首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
Abstract

A river flow regime describes an average seasonal behaviour of flow and reflects the climatic and physiographic conditions in a basin. Differences in the regularity (stability) of the seasonal patterns reflect different dimensionality of the flow regimes, which can change subject to changes in climate conditions. The empirical orthogonal functions (EOF) approach can be used to describe the intrinsic dimension of river flow regimes and is also an adopted method for reducing the phase space in connection to climate change studies, especially in studies of nonlinear dynamic systems with preferred states. A large data set of monthly river flow for the Nordic countries has been investigated in the phase space reduced to the first few amplitude functions to trace a possible signature of climate change on the seasonal flow patterns. The probability density functions (PDF) of the weight coefficients and their possible change over time were used as an indicator of climate change. Two preferred states were identified connected to stable snowmelt-fed and rainfed flow regimes. The results indicate changes in the PDF patterns with time towards higher frequencies of rainfed regime types. The dynamics of seasonal patterns studied in terms of PDF renders it an adequate and convenient characterization, helping to avoid bias connected to flow regime classifications as well as uncertainties inferred by a modelling approach.  相似文献   

2.
Identification of the most sensitive hydrological regions to a changing climate is essential to target adaptive management strategies. This study presents a quantitative assessment of spatial patterns, inter‐annual variability and climatic sensitivity of the shape (form) and magnitude (size) of annual river/stream water temperature regimes across England and Wales. Classification of long‐term average (1989–2006) annual river (air) temperature regime dynamics at 88 (38) stations within England and Wales identified spatially differentiable regions. Emergent river temperature regions were used to structure detailed hydroclimatological analyses of a subset of 38 paired river and air temperature stations. The shape and magnitude of air and water temperature regimes were classified for individual station‐years; and a sensitivity index (SI, based on conditional probability) was used to quantify the strength of associations between river and air temperature regimes. The nature and strength of air–river temperature regime links differed between regions. River basin properties considered to be static over the timescale of the study were used to infer modification of air–river temperature links by basin hydrological processes. The strongest links were observed in regions where groundwater contributions to runoff (estimated by basin permeability) were smallest and water exposure time to the atmosphere (estimated by basin area) was greatest. These findings provide a new large‐scale perspective on the hydroclimatological controls driving river thermal dynamics and, thus, yield a scientific basis for informed management and regulatory decisions concerning river temperature within England and Wales. © 2013 The Authors. Hydrological Processes published by John Wiley & Sons, Ltd.  相似文献   

3.
Water regime characteristics have been recognized as critical factors for aquatic vegetation. In this study, we examined changes in aquatic vegetation coverage area in two shallow sub-lakes of Poyang Lake (Bang Lake and Cuoji Lake) during the dry season from 1987 to 2017. The relationships between eight water regime components (annual average water level, annual maximum water level, annual minimum water level, and flooded days at five water levels [11, 13, 15, 17, and 19 m]) and aquatic vegetation coverage area were determined. The most critical water regimes were identified and results demonstrated that aquatic vegetation coverage area in Bang Lake and Cuoji Lake peaked in drier years (2005 and 2009, respectively) with no obvious up or down trend. Water regimes indicating high flow events such as annual maximum water level, flooded days at water level 19 m, and annual average water level were found to be more important for predicting aquatic vegetation. High-flow events appear to be essential for understanding aquatic vegetation dynamics in pit lakes, yet overall the influences of water level fluctuation on aquatic vegetation varied among wetland units of Poyang Lake. This study helps to understand the hydroecological dynamics in connected lakes further and provide a reference for the lake management and protection.  相似文献   

4.
Pressures on braided river systems in New Zealand are increasing due to anthropogenic stresses such as demand for irrigation water, braidplain conversion to farmland and invasive vegetation, as well as extreme natural events associated with earthquakes and climate change. These pressures create issues around preserving braided river physical environments and associated ecosystems, and managing hazards such as floods, aggradation and erosion. A need for more robust understanding and quantification of braided river morphodynamic processes underpins many of these issues. Here, we present eight morphodynamic research challenges to service this need. The first four research challenges relate to managing aggradation-related flooding hazards; the last four address issues stem largely from recent dairy expansion, which has created huge pressure to take land and irrigation water from the alp-fed braided rivers and to alter flow regimes at their mouths. Hāpua, the freshwater lagoons found where most braided rivers meet the coast, show complex morphodynamic behaviour in response to the interplay of river and coastal processes, and their special ecosystems are sensitive to river flow and sediment load changes. We discuss how physical laboratory experiments and novel numerical modelling can help to understand the morphological processes braided rivers undergo, and we show how those research advances could inform planning and legal decisions to regulate land rights and irrigation water allocation on New Zealand's braidplains. We illustrate these environmental and engineering issues and research challenges with examples from the Kowhai, Waiho, Waiau, Rangitata and Hurunui Rivers. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
Results of long-term monitoring of water quality parameters of the Moskva River section within the limits of the city are generalized. The dynamics in quality parameters of the water entering the city wastewater treatment plants, purified effluents of the treatment plants, and river water is analyzed. A relationship between the concentration of organic matter in the river water at the exit from the city and WWTP capacity is demonstrated. Periods of unfavorable environmental state of the river in terms of oxygen regime are singled out based on oxygen regime dynamics. Variations in the river self-purification process are shown. It is stated that purified effluents of the WWTP are a component of the city hydrological system.  相似文献   

