首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Finding the critical slip surface and estimating the landslide volume are of primary importance for slope seismic design. However, this may be difficult due to the uncertainty of ground motions. To address this problem, a new method for calculating uncertainties is recommended in this paper, especially for the critical slip surface and landslide volume under random earthquake ground motions. Firstly, a series of intensity–frequency nonstationary random earthquake ground motions were generated based on an improved orthogonal expansion method. A given number of potential slip surfaces were set in a soil slope. Subsequently, the factor of safety (FOS) of each slip surface for all ground motions was calculated and the minimum FOS curves were obtained. It was found that the critical slip surfaces and failure times are uncertain under different earthquakes. The Monte Carlo method was used to verify the accuracy of probability density evolution method (PDEM), and the results of the PDEM and the Monte Carlo method are consistent, meaning that the PEDM has higher computational efficiency. Moreover, the distributions of earthquake-triggered landslide volume and landslide depth were analyzed by considering equivalent extreme events. Both landslide volume and depth exhibit a normal distribution for a homogeneous soil slope. The framework of this study is meaningful for slope seismic design in engineering, for example, the location of critical slip surface can be used for slope reinforcement, and the distribution of sliding volume can be used for disaster assessment.  相似文献   

2.
S. Santini  M. Dragoni  G. Spada 《Tectonophysics》2003,367(3-4):219-233
The 1964 Alaska earthquake was the second largest seismic events in the 20th century. The aim of this work is the use of surface deformation data to determine asperity and slip distributions on the fault plane of the Alaska earthquake: these distributions are calculated by a Monte Carlo method. To this aim, we decompose the fault plane in a large number of small square asperity units with a side of 25 km; this allows us to obtain plane surfaces with an irregular shape. In the first stage, each asperity unit is allowed to slip a constant amount or not to slip at all, providing the geometry of the dislocation surface that best reproduces the observed displacements. To this purpose, a large number of slip distributions have been tried by the use of the Monte Carlo method. The slip amplitude is the same for all the asperities and is equal to the average fault slip inferred from the seismic moment. In the second stage, we evaluate the slip distribution in the dislocation area determined by the Monte Carlo inversion: in this case, we allow unit cells to undergo different values of slip in order to refine the initial dislocation model. The results confirm the previous finding that the slip distribution of the great Alaska earthquake was essentially made of two dislocation areas with a higher slip, the Prince William Sound and the Kodiak asperities. Analysis of the post-1964 seismicity in the rupture region shows a strong correlation between the larger earthquakes (Mw≥6) and the distribution of locked asperities following the 1964 event, which can be considered as an independent test of the validity of the model. We do not find slip values higher than 25 m for any of the patches, and we determine two separate high-slip zones: one correspondent to the Prince William Sound asperity, and one (18 m slip) to the Kodiak asperity. The slip distribution connected with the 1964 shock appears to be consistent with the following seismicity in the region.  相似文献   

3.
This paper focuses on fault-related uncertainties in the subsurface, which can significantly affect the numerical simulation of physical processes. Our goal is to use dynamic data and process-based simulation to update structural uncertainty in a Bayesian inverse approach. We propose a stochastic fault model where the number and features of faults are made variable. In particular, this model samples uncertainties about connectivity between the faults. The stochastic three dimensional fault model is integrated within a stochastic inversion scheme in order to reduce uncertainties about fault characteristics and fault zone layout, by minimizing the mismatch between observed and simulated data.  相似文献   

