 10% enriched with respect to the CH4 substrate depending on its concentration. Decrease in growth temperature caused an overall increase in isotopic fractionation. In the total biomass, this effect tended to be masked by physiological factors associated with the type of organism and variation in the bulk composition. The effect was, however, clearly evident when monitoring the 13C signature of total lipid and individual biomarkers. Our results demonstrate that extreme carbon isotopic depletion in field samples and fossil biomarker lipids can be indicative of methanotrophy but the converse is not always true. For example, the hopanoids of a serine cycle methanotroph may be isotopically enriched by more than 10% compared to the substrate methane when the latter is limiting. In other words, hopanoids from some methanotrophs such as M. trichosporium would be indistinguishable from those of cyanobacteria or heterotrophic bacteria on the basis of either chemical structure or carbon isotopic signature.  相似文献   

19.
Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ13C of organic carbon was ~ ?12%., whereas at 900 ppm total inorganic C, the δ13C of similar species was ~ ?25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ13C values were ~ ?18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ13C values (to ?30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ13C of the original organic matter.The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to ?74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of the Precambrian can be inferred.  相似文献   

20.
Dickens GR  Castillo MM  Walker JC 《Geology》1997,25(3):259-262
Carbonate and organic matter deposited during the latest Paleocene thermal maximum is characterized by a remarkable -2.5% excursion in delta 13C that occurred over approximately 10(4) yr and returned to near initial values in an exponential pattern over approximately 2 x 10(5) yr. It has been hypothesized that this excursion signifies transfer of 1.4 to 2.8 x 10(18) g of CH4 from oceanic hydrates to the combined ocean-atmosphere inorganic carbon reservoir. A scenario with 1.12 x 10(18) g of CH4 is numerically simulated here within the framework of the present-day global carbon cycle to test the plausibility of the hypothesis. We find that (1) the delta 13C of the deep ocean, shallow ocean, and atmosphere decreases by -2.3% over 10(4) yr and returns to initial values in an exponential pattern over approximately 2 x 10(5) yr; (2) the depth of the lysocline shoals by up to 400 m over 10(4) yr, and this rise is most pronounced in one ocean region; and (3) global surface temperature increases by approximately 2 degrees C over 10(4) yr and returns to initial values over approximately 2 x 10(6) yr. The first effect is quantitatively consistent with the geologic record; the latter two effects are qualitatively consistent with observations. Thus, significant CH4 release from oceanic hydrates is a plausible explanation for observed carbon cycle perturbations during the thermal maximum. This conclusion is of broad interest because the flux of CH4 invoked during the maximum is of similar magnitude to that released to the atmosphere from present-day anthropogenic CH4 sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号