首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time-series sediment trap was deployed from December 1994 to February 2002 at the mouth of Tokyo Bay (35°03′ N, 139°40′ E; water depth, 850 m). Sinking particles were obtained with a time interval of one week at a depth of approximately 100 m above the sea floor. Observed total mass fluxes varied from 3.3 to 226.7 g/m2/day with an average of 28.0 g/m2/day. Concentrations of rare earth elements, Al, Ca and Si in particulate materials were measured. The combustible fraction at 450°C is assumed to be equivalent to the organic matter content. Contents of biogenic materials, namely organic matter, opal and calcium carbonate, were about 30% and the content of lithogenic material was about 70%. Using La/Yb ratios of particles from the sediment trap and Tama-gawa River and surface sediment of Tokyo Bay, it was estimated that about 50% of the lithogenic particles collected in the sediment trap at the mouth of Tokyo Bay originated from resuspended surface sediment in Tokyo Bay. An increasing trend of Opal/CaCO3 ratio in the sinking particles was found in the spring season. It is suggested that the relative increase of diatoms is due to the decreasing dissolved inorganic nitrogen input into Tokyo Bay.  相似文献   

2.
A new mixed layer multi-nutrient ecosystem model, incorporating diatoms, non-diatoms and zooplankton, is described that models the role of iron in marine biogeochemical cycles. The internal cell biochemistry of the phytoplankton is modelled using the mechanistic model of Flynn [2001. A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. Journal of Plankton Research 23, 977–997] in which the internal cell concentrations of chlorophyll, nitrogen, silica, and iron are all dynamic variables that respond to external nutrient concentrations and light levels. Iron stress in phytoplankton feeds back into chlorophyll synthesis and changes in photosynthetic unit (PSU) size, thereby reducing their growth rate. Because diatom silicon metabolism is inextricably linked with cell division, diatom population density (cell m−3) is modelled as well as C biomass. An optimisation technique was used to fit the model to three time-series datasets at Biotrans (47°N, 20°W) and Kerfix (50°40′S, 68°25′E) and the observations for the Southern Ocean Iron-Release Experiment (SOIREE) iron-enrichment experiment (61°S, 140°E). The model gives realistic simulations of the annual cycles of nutrients, phytoplankton, and primary production at Biotrans and Kerfix and can also accurately simulate an iron fertilisation experiment. Specifically, the model predicts the high values of diatom Si:N and Si:C ratios observed in areas where iron is a limiting factor on algal growth. In addition, the model results at Kerfix confirm previous suggestions that underwater light levels have a more limiting effect on phytoplankton growth than iron supply. The model is also used to calculate C budgets and C and Si export from the mixed layer. The implications of these results for developing biogeochemical models incorporating the role of iron are discussed.  相似文献   

3.
The spring diatom bloom characterizes the plankton and nutrient dynamics in the Oyashio region, the westernmost part of the subarctic Pacific. Previous studies have shown that NO3 was not depleted during the spring bloom, and an increase in the consumption ratio of Si(OH)4 to NO3 (ΔSi(OH)4:ΔNO3) was observed as the spring bloom progressed. The increase in ΔSi(OH)4:ΔNO3 has been suggested to be caused by growth stresses of diatoms, e.g. light limitation by self-shading. In the present study, incubation experiments of sea-surface water from the Oyashio region under saturated irradiance showed that NO3 was depleted first and ΔSi(OH)4:ΔNO3 was more or less constant until the NO3 depletion occurred. The increase in ΔSi(OH)4:ΔNO3 was observed after the NO3 depletion had occurred in contrast with the field observation. This result of the increase in ΔSi(OH)4:ΔNO3 under saturated irradiance after NO3 depletion suggests that the in situ increase in ΔSi(OH)4:ΔNO3 before the NO3 depletion might be caused by light limitation for diatoms. Responses to a reduction in irradiance were examined using diatom species isolated from the Oyashio region. Variable responses to a reduced irradiance were observed for cell specific C, N, Si and chlorophyll a (Chl) contents. However, the examined diatom species showed similar tendencies for increases in Si:C and Si:N and decreases in C:Chl ratios with the reduction in irradiance. We conclude that light limitation changes the uptake ratio of nutrients and the elemental composition of diatoms and that light limitation is one of the factors influencing the physiology of diatoms and nutrient dynamics in the Oyashio region during the spring bloom.  相似文献   