4.
In history matching and sensitivity analysis, flexibility in the structural modelling is of great importance. The ability to easily generate multiple realizations of the model will have impact both on the updating workflow in history matching and uncertainty studies based on Monte Carlo simulations. The main contribution to fault modelling by the work presented in this paper is a new algorithm for calculating a 3D displacement field applicable to a wide range of faults due to a flexible representation. This gives the possibility to apply this field to change the displacement and thereby moving horizons and fault lines. The fault is modelled by a parametric format where the fault has a reference plane defined by a centre point, dip and strike angles. The fault itself is represented as a surface defined by a function z = f(x,y), where x, y and z are coordinates local to the reference plane, with the z-axis being normal to the plane. The displacement associated with the fault outside the fault surface is described by a 3D vector field. The displacement on the fault surface can be found by identifying the intersection lines between horizons and the fault surface (fault lines), and using kriging techniques to fill in values at all points on the surface. Away from the fault surface the displacement field is defined by a monotonic decreasing function which ensures zero displacement at a specified distance from the fault. An algorithm is developed where the displacement can be increased or decreased according to user-defined parameters. This means that the whole displacement field is changed and points on horizons around the fault can be moved accordingly by applying the modified displacement field on them. The interaction between several faults influencing the same points is taken care of by truncation rules and the ordering of the faults. The method is demonstrated on a realistic synthetic case based on a real reservoir.  相似文献   

5.
本文利用新的有限元方法研究了铲状正断层带在非均匀应力场下错动引起的位移场和应力场。研究发现:① 铲状正断层错动引起的断层面上的最大错距不是发生在地表,而是发生地表下面断层的中部;② 地表面最大水平位移和垂直位移都不是发生在地表断层上,而是发生在偏离断层一定距离的地方;③ 铲状正断层错动会在地表附近产生两个破裂区,一个在地表断层附近,一个在远离断层的上盘地表附近,这两个区与野外观测到的次生正断层区一致;④ 断层错动的应力降在断层内不是均匀的,最大值也是位于断层中部。  相似文献   

6.
This paper presents a consistent Bayesian solution for data integration and history matching for oil reservoirs while accounting for both model and parameter uncertainties. The developed method uses Gaussian Process Regression to build a permeability map conforming to collected data at well bores. Following that, an augmented Markov Chain Monte Carlo sampler is used to condition the permeability map to dynamic production data. The selected proposal distribution for the Markov Chain Monte Carlo conforms to the Gaussian process regression output. The augmented Markov Chain Monte Carlo sampler allows transition steps between different models of the covariance function, and hence both the parameter and model space are effectively explored. In contrast to single model Markov Chain Monte Carlo samplers, the proposed augmented Markov Chain Monte Carlo sampler eliminates the selection bias of certain covariance structures of the inferred permeability field. The proposed algorithm can be used to account for general model and parameter uncertainties.  相似文献   

7.
Oguz  Emir Ahmet  Depina  Ivan  Thakur  Vikas 《Landslides》2022,19(1):67-83

Uncertainties in parameters of landslide susceptibility models often hinder them from providing accurate spatial and temporal predictions of landslide occurrences. Substantial contribution to the uncertainties in landslide assessment originates from spatially variable geotechnical and hydrological parameters. These input parameters may often vary significantly through space, even within the same geological deposit, and there is a need to quantify the effects of the uncertainties in these parameters. This study addresses this issue with a new three-dimensional probabilistic landslide susceptibility model. The spatial variability of the model parameters is modeled with the random field approach and coupled with the Monte Carlo method to propagate uncertainties from the model parameters to landslide predictions (i.e., factor of safety). The resulting uncertainties in landslide predictions allow the effects of spatial variability in the input parameters to be quantified. The performance of the proposed model in capturing the effect of spatial variability and predicting landslide occurrence has been compared with a conventional physical-based landslide susceptibility model that does not account for three-dimensional effects on slope stability. The results indicate that the proposed model has better performance in landslide prediction with higher accuracy and precision than the conventional model. The novelty of this study is illustrating the effects of the soil heterogeneity on the susceptibility of shallow landslides, which was made possible by the development of a three-dimensional slope stability model that was coupled with random field model and the Monte Carlo method.

