首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries.A lack of correlation between POC and lignin phenol abundances (Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C4 in addition to C3 source materials. A strong correlation between δ13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C3 and C4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 108 kg y−1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 105 kg y−1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 109 kg y−1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 109 kg y−1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 1011 kg).  相似文献   

2.
Particulate organic carbon found in sea foam and water samples from North Inlet, South Carolina, were examined for their δ13C isotopic composition. Sea foam particulate organic carbon (POC) δ13C values ranged from ?20.4 to ?24.6‰ (mean=?22.3‰) and water POC δ13C values ranged from ?21.0 to ?28.5‰ (mean= ?24.4‰). Temporal trends in sea foam and water POC indicate that δ13C values for both POC components are depleted in the colder months and enriched in the warmer months. Measurement of δ13C from potential sources for organic matter found in sea foam, combined with data on macroalgae productivity and phytoplankton biomass, indicates that macroalgae are the principal source of POC for sea foam in the colder months. In the warmer months, phytoplankton appear to be more important contributors. The observed water POC δ13C values were always depleted relative to foam POC δ13C values. This isotopic difference may result from chemical segregation during sea foam formation or may reflect DOC δ13C values from terrestrial origins.  相似文献   

3.
Langat River drains a tropical watershed in the southwest of the Malaysian Peninsula. The watershed is heavily urbanized in its downstream portion. Water samples were collected from May 2010 to December 2011, at three localities along the main stem river, 1 location at its Semenyih tributary and from an upstream groundwater source. Concentration and δ13C data of riverine DIC and DOC indicate the dominance of C3 plant-derived material as the primary source of carbon, with δ13CDIC values enriched in 13C relative to that of the C3 source. This enrichment is likely due to CO2 outgassing, as calculated concentrations of riverine CO2 are significantly higher than ambient atmospheric values, with methanogenic activity a theoretically possible contributing factor, particularly at the upstream location. The Langat River therefore acts as a net source of CO2, with a total sub-basin flux of 19.7 × 103 t C year?1. This is comparable to the sum of riverine DOC, DIC and POC loss rates from the sub-basin, calculated as 24.5 × 103 t C year?1, and highlights the significance of CO2 evasion from water bodies to the atmosphere for balancing the budget of the terrestrial carbon cycle. The DIC and DOC concentration and δ13C data also suggests that in the more urbanized downriver areas, much of the organic carbon input may be anthropogenicaly derived due to ubiquity of sewage treatment plants and landfill sites. Such human-induced perturbations to riverine carbon cycling should be taken into account in future studies of urbanized watersheds.  相似文献   

4.
An 11-month observation of dissolved and particulate organic matter, chlorophyll a(Chl a), C18 Sep-Pak extractable hydrophobic dissolved organic matter (hDOM) fraction and associated dissolved trace metals (Cd, Cu, V, Co, Ni, Mo, U) was performed in the Lot–Garonne River system. This system includes the Riou Mort, the Lot River and the downstream reaches of the Garonne River and represents the fluvial transport path of trace metals between the major point source of polymetallic pollution, located in the Riou Mort watershed and the Gironde estuary. Spatial and temporal variations of dissolved and particulate organic carbon and Chl areflect the presence of different types of organic matter and their relation with the hDOM fraction. Maximum Chl a/POC ratios (up to 0.03), indicate intense phytoplankton production from March to May. In the Lot River (Temple), DOC and POC concentrations were clearly higher and mean Chl a concentration (2.8 mg g−1) was about three times higher than those of the other sites. High Chl a/POC ratios suggest high phytoplankton activity with maxima in spring and late summer. In the Riou Mort River, very high POC concentrations of up to 40 (mean: 20) occurred, whereas Chl a concentrations were relatively low indicating low phytoplankton activity. High, strongly variable DOC and POC concentrations suggest important natural (Carboniferous soils, forests) or anthropogenic (e.g., former coal mines, waste areas, agriculture, sewage) carbon sources within the small Riou Mort watershed. Despite high DOC concentrations in the Riou Mort River, hDOM metal fractions were generally lower than those at the other sites. The general order of decreasing binding strength between metals and the organic hydrophobic phase (Cu, U > Co, Ni > V, Mo > Cd) at all four sites was in good agreement with the Irving–William series of transition element affinity towards organic ligands. Accordingly, the role of the hydrophobic phase in dissolved Cd transport appeared to be negligible, whereas the hDOM–Cu fraction strongly contributed to dissolved Cu transport.  相似文献   