6.
7.
ABSTRACT

Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.
Editor Z.W. Kundzewicz; Associate editor K. Hamed  相似文献   

8.
Lake water level regimes are influenced by climate, hydrology and land use. Intensive land use has led to a decline in lake levels in many regions, with direct impacts on lake hydrology, ecology and ecosystem services. This study examined the role of climate and river flow regime in controlling lake regimes using three different lakes with different hydraulic characteristics (volume-inflow ratio, CIR). The regime changes in the lakes were determined for five different river inflows and five different climate patterns (hot-arid, tropical, moderate, cold-arid, cold-wet), giving 75 different combinations of governing factors in lake hydrology. The input data were scaled to unify them for lake comparisons. By considering the historical lake volume fluctuations, the duration (number of months) of lake volume in different ‘wetness’ regimes from ‘dry’ to ‘wet’ was used to develop a new index for lake regime characterisation, ‘Degree of Lake Wetness’ (DLW). DLW is presented as two indices: DLW1, providing a measure of lake filling percentage based on observed values and lake geometry, and DLW2, providing an index for lake regimes based on historical fluctuation patterns. These indices were used to classify lake types based on their historical time series for variable climate and river inflow. The lake response time to changes in hydrology or climate was evaluated. Both DLW1 and DLW2 were sensitive to climate and hydrological changes. The results showed that lake level in high CIR systems depends on climate, whereas in systems with low CIR it depends more on river regime.  相似文献   

9.
River ice break‐up is known to have important morphological, ecological and socio‐economic effects on cold‐regions river environments. One of the most persistent effects of the spring break‐up period is the occurrence of high‐water events. A return‐period assessment of maximum annual nominal water depths occurring during the spring break‐up and open‐water season at 28 Water Survey of Canada hydrometric sites over the 1913–2002 time period in the Mackenzie River basin is presented. For the return periods assessed, 13 (14) stations are dominated by peak events occurring during the spring break‐up (open‐water) season. One location is determined to have a mixed signal. A regime classification is proposed to separate ice‐ and open‐water dominated systems. As part of the regime classification procedure, specific characteristics of return‐period patterns including alignment, and difference between the 2 and 10‐year events are used to identify regime types. A dimensionless stage‐discharge plot allows for a contrast of the relative magnitudes of flows required to generate maximum nominal water‐depth events in the different regimes. At sites where discharge during the spring break‐up is approximately one‐quarter or greater than the magnitude of the peak annual discharge, nominal water depths can be expected to exceed those occurring during the peak annual discharge event. Several physical factors (location, basin area, stream order, gradient, river orientation, and climate) are considered to explain the differing regimes and discussed relative to the major sub‐regions of the MRB. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.  相似文献   

10.
Non-stationarity of climate drivers and soil-use strongly affects the hydrologic cycle, producing significant inter-annual and multi-decadal fluctuations of river flow regimes. Understanding the temporal trajectories of hydrologic regimes is a key issue for the management of freshwater ecosystems and the security of human water uses. Here, long-term changes in the seasonal flow regime of the Little Piney creek (US) are analyzed with the aid of a stochastic mechanistic approach that expresses analytically the streamflow distribution in terms of a few measurable hydroclimatic parameters, providing a basis for assessing the impact of climate and landscape modifications on water resources. Mean rainfall and streamflow rates exhibit a pronounced inter-annual variability across the last century, though in the absence of clear sustained drifts. Long-term modifications of streamflow regimes across different periods of 2 and 8 years are likewise significant. The stochastic model is able to reasonably reproduce the observed 2-years and 8-years regimes in the Little Piney creek, as well as the corresponding inter-annual variations of streamflow probability density. The study evidences that a flow regime shift occurred in the Little Piney creek during the last century, with erratic regimes typical of the 30s/40s that had been progressively replaced by persistent flow regimes featured by more dumped streamflow fluctuations. Causal drivers of regime shift are identified as the increase of the frequency of events (a byproduct of climate variability) and the decrease of recession rates (induced by a decrease of cultivated lands). The approach developed offers an objective basis for the analysis and prediction of the impact of climate/landscape change on water resources.  相似文献   