  相似文献   

8.
秦会来  黄茂松  王玉杰 《岩土力学》2010,31(10):3145-3150
Greco提出的临界滑裂面搜寻的Monte Carlo搜索技术具有原理简单、适应性强、搜索性能好及容易编程实现等优点,目前该类方法已在边坡稳定的优化计算中有许多成功的应用。为能够在多块体上限法求解地基极限承载力的优化计算中应用Monte Carlo搜索技术,基于上限法相容速度场的要求及地基承载力问题的特点,对Monte Carlo搜索技术实现中的目标函数、几何约束条件、初始破坏面的产生以及收敛准则等重新进行了设置。由于Monte Carlo搜索技术随机性的特点,某一次的搜索优化往往存在陷入局部极值的危险,为解决这一不足,采取了随机设置多次初始破坏面分别进行搜索优化的办法,计算表明,优化效果很好。通过对实际问题的计算以及对比发现,Monte Carlo搜索技术在此处多块体上限法求解地基承载力问题中的优化应用是相当成功的。此外,由于此处的优化是以破坏面上的节点为对象的,因此,不但可以方便地考虑三角形块体的优化,而且也可以方便地考虑四边形块体的优化问题,其适用性更强。  相似文献   

9.
内罗毕—马拉巴铁路穿越东非大裂谷, 线路隧道穿越许多活动断裂带。在隧道结构设计中既要考虑地震作用, 还要考虑断层的位错作用。在隧道抗震和减震设计中, 将隧道结构设计成像链条一样的结构特性, 使得隧道结构随着地震作用和断层位错, 自动调整本身的变形, 而不会导致整体性破坏。为了分析隧道结构的地震响应规律, 建立了动力分析数值模型。将人工合成100 a超越概率2%的加速度时程作为水平地震作用, 在数值模型底部输入。计算分析了地震作用下隧道结构的响应规律和隧道结构的链条特性。计算表明链条一样的隧道结构能够很好地起到抗震消能作用。另外, 由于断层的位错作用造成隧道内限界减小, 使得隧道失去正常的通行功能。因此在断层位错设计中, 根据断层特点、接触网的型式, 综合考虑制定隧道断面扩挖尺寸。当断层位错发生影响正常交通运营时, 根据正断层的特点, 扩挖下盘隧道, 回填上盘隧道。调整线路坡度和接触网的绝缘距离、悬挂方式来消除断层的位错量, 从而实现隧道内线路正常通行条件, 而不用改建隧道二衬结构。  相似文献   

10.
基于Monte Carlo-BP神经网络TBM掘进速度预测   总被引:1,自引:0,他引:1  
温森  赵延喜  杨圣奇 《岩土力学》2009,30(10):3127-3132
预测隧道工程中TBM掘进速度,主要有完全经验的、半理论半经验的模型和人工智能等方法,所用参数均为确定性的,未考虑参数存在的随机性,故导致预测结果的不准确性。基于此,提出了Monte Carlo-BP神经网络TBM掘进速度预测模型,着重考虑了一些重要输入参数的随机性, 其中输入参数重要性的大小通过粗糙集进行计算排序。采用Monte Carlo产生随机数时,由于参量的样本数据的有限,分布函数均采用阶梯形经验分布函数。如果采用的数据是来自不同类型的 TBM,则应当考虑机器性能参数,并重新对参数重要性进行排序。实例计算表明,Monte Carlo-BP神经网络模型预测结果和实测值总体趋势和均值比较一致。  相似文献   