5.
乌裕尔河流域颗粒有机碳的来源:碳同位素证据   总被引:1,自引:0,他引:1       下载免费PDF全文
以2008、2009年所采集的乌裕尔河9个点位水体中的悬浮物为研究对象,对丰、枯水期颗粒有机碳(POC)含量、碳同位素组成(^13C、^14C)及表观年龄进行了系统测试与分析,以期探讨河流中颗粒有机碳来源与流域土壤侵蚀的关系。研究结果表明,该河流中颗粒有机碳(POC)主要来源于未受玉米残体及根系输入影响的深层土壤,且土...  相似文献   

6.
The Loihi hydrothermal plume provides an opportunity to investigate iron (Fe) oxidation and microbial processes in a system that is truly Fe dominated and distinct from mid-ocean ridge spreading centers. The lack of hydrogen sulfide within the Loihi hydrothermal fluids and the presence of an oxygen minimum zone at this submarine volcano’s summit, results in a prolonged presence of reduced Fe within the dispersing non-buoyant plume. In this study, we have investigated the potential for microbial carbon fixation within the Loihi plume. We sampled for both particulate and dissolved organic carbon in hydrothermal fluids, microbial mats growing around vents, and the dispersing plume, and carried out stable carbon isotope analysis on the particulate fraction. The δ13C values of the microbial mats ranged from −23‰ to −28‰, and are distinct from those of deep-ocean particulate organic carbon (POC). The mats and hydrothermal fluids were also elevated in dissolved organic carbon (DOC) compared to background seawater. Within the hydrothermal plume, DOC and POC concentrations were elevated and the isotopic composition of POC within the plume suggests mixing between background seawater POC and a 13C-depleted hydrothermal component. The combination of both DOC and POC increasing in the dispersing plume that cannot solely be the result of entrainment and DOC adsorption, provides strong evidence for in-situ microbial productivity by chemolithoautotrophs, including a likelihood for iron-oxidizing microorganisms.  相似文献   

7.
δ13CPDB compositions for 39 samples of dissolved organic carbon (DOC) from the Gulf of Mexico-Caribbean Sea-Atlantic Ocean system, the South Pacific and Ross Sea are reported. Deep water values are similar with a mean of ?21.8%. attesting to the homogeneity of the oceanic DOC pool. In Antarctic waters, a 5%. difference between DOC and particulate organic carbon (POC), with POC having values similar to modern plankton (δ13CPDB approx ?27%.) supports the idea of the transient nature of POC as compared to DOC.Total, lipid, acid hydrolyzed, amino acid and residue fractions of POC are about 5, 3, 7, 5 and 3%. respectively, more negative in 2000 m water as compared to surface water samples from the Gulf of Mexico.  相似文献   

8.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   

9.
A study of the isotopic composition of plankton from Woods Hole Harbor was conducted to investigate seasonal variation in carbon and nitrogen stable isotopes in a shallow coastal environment. Stable isotopic ratios of carbon and nitrogen both showed temporal variation on the scale of weeks to months, with heaviest (most positive) values in summer to fall for both isotopes. Particulate organic matter (POM) δ13C values were highest (?19‰ to ?21‰) in August to November and lower (?21‰ to ?25‰) at other times of the year, while δ13N-POM values were highest (9.5‰ to 12‰) in March to September and lower (7.5‰ to 9.5‰) at other times of the year. Stable isotopic values were significantly correlated with temperature, DI13C, and C∶N ratios, but not with [DIC], [POC], [PN], [chlorophyll], or the taxonomic composition of the phytoplankton. There was no direct evidence of allochthonous inputs of carbon and nitrogen to the system. Woods Hole δ13C values were virtually identical to Georges Bank plankton values; similar POC: Chlorophyll and C∶N ratios in the two systems further suggest that Woods Hole Harbor is principally a marine system. The high δ13C values of net plankton (>20 μm) during summer and early fall are consistent with a smaller degree of photosynthetic isotopic fractionation at that time, related to temperature and/or [CO2(aq)]. This pattern was not seen, however, in total POM. Plankton δ13N values were higher in Woods Hole Harbor than on Georges Bank, especially during warmer periods, possibly due to high rates of nitrification and organic matter recycling in Woods Hole waters. Relatively wide ranges of stable isotopic values from both Woods Hole Harbor and Georges Bank suggest that seasonality should be considered when attempting to establish endmember C and N isotopic values for temperate marine plankton. Preliminary results from size-fractionated samples suggest that cyanobacteria may fractionate carbon isotopes to a greater degree than net phytoplankton.  相似文献   