4.
We investigated amino acids and pigments in particles settling through the water column of the Southern Ocean and showed that spatial and temporal differences in phytoplankton source and consumer population influence sinking particle composition. Sediment traps were deployed along 170°W from November 1996 to March 1998 as part of the United States Joint Global Ocean Flux Study (US JGOFS) Antarctic Environment Southern Ocean Process Study (AESOPS) program. Peak fluxes of amino acids and pigments occurred during austral spring and summer (November–April) and were highest in the Antarctic Circumpolar Current (ACC). Compositional changes in pigments and total hydrolyzed amino acids demonstrate how the source of sinking particles varies with latitude and suggest that sinking material was most degraded in relatively diatom-depleted regions and toward the end of the high-flux period (February–March). At the Subantarctic Front, high proportions of pheophytin and β-alanine illustrate the important role of microbes in degradation. Further south at the Antarctic Polar Front, glycine, pyropheophorbide, and pheophorbide enrichments reflected a greater contribution of diatoms and greater processing by zooplankton grazers. Even further south in the ACC, enrichments of the diatom pigment fucoxanthin, diatom cell wall indicators glycine and serine, and diatom frustule-bound amino acids suggested the settling of empty frustules and aggregates. Despite being protected by the mineral, diatom-bound amino acids were not preferentially preserved between shallow and deep traps, possibly because of silica dissolution and a relatively small amount of organic carbon remineralization. Our results show that organic matter at diatom-rich stations is removed by mechanisms that do not result in the appearance of organic matter degradation indicators. Recent observations that calcium carbonate has a higher carrying capacity for sinking organic matter than silica may be related to diatom silicification, physiological status and decomposition pathway.  相似文献   

5.
Temporal variations of sinking particle flux, together with their organic chemical properties, were monitored in the deep basin of Sagami Bay, Japan, using sediment traps with very high time resolutions from March 1997 to August 1998. At a height of 350 m above the bottom (about 1200 m water depth), the averaged total mass flux was more than 1000 mg/m2/day, which is about 10 times higher than those obtained for open ocean regions near Sagami Bay. While large amounts of phytodetritus, derived from phytoplankton blooms in the surface water, were transported downward in spring, the following extraordinary patterns in the temporal variability of sinking particle flux were also observed: (1) A sustained large flux of sinking particles during low productive periods from summer to winter in 1997. (2) An episodic increase of sinking particle flux in June 1998. (3) A difference in the temporal variability of sinking particles between the spring bloom periods of 1997 and 1998. The content of total organic carbon (TOC) and the stable carbon isotopic ratio (δ13C) of TOC demonstrated that the large fluxes observed in (1) and (2) could be attributed to the resuspension of phytodetritus deposited on the sea floor during the spring bloom period, and the abrupt erosion of surface sediment on the continental slope, respectively. The concentration of suspended particles in the deep water column affect the apparent flux of sinking particles. At the same time, sinking particles exported from surface waters during the spring bloom both decrease and increase suspended particle concentration through scavenging and rebound processes, respectively. Finally, the apparent difference in sinking particle flux between 1997 and 1998, (3), could be explained by differences in the extent of the scavenging process, which depend on the flux and quality of exported particles from the surface waters.  相似文献   

6.
浮游植物群落结构的时空变化对生物地球化学循环、全球气候及渔业资源具有重要的影响。本文采用ROMS-CoSiNE高分辨率数值模拟结果,分析了渤海浮游植物生物量和群落结构的时空分布特征,讨论了浮游植物群落结构时空差异的主要影响因素。结果表明,渤海表层叶绿素浓度和甲硅藻比在冬季最低、夏季最高。叶绿素浓度呈条带状分布,甲硅藻比呈斑块状分布。冬季、春季和秋季浮游植物群落结构均以硅藻占绝对优势,夏季以硅藻和甲藻共同占优。不同因素对浮游植物群落结构的影响具有时空差异性。在辽东湾、渤海湾、莱州湾和渤海中部,各个季节浮游植物群落结构差异分别受磷酸盐、氮磷比、硅氮比、溶解无机氮的影响最大。在冬季、夏季和秋季,各个区域浮游植物群落结构差异均受溶解无机氮的影响最大,在春季则受硅氮比的影响最大。总体上,营养盐浓度及结构是浮游植物群落结构时空差异的主要影响因子。  相似文献   

7.
The concentration and composition of nutrients, such as N, P, and Si, respond to biogeochemical processes and in turn, impact the phytoplanktons’ community structure and primary production. In this study, historical data was systematically analyzed to identify long-term variations in nutrient trends, red tide frequency, phytoplankton community abundance, and dominant species succession in the southern Yellow Sea(SYS). Results showed that N/P concentration ratios dramatically increased as a funct...  相似文献   