11.
Abstract

A river regime describes the average seasonal behaviour of flow. This seasonal pattern reflects climatic and physiographic conditions in the basin. An inherent characteristic of a flow regime is its stability, i.e. regularity or irregularity of the seasonal pattern. A temperature rise, as predicted by climatic models, might cause changes in the patterns and stability of river flow regimes. Sensitivity of the stability of flow regimes to small fluctuations in temperature (= ± 1°C) is investigated with the help of historical temperature and flow series for Scandinavia. The concept of entropy is utilized for quantification of the stability of the flow regimes conditioned on temperature which also allows forecasting of possible changes in this stability due to changes in temperature. The study shows that the stability of flow regime types with rain or mixed rain and snowmelt sources of flow formation is already sensitive to small changes in temperature, especially concerning flow minima.  相似文献   

12.
Abstract

The Vakhsh and Pyandj rivers, main tributaries of the Amu Darya River in the mountainous region of the Pamir Alay, play an important role in the water resources of the Aral Sea basin (Central Asia). In this region, the glaciers and snow cover significantly influence the water cycle and flow regime, which could be strongly modified by climate change. The present study, part of a project funded by the European Commission, analyses the hydrological situation in six benchmark basins covering areas of between 1800 and 8400 km2, essentially located in Tajikistan, with a variety of topographical situations, precipitation amounts and glacierized areas. Four types of parameter are discussed: temperature, glaciation, snow cover and river flows. The study is based mainly on a long-time series that ended in the 1990s (with the collapse of the Soviet Union) and on field observations and data collection. In addition, a short, more recent period (May 2000 to May 2002) was examined to better understand the role of snow cover, using scarce monitored data and satellite information. The results confirm the overall homogeneous trend of temperature increase in the mountain range and its impacts on the surface water regime. Concerning the snow cover, significant differences are noted in the location, elevation, orientation and morphology of snow cover in the respective basins. The changes in the river flow regime are regulated by the combination of the snow cover dynamics and the increasing trend of the air temperature.
Editor Z.W. Kundzewicz  相似文献   

13.
This work deals with the impacts of dams on large gravel -bed rivers in terms of altering coarse transport regimes and the relationship with river morphodynamics. Using data collected by a tracer -based monitoring programme carried out in a 4 -km -long study sector of the Parma River (Italy), located downstream from a relatively recently established dam, we applied a virtual velocity approach to estimate the coarse bed material load at four river cross -sections. Monitoring and calculation results provided new insights into the impacts of the dam on streambed material mobility and the sediment regime over the 17 -month calculation period. A longitudinal gradient of effects was observed along the study sector. Sections located closer to the dam are characterized by more evident impacts due to deficits in coarse sediment input from upstream. Sediment mobility here is strongly altered, especially in the highly armoured main channel, and the overall bed material load is extremely low. A partial recovery of sediment dynamics was observed at the sections located further from the dam, where estimates indicate higher sediment yield. The observed longitudinal trend in the coarse sediment transport regime matches the morphology, as the river shifts downstream from a sinuous configuration with alternate bars to a wandering one. The novel insights into alteration of coarse sediment dynamics and the relationship with river morphodynamics are potentially applicable to many other fluvial contexts affected by similar impoundments. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
TOWARDSANEWAPPROACHTOCONSTRUCTINGSEDIMENTDISCHARGERATINGCURVESWolfgangSUMMER;ZHANGWeiAbstract:TheSedimentRatingCurve(SRC)isth...  相似文献   

15.
Abstract

Ecological flow needs (EFN) frameworks incorporate a range of ecologically-relevant hydrological variables based on prior knowledge of river regime characteristics. However, when applied in cold regions, these approaches have largely ignored the influence of winter ice cover and the spring freshet on hydrological regimes: key components of river systems in cold regions with important direct effects on water quality, aquatic habitat and ecology. Here, we combine a review of the published literature on cold-regions hydrology and hydro-ecology with available hydrometric information for sites across Canada, a major cold-region country, to explore phenomena unique to these systems. We identify several ecologically-relevant hydrological measures (i.e. annual ice on/off dates, ice-cover duration, spring freshet initiation, peak water level during river ice break-up), pairing these with established metrics for incorporation into an enhanced suite of indicators specifically designed for cold regions. This paper presents the Cold-regions Hydrological Indicators of Change (CHIC), which can provide the basis for the assessment of EFN and climate change assessments in cold-region river ecosystems.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Peters, D.L., Monk, W.A., and Baird, D.J., 2014. Cold-regions Hydrological Indicators of Change (CHIC) for ecological flow needs assessment. Hydrological Sciences Journal, 59 (3–4), 502–516.  相似文献   