10.
The Western Ghats form a major mountain belt, next to the Himalayas, in controlling the flux of water and carbon to the northern Indian Ocean. This study attempts to understand the water and carbon cycles in two humid tropical river basins with its streams originating at higher altitudes of the Western Ghats, India. Water and suspended particulate matter (SPM) were collected on a monthly scale during summer monsoon season (June-September) from Swarna and Nethravati rivers draining into the Arabian Sea. For the source apportionment, samples have been measured for stable isotopes of oxygen (δ18O) and hydrogen (δ2H) in water and stable isotopes of carbon (δ13CPOC) in particulate organic matter (POM) at spatial scale from tributaries and main channel of rivers, and runoff water from agricultural land (dominant paddy field) and forest in the downstream region. The association between δ18O and deuterium-excess in river water and rain water shows that water in these tropical basins depicts rainout effect of marine source moisture during the onset of summer monsoon. As the monsoon intensifies, the fresher rain water replenishes older water stored previously in sub surface soil layer leading to its flushing into the river during summer monsoon season. Stable carbon isotope ratio and elemental ratio of POM (δ13CPOC = -27.1 ± 0.4 ‰ and C/N = 8.1 ± 1.7) in two humid tropical river water during summer monsoon season is an admixture of suspended particulates from runoff water of forest (δ13CPOC = - 27.82 ± 0.4 ‰) and agricultural land (δ13CPOC = -26.29 ± 0.4 ‰). It is found that δ13CPOC shows minimal variability with SPM content and C/N ratio within the same organic carbon pool. The study emphasizes the need to consider the agricultural runoff contribution to the rivers while establishing the global elemental budget and observing the global climate change.  相似文献   

11.
The hydrogeochemical and carbon isotope characteristics of the Krka River, Slovenia, were investigated to estimate the carbon transfer from the land ecosystem in the watershed. During the 3-year sampling period (2008–2010), temperature, pH, electrical conductivity, major ion content, dissolved inorganic carbon (DIC) and dissolved organic carbon content, and the isotopic composition of DIC (δ13CDIC) were monitored in the main stream of the Krka River and its tributaries. The major solute composition of analysed waters is dominated by an input of HCO3 ?, Ca2+ and Mg2+ originating from carbonate dissolution. The Mg2+/Ca2+ and Mg2+/HCO3 ? molar ratio values ranging from 0.24 to 0.71 and 0.05 to 0.30, respectively, indicate a high degree of dolomite dissolution relative to calcite. Dissolved CO2 concentrations in the river were up to tenfold supersaturated relative to the atmosphere, resulting in supersaturation with respect to calcite and degassing of CO2 downstream. The δ13C values in river water range from ?15.6 to ?9.4 ‰ and are controlled by the input of tributaries, exchange with atmospheric CO2, degradation of organic matter, and dissolution of carbonates. The mass balance calculations for riverine DIC suggest that the contribution from carbonate dissolution and degradation of organic matter have major influence, whereas the exchange with atmospheric CO2 has minor influence on the inorganic carbon pool in the Krka River.  相似文献   

12.
The 13C/12C ratios of Upper Holocene benthic foraminiferal tests (genera Cibicides and Uvigerina) of deep sea cores from the various world ocean basins have been compared with those of the modern total carbon dioxide (TCO2) measured during the GEOSECS program. The δ13C difference between benthic foraminifera and TCO2 is 0.07 ± 0.04‰ for Cibicides and ?0.83 ± 0.07‰ for Uvigerina at the 95% confidence level. δ13C analyses of the benthic foraminifera that lived during the last interglaciation (isotopic substage 5e, about 120,000 yr ago) show that the bulk of the TCO2 in the world ocean had a δ13C value 0.15 ± 0.12‰ lower than the modern one at the 95% confidence level, reflecting a depletion, compared to the present value, of the global organic carbon reservoir. Regional differences in δ13C between the various oceanic basins are explained by a pattern of deep water circulation different from the modern one: the Antarctic Bottom Water production was higher than today during the last interglaciation, but the eastward transport in the Circumpolar Deep Water was lower.  相似文献   