8.
Nitrate loading to coastal waters has increased over recent decades while silicon loading has remained relatively constant or decreased. As the N:Si ratio in coastal waters shifts due to these anthropogenic influences, silicate limitation of diatom biomass may become a feature of the biogeochemistry in coastal waters especially in regions of reduced exchange. Two sets of nutrient enrichment mesocosm experiments were conducted in successive years using a natural planktonic assemblage obtained from the Trondheimsfjord, Norway. The inorganic nutrient concentrations at the start of the experiments were manipulated to give a variety of N:Si concentrations at ratios representative of current and possible future values, should N loading continue. In June 1999 experiments were conducted with a gradient of inorganic N:Si ratios (1:2, 1:1, 2:1, 4:1) to investigate the influence of low and high N:Si ratio conditions and to determine the conditions that would generate Si limitation of diatom growth. In June 2000, based on 1999 data, highly replicated experiments were conducted at N:Si ratios of 1:1 and 4:1 which were expected to result in N and Si limitation of diatom growth, respectively; statistical differences in cellular composition were recorded. N limitation of diatom biomass increase was observed under the three lowest N:Si ratios: particulate carbon (C) accumulation continued to occur following N exhaustion resulting in an increase in the organic C:N ratio. Silicate limitation of diatom biomass increase only occurred at the highest N:Si ratio of 4:1. Silicate exhaustion was followed by continued nitrate uptake for several days, at a slower rate than previously. The resulting increase in organic N was accompanied by an increase in organic C such that the C:N ratio of the organic material at the highest N:Si ratio failed to increase to the extent observed under the N limited conditions. Statistically significant differences in chlorophyll-a yield per unit nitrate, C:chlorophyll-a ratios, C:N ratio and diatom cell yield per unit nitrate or Si were observed in Si compared to N limited conditions. All mesocosms became dominated numerically and in terms of biomass by the diatom Skeletonema costatum. The potential implications of changing N and Si regimes in coastal waters are discussed.  相似文献   

9.
Redfield stoichiometry has proved a robust paradigm for the understanding of biological production and export in the ocean on a long-term and a large-scale basis. However, deviations of carbon and nitrogen uptake ratios from the Redfield ratio have been reported. A comprehensive data set including all carbon and nitrogen pools relevant to biological production in the surface ocean (DIC, DIN, DOC, DON, POC, PON) was used to calculate seasonal new production based on carbon and nitrogen uptake in summer along 20°W in the northeast Atlantic Ocean. The 20°W transect between 30 and 60°N covers different trophic states and seasonal stages of the productive surface layer, including early bloom, bloom, post-bloom and non-bloom situations. The spatial pattern has elements of a seasonal progression. We also calculated exported production, i.e., that part of seasonal new production not accumulated in particulate and dissolved pools, again separately for carbon and nitrogen. The pairs of estimates of `seasonal new production’ and `exported production’ allowed us to calculate the C : N ratios of these quantities. While suspended particulate matter in the mixed layer largely conforms to Redfield stoichiometry, marked deviations were observed in carbon and nitrogen uptake and export with progressing season or nutrient depletion. The spring system was characterized by nitrogen overconsumption and the oligotrophic summer system by a marked carbon overconsumption. The C : N ratios of seasonal new as well as exported production increase from early bloom values of 5–6 to values of 10–16 in the post-bloom/oligotrophic system. The summertime accumulation of nitrogen-poor dissolved organic matter can explain only part of this shift.  相似文献   