16.
What hydraulic information can be gained from remotely sensed observations of a river's surface? In this study, we analyze the relationship between river bed undulations and water surfaces for an ungauged reach of the Xingu River, a first‐order tributary of the Amazon river. This braided reach is crosscut more than 10 times by a ENVISAT (ENVironmental SATellite) track that extends over 100 km. Rating curves based on a modeled discharge series and altimetric measurements are used, including the zero‐flow depth Z 0 parameter, which describes river's bathymetry. River widths are determined from JERS (Japanese Earth Ressources Satellite) images. Hydrodynamic laws predict that irregularities in the geometry of a river bed produce spatial and temporal variations in the water level, as well as in its slope. Observation of these changes is a goal of the Surface Water and Ocean Topography satellite mission, which has a final objective of determining river discharge. First, the concept of hydraulic visibility is introduced, and the seasonality of water surface slope is highlighted along with different flow regimes and reach behaviors. Then, we propose a new single‐thread effective hydraulic approach for modeling braided rivers flows, based on the observation scales of current satellite altimetry. The effective hydraulic model is able to reproduce water surface elevations derived by satellite altimetry, and it shows that hydrodynamical signatures are more visible in areas where the river bed morphology varies significantly and for reaches with strong downstream control. The results of this study suggest that longitudinal variations of the slope might be an interesting criteria for the analysis of river segmentation into elementary reaches for the Surface Water Ocean Topography mission that will provide continuous measurements of the water surface elevations, the slopes, and the reach widths.  相似文献   

17.
Riverine sediments have played an important role in the morphological evolution of river channels and river deltas. However, the sediment regime in the many world's rivers has been altered in the context of global changes. In this study, temporal changes in the sediment regime of the Pearl River were examined at different time scales, that is, annual, seasonal, and monthly time scales, using the Mann–Kendall test. The results revealed that precipitation variability was responsible for monthly and seasonal distribution patterns of the sediment regime and the long‐term changes in the water discharge; however, dam operation has smoothed the seasonal distribution of water discharge and resulted in decreasing trends in the annual, wet‐season, and dry‐season sediment load series since the 1950s. Due to the different regulation magnitudes of dam operation, differences were observed in sediment regime changes among the three tributaries. In addition, human activities have altered the hysteresis of seasonal rating curves and affected hysteresis differences between increasing and decreasing water discharge stages. Sediment supply is an important factor controlling river channel dynamics, affecting channel morphology. From the 1950s to the 1980s, siltation was dominant in river channels across the West River and North River deltas in response to the sediment increases; however, scouring occurred in the East River deltas due to sediment reduction. Significant erosion occurred in river channels in the 1990s, which was mostly due to downcutting of the river bed caused by sand excavations and partly because of the reduced sediment load from upstream. Although sand excavations have been banned and controlled by authority agencies since 2000, the erosion of cross sections was still observed in the 2000s because of reduced sediment caused by dam construction. Our study examines the different effects of human activities on the sediment regime and downstream channel morphology, which is of substantial scientific importance for river management.  相似文献   

18.
19.
Water and sediment dynamics at Saint Lawrence River mouth   总被引:1,自引:0,他引:1  
The main features of the hydrological regime and morphological structure of the estuarine-type mouth area of the Saint Lawrence River are considered. Data on the structure of water masses, thermal and ice regimes in the Gulf of Saint Lawrence, which has a significant effect on the estuary, are given. The major attention is paid to water mixing processes, water and sediment dynamics in the estuary under the joint effect of river runoff and tides, and as a function of bed topography. The parameter determining the type of water stratification and circulation is discussed. The effect of the Coriolis force on the stratified flow in the estuary and formation of the geostrophic current is discussed.  相似文献   

20.
Nutrient loadings in many river catchments continue to increase due to rapid expansion of agriculture, urban and industrial development, and population growth. Nutrient enrichment of water bodies has intensified eutrophication which degrades water quality and ecosystem health. In this study, we carried out a trend analysis of total phosphorus and total nitrogen loads in the South Saskatchewan River (SSR) catchment using a novel approach to analyse nutrient time series. Seasonal analysis of trends at each of the water quality stations was performed to determine the relationships between annual flow regimes and nutrient loads in the catchment, in particular, the influence of the high spring runoff on nutrient export. Decadal analysis was also performed to determine the long-term relationships of nutrients with anthropogenic changes in the catchment. Although it was found that seasonal and historical variability of nutrient load trends is mainly determined by streamflow regime changes, there is evidence that increases in nitrogen concentration can also be attributed to anthropogenic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号