13.
Microfossils in isolation basin sediments are frequently used to reconstruct sea‐level change, but preservation problems and non‐analogue situations can limit their usefulness. Here we investigate the potential of stable carbon isotopes (δ13C) and C/N ratios from bulk organic matter, as an alternative proxy of salinity within isolation basin sediments from a basin in northwest Scotland. Within the Holocene sediment δ13C and C/N are determined largely by the mean weighted values of the predominant source of the organic material. Analysis of modern materials and comparison with the diatom record shows that the marine parts of the sequence are dominated by high δ13C and variable C/N. In the fresh water sequences the organic material is a mixture of both freshwater aquatic and terrestrial plant input that have relatively low δ13C and high C/N. The application of δ13C and C/N ratios in the studied basin in general follow the environmental change recorded by the diatoms and shows the potential of bulk organic matter in the investigation of salinity change in isolation basins. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

15.
This study was designed to determine the amount of particulate organic carbon (POC) introduced to the Gulf of Mexico by the Mississippi River and assess the influence of POC inputs on the development of hypoxia and burial of organic carbon on the Louisiana continental shelf. Samples of suspended sediment and supporting hydrographic data were collected from the river and >50 sites on the adjacent shelf. Suspended particles collected in the river averaged 1.8±0.3% organic carbon. Because of this uniformity, POC values (in μmol l?1) correlated well with concentrations of total suspended matter. Net transport of total organic carbon by the Mississippi-Atchafalaya River system averaged 0.48×1012 moles y?1 with 66% of the total organic carbon carried as POC. Concentrations of POC decreased from as high as 600 μmol l?1 in the river to <0.8 μmol l?1 in offshore waters. In contrast, the organic carbon fraction of the suspended matter increased from <2% of the total mass in the river to >35% along the shelf at ≥10 km from the river mouth. River flow was a dominant factor in controlling particle and POC distributions; however, time-series data showed that tides and weather fronts can influence particle movement and POC concentrations. Values for apparent oxygen utilization (AOU) increased from ~60 μmol l?1 to >200 μmol l?1 along the shelf on approach to the region of chronic hypoxia. Short-term increases in AOU were related to transport of more particle-rich waters. Sediments buried on the shelf contained less organic carbon than incoming river particles. Orgamic carbon and δ13C values for shelf sediments indicated 3 that large amounts of both terrigenous and marine organic carbon are being decomposed in shelf waters and sediments to fuel observed hypoxia.  相似文献   

16.
2007年夏季和冬季对长江干流悬浮物进行了季节性采样,系统分析了悬浮物颗粒有机碳含量及稳定碳同位素的组成,研究了其空间分布以及季节变化特征。结果显示,长江干流夏季颗粒有机碳含量在0.4%~1.3%,冬季含量在0.7%-2.2%。冬季和夏季颗粒有机碳平均δ^13C值分别为-24.74‰和~24.83‰,季节性差异不大,在...  相似文献   

17.
Here we report on the temporal changes in the composition of dissolved organic carbon (DOC) collected in the tidal freshwater region of the lower Mississippi River. Lignin-phenols, bulk stable carbon isotopes, compound-specific isotope analyses (CSIA) and 13C nuclear magnetic resonance (NMR) spectrometry were used to examine the composition of high molecular weight dissolved organic matter (HMW DOM) at one station in the lower river over 6 different flow regimes in 1998 and 1999. It was estimated that the annual input of DOC delivered to the Gulf of Mexico from the Mississippi River was of 3.1 × 10−3 Pg, which represents 1.2% of the total global input of DOC from rivers to the ocean. Average DOC and HMW DOC were 489 ±163 and 115 ± 47 μM, respectively. 13C-NMR spectra revealed considerably more aliphatic structures than aromatic carbons in HMW DOC. Lignin phenols were significantly 13C-depleted with respect to bulk HMW DOM indicating that C4 grass inputs to the HMW DOM were not significant. It is speculated that C4 organic matter in the river is not being converted (via microbial decay) to HMW DOM as readily as C3 organic matter is, because of the association of C4 organic matter with finer sediments. The predominantly aliphatic 13C NMR signature of HMW DOM suggests that autochthonous production in the river may be more important as a source of DOC than previously thought. Increases in nutrient loading and decreases in the suspended load (because of dams) in the Mississippi River, as well as other large rivers around the world, has resulted in significant changes in the sources and overall cycling of riverine DOC.  相似文献   