11.
地裂缝的成因机理争论不断,笔者认为活动断层与全新世浅表层开裂两者之间的联动机制为主要原因之一。文章以华北平原典型地裂缝为例,通过详尽地面调查、资料分析总结,结合地球物理勘察、槽探揭露和钻探等多种技术方法,得到以下几点认识:(1)依据全新世浅表层开裂形态特征,可将华北平原地裂缝划分为全新世节理裂隙型地裂缝和全新世活动断层型地裂缝。(2)节理裂隙型地裂缝开裂的外部条件是华北平原地下水位下降,疏干的松散含水层是地表水沿节理裂缝下渗后的储存场所,是产生渗透压力的原因;而活动断层是产生该类地裂缝的内部因素,两者缺一不可;活动断层型地裂缝实质是全新世活动断层。(3)节理裂隙型地裂缝主要特征是地表局部塌陷、间断性、地表无高差等;活动断层型地裂缝主要特征是连续性强,地表断距明显;地表断距是两种类型地裂缝的最主要区别特征。本文首次以构造活动断层与全新世浅表层开裂两者之间的联动机制为研究线索,阐述了构造活动断层在地裂缝形成过程中的具体作用,厘清了地下水位下降所扮演的“角色”,为城市规划建设提供了地质依据和建议。  相似文献   

12.
为研究次级断裂发育状况,探讨了一种地震解释主断层与地质力学相结合的边界元模拟方法:首先在安德森断层分类体系下,依据断层与应力组合特征,完善次级断裂构造演化事件分类;然后应用应力张量降阶、线性叠加原理,简化应力与位移平衡方程,并在此基础上使用蒙特卡洛方法反演古应力场;最后求解应力、应变与不连续位移平衡方程,获取地层现今应力分布,分析次级断裂开度、相对密度等信息。运用该方法在杨柳矿区童亭背斜区域开展试验,结果表明区域内最小水平主应力以近北西向为主,主断层之间广泛发育交叉断裂带,次级断裂发育带连通性强,为杨柳矿区隐蔽灾害评估提供了参考资料。   相似文献   

13.
A physical model of thrust faulting has been constructed out of elastic foam rubber. The thrust wedge has an angle of 25°., and is forced from the back by a steel-hydraulic system of effectively infinite rigidity, analogous to the force exerted by tectonic plates. The observed particle motions show many features different from those commonly assumed in dislocation models of subduction thrusts. Interface waves associated with fault opening propagate along the thrust plane (from the back) and temporarily decouple the overlying hanging wall plate from the foot wall. Because of the geometry of the reflecting fault boundary, and the free surface (also reflecting), energy is trapped in the wedge and, as a consequence, the particle motions and energy in the hanging wall are much greater than in the foot wall. The interface wave and the energy trapped in the upper plate propagate up the wedge and break out at the toe of the thrust with a spectacular increase in motions. If this model is analogous to the real earth, it suggests that some common assumptions in dislocation modeling may be incorrect. The model may explain apparent missing energy radiated to teleseismic distances, the anomalously low number of empirical Green’s functions needed to model teleseismicp waves, and the evidence of intense shaking on the hanging wall toe of some thrust fault earthquakes. The results support the suggestion that interface waves may explain the lack of high frictional heat generation from thrust faults, and may explain the ‘paradox of large overthrusts’. The results also suggest that the seismic hazard of great subduction thrust earthquakes and continental shallow angle thrust faults might in some cases be seriously underestimated.  相似文献   

14.
The paper focuses on the formation of Nanzhangzhuang ground fissure through emphatically analysing factors including the intersection fault dislocation, the deep ground-water over-exploitation together with the landform and lithology features. Features of the ground fissure are explained in detail after describing the geological setting in the study area. The paper also provides dynamic mode of the ground fissure formation via force analysis of the soil body unit at ground fissures. Conclusions can be drawn that the stress state of soil bodies changed with the activities of two intersection faults, namely Hengshui fault and Hubei fault. In addition, the stress fields control the development of ground fissure. The deep groundwater in Hengshui area dropped considerably in recent years, to be precise, the water elevation of deep groundwater dropped from -26 m to -94 m by 2010 at the centre of groundwater funnel. The over-exploitation of deep groundwater in Hengshui area enlarged the ground fissures. The data concerning shallow borehole show that the vertical lithology mainly consists of silt, silty clay and silty sandy soil, which all belong to the middle-compressed soil. The lateral extension of the soil bodies occur with pumping and tectonic creep, and the clay layers on both sides of the cracks can stay upright. Thus the ground fissure came visible.  相似文献   