10.
A one-dimensional ecosystem model has been used to investigate the processes relevant to the spring diatom bloom which play important roles in the biogeochemical cycle in the western subarctic Pacific. The model represents the plankton dynamics and the nutrient cycles in the spring diatom bloom; its results show the importance of dilution by deep mixing in winter. It is supposed that the vertically integrated biomass of phytoplankton decreases in the winter due to the decrease of photosynthesis, because the deep mixing transports phytoplankton to a layer with a low light level. However, the observed integrated diatom biomass increases as the mixed layer deepens. This is because the decrease of concentration due to dilution by mixing causes the diatom grazed pressure to be less significant than diatom photosynthesis. In other words, the effect of dilution on the grazed rate is more significant than the effect on the photosynthesis rate because the grazed rate depends on the concentrations of both diatom and grazer, whereas the photosynthesis rate depends only diatom concentration. The average specific diatom grazed rate, defined as grazed rate divided by diatom biomass, decreases by 35% associated with the deepening, while the average specific photosynthesis rate of diatom decreases by 11%. As a result, the average specific net diatom growth rate during the deep mixing is about 70% of its maximum during the spring diatom bloom. The deep mixing significantly affects the amplitude of the spring diatom bloom not only by the supply of nutrients but also by the dilution which drastically decreases the grazed pressure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A one-dimensional, steady-state model has been developed to understand the factors controlling vertical distributions of nutrients such as nitrate and phosphate in the western North Pacific water columns. The model includes simple physics and some biogeochemical processes. Nutrients are supplied by upwelling of nutrient-rich deep waters with a constant upwelling velocity and nutrient regeneration due to decomposition of sinking particulate matter; the latter is expressed by an exponential-type export flux. Nutrients are consumed in the water column due to uptake by marine organisms, represented by a first-order substrate kinetics. The consumption rate constant is given as an exponential function of depth. The model has been applied to a data set of WOCE (World Ocean Circulation Experiment) P9 one-time measurements observed in the western North Pacific. The calculated curves fit well to observed vertical nutrient profiles from 100 m depth to over 2,500 m depth at 35 stations from 19°N to 33°30′ N along 137°E with correlation factors of greater than 0.998. A modified model, including a correction term representing a depth-dependent upwelling velocity, can reproduce observed vertical nutrient profiles at 32 stations from 5°N to 18°30′ N along 137°E with correlation factors greater than 0.993. The results support the hypothesis that most of the vertical nutrient profiles in the western North Pacific are controlled by particle export flux, consumption rate, remineralization rate and upwelling velocity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Phytoplankton productivity and community structure in marginal seas have been altered significantly during the past three decades, but it is still a challenge to distinguish the forcing mechanisms between climate change and anthropogenic activities. High time-resolution biomarker records of two 210Pb-dated sediment cores(#34: 28.5°N, 122.272°E; CJ12-1269: 28.861 9°N, 122.515 3°E) from the Min-Zhe coastal mud area were compared to reveal changes of phytoplankton productivity and community structure over the past 100 years. Phytoplankton productivity started to increase gradually from the 1970 s and increased rapidly after the late 1990 s at Site #34; and it started to increase gradually from the middle 1960 s and increased rapidly after the late 1980 s at Site CJ12-1269. Productivity of Core CJ12-1269 was higher than that of Core #34. Phytoplankton community structure variations displayed opposite patterns in the two cores. The decreasing D/B(dinosterol/brassicasterol) ratio of Core #34 since the 1960 s revealed increased diatom contribution to total productivity. In contrast, the increasing D/B ratio of Core CJ12-1269 since the 1950 s indicated increased dinoflagellate contribution to total productivity. Both the productivity increase and the increased dinoflagellate contribution in Core CJ12-1269 since the 1950–1960s were mainly caused by anthropogenic activities, as the location was closer to the Changjiang River Estuary with higher nutrient concentration and decreasing Si/N ratios. However, increased diatom contribution in Core #34 is proposed to be caused by increased coastal upwelling, with higher nutrient concentration and higher Si/N ratios.  相似文献   

13.
Large amorphous particles (Nuta) observed in coastal areas after phytoplankton blooms and red tide outbreaks were collected by Nuta traps. These particles are always thickly attached to mooring ropes and/or fishing nets. From the decomposition experiments of Nuta and the sinking particles, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) regenerations were active in Nuta, but were not active in sinking particles. In Nuta, regeneration abundances during 10 days were 567 g-N/mg of initial particulate organic nitrogen (PON), and 583 -P/mg of initial particulate phosphorus (PP), respectively. Thus DIP was more regenerated from Nuta than DIN. Ten days integral regeneration abundances of DIN and DIP from Nuta were estimated to be 36% and 79% of in situ DIN and DIP standing stocks, respectively. Nuta contributes an important role of nutrient regeneration particularly DIN, in coastal water. Carbon and nitrogen stable isotope ratios of suspended particles, sinking particles and Nuta indicated that these three different type of particles were almost the same origin, and thus Nuta in the coastal water should be made from phytoplankton debris.  相似文献   