18.
A depth- and particle size-specific analysis of soil organic carbon (SOC) and its isotopic composition was undertaken to investigate the effects of soil texture (or particle size) on the depth profile of stable carbon isotopic composition of SOC (δ13CSOC) in two tropical soils. Depth-specific samples from two soil profiles of markedly different texture (coarse grained and fine grained) were separated into particle size classes and analyzed for the (mass/mass) concentration of SOC (C) and δ13CSOC. Within 1 m of the soil surface, δ13CSOC in the coarse-textured soil increases by 1.3 to 1.6‰, while δ13CSOC from the fine-textured soil increase by as much as 3.8 to 5.5‰. This increasing depth trend in the coarse-textured soil is approximately linear with respect to normalized C, while the increase in the fine-textured soil follows a logarithmic function with respect to normalized C. A model of Rayleigh distillation describing isotope fractionation during decomposition of soil organic matter (SOM) accounts for the depth profile of δ13CSOC in the fine-textured soil, but does not account for the depth profile observed in the coarse-textured soil despite their similar climate, vegetation, and topographic position. These results suggest that kinetic fractionation during humification of SOM leads to preferential accumulation of 13C in association with fine mineral particles, or aggregates of fine mineral particles in fine-textured soils. In contrast, the coarse-textured soil shows very little applicability of the Rayleigh distillation model. Rather, the depth profile of δ13CSOC in the coarse-textured soil can be accounted for by mixing of soil carbon with different isotopic ratios.  相似文献   

19.
Carbon isotopes (δ13C) and C/N ratios from bulk organic matter have recently been used as alternative proxies for relative sea‐level (RSL) reconstruction where there are problems associated with conventional biological indictors. A previous study on a single isolation basin (Upper Loch nan Eala) in northwest Scotland has shown a clear relationship between δ13C, C/N ratios and palaeosalinity from Younger Dryas and Holocene aged sediments. In this paper we present results of δ13C and C/N ratio analyses from other isolation basins in northwest Scotland over the Holocene and the Lateglacial period in order to validate this technique. The results from the Holocene sequences support the earlier findings that this technique can be used to identify RSL change from isolation basins over the Holocene in this region. The relationship between δ13C, C/N ratios and RSL change is not apparent in sediments of Lateglacial age. Other environmental variables such as atmospheric CO2 concentration, poor vegetation development and temperature influence δ13C values during this period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
δ13C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with δ18O and δ2H values of water, δ34S values of dissolved SO4, and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. δ13CDIC values in the Murray River vary between −9.5 and −4.7‰ with a range of <3‰ within any sampling round. δ13CDIC values of the tributaries are −11.0‰ to −5.1‰. DIC concentrations of the Murray River increase from ∼25 mg/L in the middle and upper reaches of the river to 45–55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from ∼0.6–0.7 in the headwaters to ∼0.2–0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO2; this interpretation is consistent with pCO2 values that are in the range 550–11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere (∼360 ppmv). The δ13CDIC values are similar to those that would be produced by the weathering of marine limestone (δ13C ∼ 0‰). However, the lack of marine limestones cropping out in the Murray–Darling Basin and the relatively uniform δ13CDIC values of the Murray River (even in upland reaches where the dominant rock types are metamorphosed silicates and granites) make this unlikely. Rather the high pCO2 values and δ13CDIC values are best explained by a combination of mineralisation of low δ13C organic C and evasion to the atmosphere. The rate of these two processes may attain near steady state and control both DIC concentrations and δ13C values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号