15.
Spatial risk analysis of Li-shan landslide in Taiwan   总被引:3,自引:0,他引:3  
By coupling limit equilibrium analysis and Monte Carlo analysis with a geography information system (GIS), this study implements a method that can evaluate the risk (corresponding to probability of failure in this study) of landslide with consideration of spatial uncertainties. The GIS can adopt the three-dimensional information including surface topography, underground geomaterial distribution and groundwater level to determine slope profiles for analysis. Then the safety of defined slope can be evaluated by limit equilibrium analysis. In this study, the mechanical properties of geomaterial were considered as random variables instead of single values. The slope and groundwater profiles are also randomly adopted. Through a Monte Carlo sampling process, a distribution of safety factor and probability of failure can be determined. This probabilistic risk analysis approach was applied to Li-shan landslide in Central Taiwan.

Due to heavy rains, the sites near the highway 7A (mileage 73 k + 150) and the highway 8 (mileage 82 k) in the Li-shan Township began to subside in mid April 1990. Topography, geology, and groundwater condition of this area were first reviewed. Based on this review, together with field investigations and a series of limit equilibrium back analyses, a general hypothetic model was established to illustrate the failure mechanism of this landslide area. Then the developed probabilistic risk analysis model is applied to spatially evaluate the risk of this landslide area as well as the performance of the remediation treatment.  相似文献   


16.
吴果  冉洪流  周庆 《地球科学》2022,47(3):844-855
同震位错对川藏铁路等跨断层工程的安全造成严重威胁,合理评价活断层的位错参数具有重要的应用价值.由于传统的确定性评价方法存在无法区分工程场点的重要程度和其在断层上的相对位置等缺陷,越来越多的学者推荐采用概率断层位错危险性分析(PFDHA).然而基于经典的概率性方法开展PFDHA原理复杂且实现困难,不利于吸收断层地震活动性研究的最新成果,也有碍于PFDHA的普及和推广.相比经典的概率性方法,蒙特卡洛模拟具备逻辑清晰易懂、程序易于实现且兼容性和扩展性好的优点.本研究基于蒙特卡洛模拟实现了概率断层位错危险性分析的一般性算法,并将该方法应用于鲜水河断裂带的炉霍段.结果显示,PFDHA的结果随着超越概率水准或工程场点在断层上的相对位置的不同而显著变化.适当考虑最大同震位错和地表破裂长度的不确定性得到的位错参数更加合理.超越概率大于等于100年2%时,PFDHA的结果显著小于确定性方法的结果.然而随着断层活动性的提高,100年超越概率1%的结果可能会大于确定性方法的结果.按照不同类型工程的抗震设防水准选择相应的PFDHA评价结果,既有利于工程的安全,也有助于大多数工程节约成本.PFDHA相比确定性方法具备多种优势,有望为川藏铁路等重大工程的抗断参数评估提供技术支撑.   相似文献   

17.
M Persaud  O.A Pfiffner   《Tectonophysics》2004,385(1-4):59-84
Post-glacial tectonic faults in the eastern Swiss Alps occur as single lineaments, clusters of faults or extensive fault zones consisting of several individual faults aligned along the same trend. The orientation of the faults reflects the underlying lithology and the pre-existing structures (joints, pervasive foliations) within these lithologies. Most post-glacially formed faults in the area around Chur, which undergoes active surface uplift of 1.6 mm/year, trend E–W and cut across Alpine and glacial features such as active screes and moraines. Additionally, there are NNW and ENE striking faults reactivating pervasive Alpine foliations and shear zones. Based on a comparison with the nodal planes of recent earthquakes, E–W striking faults are interpreted as active faults. Because of very short rupture lengths and mismatches of fault location with earthquake distribution, magnitude and abundance, the faults are considered to be secondary faults due to earthquake shaking, cumulative deformation in post- or interseismic periods or creep, and not primary earthquake-related faults. The maximum of recent surface uplift rates coincides with the youngest cooling of the rocks according to apatite fission-track data and is therefore a long-lived feature that extends well into pre-glacial times. Isostatic rebound owing to overthickened crust or to melting of glacial overburden cannot explain the observed surface uplift pattern. Rather, the faults, earthquakes and surface uplift patterns suggest that the Alps are deforming under active compression and that the Aar massif basement uplift is still active in response to ongoing collision.  相似文献   