14.
Abstract. The nutrient cycling of Epidavros, a deep basin in the Saronikos Gulf, was studied in relation to various environmental factors during 1973–1976 at a station characterized by stagnant conditions. The regeneration of nutrients was related to the consumption of oxygen, and a seasonal nutrient cycle occurred with low nutrient concentrations in the spring and summer, followed by high nutrient levels in autumn and winter. In addition high values of nitrate and silicate were observed in the deeper waters, which tended to be anoxic, although the water masses were renewed during spring 1974. The distribution pattern of nutrients together with nutrient ratios were compared with previous studies of the same and neighbouring areas as well as of other isolated basins. A stoichiometric model indicates that plankton organisms in the Epidavros basin have approximate atomic ratios for C: N: P of 150: 14:1, while the ratio of change for nitrogen and phosphorus in the water is only 8.8:1 by atoms. This is probably because of the slow rate of regeneration of nitrogenous material and/or assimilation and regeneration in organic forms. The water/plankton relation in the Epidavros basin appears to be very similar to that in the Baltic Sea.  相似文献   

15.
《Oceanologica Acta》1998,21(6):887-906
This paper presents an ecological modelling of the Bay of Seine (Eastern Channel) over the last twenty years, chosen as a typical case of eutrophication in a river plume. In the physical sub-model, the Bay is divided into 42 boxes and water fluxes between them are calculated automatically using Ifremer's “Elise” software. A two-layer, vertical thermohaline model is then linked with the horizontal circulation scheme in order to take vertical stratification into account. The biological submodel deals with two chemical elements, nitrogen and silicon, and splits phytoplankton into diatoms and flagellates. Results from this ecological model point out the spatial concordance of highest phytoplanktonic concentrations with the river plume spreading in the bay. Contrary to diatoms, flagellate production appears to be mainly confined to the eastern bay, due to the vertical haline stratification in front of the river mouth. As far as the whole bay is concerned, the interannual fluctuations of diatom production are related to the level of spring insolation, whereas silicon inputs regulate diatom production in the river plume. The flagellate summer production in the plume is enhanced by high water temperature and high N/Si ratios, which appear during dry years with low discharge regimes. Finally, interannual increase of flagellate production could be related to gradual increase of nitrogen loadings, contrasting with silicon loadings, which remained stable for twenty years.  相似文献   

16.
Five drogue studies on phytoplankton bloom dynamics in nutrient-rich newly upwelled water in the southern Benguela provided an opportunity to investigate the applicability of Redfield ratios to coastal upwelling regions. Mean atomic ratios of nutrient utilization and oxygen production (ΔP:ΔN:ΔSi:ΔO), as estimated from regression analyses (1:15,9:11,6:?283) and elemental changes along the drogue tracks (1:15,7:13,8:?206), were roughly similar to the equivalent Redfield ratios (1:16:15:?276). This implies that phytoplankton in upwelling areas also take up (or produce) these elements in proportions similar to those in which they occur in the cells themselves. As the upwelled water ages, changes in the ratios of N, Si and P imply that nitrate was used up fastest and is thus most likely to limit phytoplankton productivity in the southern Benguela region. However, regression analyses, calculations of times of nutrient depletion and published information on relative rates of nutrient regeneration suggest that silicate may also sometimes limit photosynthesis in this region.  相似文献   

17.
To investigate the impacts of nutrient concentrations and N:P:Si ratios on the ecosystem of the Huanghai Sea (Yellow Sea), the current status and long-term variation of nutrients concentrations and ratios as well as phytoplankton community structure in the Huanghai Sea were collected and analyzed. The results reveal great annual and seasonal fluctuations in the nutrient concentrations and N:P:Si ratios during 1998-2008 with no clear pattern observed in the whole region. Yet on a seasonal scale of spring and in the coastal regions such as the Jiaozhou Bay and Sanggou Bay, the increase of DIN concentration and N:P ratio as well as the decrease of phosphate and silicate concentrations and Si:N ratios were relatively significant. Many pelagic ecosystem changes have occurred concurrent with these changes of the nutrient regime, such as the recent increase of primary production, changes of phytoplankton chlorophyll a biomass and abundance, an increase of eutrophication, and occurrence of HABs. In addition, new trends in the variation of nutrients seem to be developing in some particular transect such as 36°N, which suggests that long-term and systematic ecosystem monitoring in the Huanghai Sea is necessary.  相似文献   