18.
This paper discusses the fault parameters of the Mikawa earthquake of January 12, 1945 on the basis of a simple dislocation model. Basically, the model assumes a rectangular shape of the fault plane striking N-S, so that it may fit the observed surface fault trace. Several sets of the fault parameters are tested to interpret the vertical and horizontal ground movements as observed geodetically. The fault model which is finally accepted is as follows: total length: 12 km; width: 11 km; dip angle: 30°; reverse dip-slip: 2 m; right-lateral strike-slip: 1 m. Geometry and slip in the present model seem to harmonize with the other sorts of evidence such as the seismological, tsunami genetic and reconnaissance data. From the tectonic point of view, this earthquake may be attributed to the secondary fault activity associated with the right lateral movement of the Median Tectonic Line.  相似文献   

19.
Experimental evidence and stochastic studies strongly show that the transport of reactive solutes in porous media is significantly influenced by heterogeneities in hydraulic conductivity, porosity, and sorption parameters. In this paper, we present Monte Carlo numerical simulations of multicomponent reactive transport involving competitive cation exchange reactions in a two-dimensional vertical physically and geochemically heterogeneous medium. Log hydraulic conductivity, log K, and log cation exchange capacity (log CEC) are assumed to be random Gaussian functions with spherical semivariograms. Random realizations of log K and log CEC are used as input data for the numerical simulation of multicomponent reactive transport with CORE2D, a general purpose reactive transport code. Longitudinal features of the fronts of reactive and conservative species are computed from the temporal and spatial moments of depth-averaged concentrations. Monte Carlo simulations show that: (1) the displacement of reactive fronts increases with increasing variance of log K, while it decreases with the variance of log CEC; (2) second-order spatial moments increase with increasing variances of log K and log CEC; (3) uncertainties in the mean arrival time are largest (smallest) for negatively (positively) correlated log K and Log CEC; (4) cations undergoing competitive cation exchange exhibit different apparent velocities and retardation factors due to both physical and geochemical heterogeneities; and (5) the correlation between log K and log CEC affects significantly apparent cation retardation factors in heterogeneous aquifers.  相似文献   

20.
Bayes约束随机场下坝基溶蚀区随机模拟方法及其影响分析   总被引:1,自引:0,他引:1  
张社荣  王超  孙博 《岩土力学》2013,34(8):2337-2346
基于完全随机场模拟溶蚀岩体可能会高估其空间变异性和不能有效地利用溶蚀以外的地质信息和实践经验,提出用Bayes约束参数随机场模型描述坝基溶蚀区的随机模拟方法。引入Bayes公式,对溶蚀区域岩土参数的统计特性进行修正,反映出地质勘测的新增地质信息和试验参数信息,建立约束随机场,并在此基础上进行随机有限元分析,研究坝基溶蚀对大坝结构性态的作用效应。计算结果表明,相对于完全随机场模型,Bayes约束随机场模型更为客观地考虑了溶蚀岩体的空间变异性,有效地降低了溶蚀参数完全随机场下结构响应的模拟方差。在概率分析过程中,推荐蒙特卡洛响应面耦合方法(MC-RSM)作为适用于复杂工程的随机模拟方法,该方法能够代替直接MC法对同样力学机制的不断重复,减小计算时间成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号