18.
渤黄海营养盐结构及其潜在限制作用的时空分布   总被引:7,自引:0,他引:7  
根据2006-2007年4个季节的现场调查资料,分析探讨了渤海和黄海营养盐结构分布变化特征及其对浮游植物生长的潜在的限制状况.结果表明,渤黄海水体 Si/N/P 比值均偏离 Redfield 比值,季节变化明显;春夏冬季 N/P和 Si/P比值由近岸向远岸海域递减,高值区主要分布在黄河口、鸭绿江口及苏北近岸,秋季上层水体N/P和Si/P比值的分布趋势有所不同,高值区主要分布在南黄海的中部海域.受陆源输入的影响,近岸特别是河口区 N/P和 Si/P比值均较高,温跃层的生消变化和生物活动调控着黄海中部海域营养盐结构的变化.渤黄海浮游植物生长主要受P的潜在限制,部分季节受N、Si的潜在限制;营养盐限制状况存在着明显的时空变化及不同营养盐的同时或交替限制的现象.  相似文献   

19.
A coupled physical–biological model was developed to simulate the low-silicate, high-nitrate, and low-chlorophyll (LSHNLC) conditions in the equatorial Pacific Ocean and used to compute a detailed budget in the Wyrtki box (5°N–5°S, 180–90°W) for the major sources and cycling of nitrogen and silicon in the equatorial Pacific. With the incorporation of biogenic silicon dissolution, NH4 regeneration from organic nitrogen and nitrification of ammonia in the model, we show that silicon recycling in the upper ocean is less efficient than nitrogen. As the major source of nutrients to the equatorial Pacific, the Equatorial Undercurrent provides slightly less Si(OH)4 than NO3 to the upwelling zone, which is defined as 2.5°N–2.5°S. As a result, the equatorial upwelling supplies less Si(OH)4 than NO3 into the euphotic zone in the Wyrtki box, having a Si/N supply ratio of about 0.85 (2.5 vs. 2.96 mmolm−2 day−1). More Si(OH)4 than NO3 is taken up with a Si/N ratio of 1.17 (2.72 vs. 2.33 mmolm−2 day−1) within the euphotic zone. The difference between upwelling supply and biological uptake is balanced by nutrient regeneration and horizontal advection. Excluding regeneration, the net silicate and nitrate uptakes are nearly equal (1.76 vs. 1.84 mmolm−2 day−1). However, biogenic silica export production is slightly higher than organic nitrogen (1.74 vs. 1.59 mmolm−2 day−1) following a 1.1 Si/N ratio. In the central equatorial Pacific, low silicate concentrations limit diatom growth; therefore non-diatom new production accounts for most of the new production. Higher silicate supply in the east maintains elevated diatom growth rates and new production associated with diatoms dominate upwelling zone. In contrast, the new production associated with small phytoplankton is nearly constant or decreases eastward along the equator. The total new production has a higher rate in the east than in the west, following the pattern of surface silicate. This suggests that silicate regulates the diatom production, total new production, and thereby carbon cycle in this area. The modeled mean primary production is 48.4 mmolCm−2 day−1, representing the lower end of direct field measurements, while new production is 15.0 mmolCm−2 day−1, which compares well with previous estimates.  相似文献   

20.
We have developed an ecosystem model including two nitrogen isotopes (14N and 15N), and validated this model using an actual data set. A study of nitrogen isotopic ratios (δ15N) using a marine ecosystem model is thought to be most helpful in quantitatively understanding the marine nitrogen cycle. Moreover, the model study may indicate a new potential of δ15N as a tracer. This model has six compartments: phytoplankton, zooplankton, particulate organic nitrogen, dissolved organic nitrogen, nitrate and ammonium in a two-box model, and has biological processes with/without isotopic fractionation. We have applied this model to the Sea of Okhotsk and successfully reproduced the δ15N of nitrate measured in seawater and the seasonal variations in δ15N of sinking particles obtained from sediment trap experiments. Simulated δ15N of phytoplankton are determined by δ 15N of nitrate and ammonium, and the nitrogen f-ratio, defined as the ratio of nitrate assimilation by phytoplankton to total nitrogenous nutrient assimilation. Detailed considerations of biological processes in the spring and autumn blooms have demonstrated that there is a significant difference between simulated δ15N values of phytoplankton, which assimilates only nitrate, and only ammonium, respectively. We suggest that observations of δ 15N values of phytoplankton, nitrate and ammonium in the spring and autumn blooms may indicate the ratios of nutrient selectivity by phytoplankton. In winter, most of the simulated biogeochemical fluxes decrease rapidly, but nitrification flux decreases much more slowly than the other biogeochemical fluxes. Therefore, simulated δ15N values and concentrations of ammonium reflect almost only nitrification. We suggest that the nitrification rate can be parameterized with observations of δ15N of ammonium in winter and a sensitive study varying the parameter of nitrification rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号