首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f (R,T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy–momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω(ρ ? ρ ?). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.  相似文献   

2.
The paper describes unmanned spacecraft Luna-9, Luna-10, and similar ones designed by NPO Lavochkin. The history of their development is given, and their high importance in lunar studies is noted. Projects of Luna-Globe, Luna-Resurs, and Luna-Grunt that should be implemented in the near future are briefly described.  相似文献   

3.
The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = ?0.20 ± 0.04, M Y = ?0.470 ± 0.045, M[3.6] = ?1.70 ± 0.03, M[4.5] = ?1.60 ± 0.03, M[5.8] = ?1.67 ± 0.03, and M[8.0] = ?1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [M/H] ? 0.40 (Z ? 0.038) with an error of [M/H] ? 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9–10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of ~8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200–8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.  相似文献   

4.
We present our synchronous spectroscopy and photometry of DI Cep, a classical T Tauri star. The equivalent widths and radial velocities of the individual components and Hα, Hβ, D1 and D2 Na I, and HeI λ5876 Å emission line profiles exhibit variability. We have found a clear positive correlation between the brightness and equivalent width for the Hα and Hβ emission lines. The photometric and spectroscopic data are satisfactorily described in phases of a 9-day period. The expected magnetic field of the star has been estimated using existing magnetospheric models to be 655–1000 G. The star is suspected to be a binary.  相似文献   

5.
This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976?–?2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions (i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry (i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.  相似文献   

6.
We present a new derivation of the X-ray spectral sensitivity of the Soft X-ray Telescope (SXT) experiment onboard Yohkoh. The recalibration is based upon the hypothesis that, during the first 15 months of the mission, an absorbing material gradually built up on the entrance filters of the telescope. We have also re-evaluated the times and sizes of ruptures of the SXT entrance filters. The impact of this recalibration on derived filter-ratio temperature, emission measure, and calculated spectral irradiance is substantial, especially for SXT data prior to November 1992.  相似文献   

7.
Data on HII regions, molecular clouds, and methanol masers have been used to estimate the Sun’s distance from the symmetry plane z and the vertical disk scale height h. Kinematic distance estimates are available for all objects in these samples. The Local-arm (Orion-arm) objects are shown to affect noticeably the pattern of the z distribution. The deviations from the distribution symmetry are particularly pronounced for the sample of masers with measured trigonometric parallaxes, where the fraction of Local-arm masers is large. The situation with the sample of HII regions in the solar neighborhood is similar. We have concluded that it is better to exclude the Local arm from consideration. Based on the model of a self-gravitating isothermal disk, we have obtained the following estimates from objects located in the inner region of the Galaxy (RR 0): z = ?5.7 ± 0.5 pc and h 2 = 24.1 ± 0.9 pc from the sample of 639 methanol masers, z = ?7.6±0.4 pc and h 2 = 28.6±0.5 pc from 878HII regions, z = ?10.1 ± 0.5 pc and h 2 = 28.2 ± 0.6 pc from 538 giant molecular clouds.  相似文献   

8.
We report on the 2016 outburst of the transient Galactic Black Hole candidate IGR J17091-3624 based on the observation campaign carried out with SWIFT and NuSTAR. The outburst profile, as observed with SWIFT-XRT, shows a typical ‘q’-shape in the Hardness Intensity Diagram (HID). Based on the spectral and temporal evolution of the different parameters, we are able to identify all the spectral states in the q-profile of HID and the Hardness-RMS diagram (HRD). Both XRT and NuSTAR observations show an evolution of low frequency Quasi periodic oscillations (QPOs) during the low hard and hard intermediate states of the outburst rising phase. We also find mHz QPOs along-with distinct coherent class variabilities (heartbeat oscillations) with different timescales, similar to the \(\rho \)-class (observed in GRS 1915+105). Phenomenological modelling of the broad-band XRT and NuSTAR spectra also reveals the evolution of high energy cut-off and presence of reflection from ionized material during the rising phase of the outburst. Further, we conduct the modelling of X-ray spectra of SWIFT and NuSTAR in 0.5–79 keV to understand the accretion flow dynamics based on two component flow model. From this modelling, we constrain the mass of the source to be in the range of \(10.62\mbox{--}12.33~\mbox{M}_{\odot }\) with 90% confidence, which is consistent with earlier findings.  相似文献   

9.
We supplement the following result of C. Marchal on the Newtonian N-body problem: A path minimizing the Lagrangian action functional between two given configurations is always a true (collision-free) solution when the dimension d of the physical space \({\mathbb {R}}^d\) satisfies \(d\ge 2\). The focus of this paper is on the fixed-ends problem for the one-dimensional Newtonian N-body problem. We prove that a path minimizing the action functional in the set of paths joining two given configurations and having all the time the same order is always a true (collision-free) solution. Considering the one-dimensional N-body problem with equal masses, we prove that (i) collision instants are isolated for a path minimizing the action functional between two given configurations, (ii) if the particles at two endpoints have the same order, then the path minimizing the action functional is always a true (collision-free) solution and (iii) when the particles at two endpoints have different order, although there must be collisions for any path, we can prove that there are at most \(N! - 1\) collisions for any action-minimizing path.  相似文献   

10.
In this paper we are going to review the latest estimates for the particle background expected on the X-IFU instrument onboard of the ATHENA mission. The particle background is induced by two different particle populations: the so called “soft protons” and the Cosmic rays. The first component is composed of low energy particles (< 100s keV) that get funnelled by the mirrors towards the focal plane, losing part of their energy inside the filters and inducing background counts inside the instrument sensitivity band. The latter component is induced by high energy particles (> 100 MeV) that possess enough energy to cross the spacecraft and reach the detector from any direction, depositing a small fraction of their energy inside the instrument. Both these components are estimated using Monte Carlo simulations and the latest results are presented here.  相似文献   

11.
MXB 1658-298 is a transient Low-Mass X-ray Binary (LMXB), which shows eclipses, dips and bursts in its light curve. This source has undergone three active periods separated by long quiescent phases. The latest phase of enhanced X-ray emission was observed during 2015–2016. We have analysed broadband data from Swift/XRT and NuSTAR observations carried out in 2015. During NuSTAR observation, one thermonuclear X-ray burst took place. The X-ray emission during the burst was brighter by a factor of \(\sim 200\), compared to the pre-burst emission. This work focuses on the spectral analysis of MXB 1658-298 during the persistent and the burst phases using NuSTAR observation of 2015. We have also determined the temperature and radius evolution during the burst using the time-resolved spectroscopy. The burst phase shows mild Photospheric Radius Expansion (PRE).  相似文献   

12.
The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term “magnetic obstacle” (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions (i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward improving reconstructions with possible applications to space weather studies. In summary, our main results demonstrate that the assumed correlation between expanding structure and asymmetric magnetic field is not always valid. Although 59% of the cases could be described by circular-cylindrical geometry, with or without expansion, the remaining cases show significant in situ signatures of departures from circular-cylindrical geometry. These results will aid in the development of more accurate in situ models to reconcile image.  相似文献   

13.
The standard dynamo models that explain the origin of the large-scale magnetic fields of celestial bodies are related to the view of turbulent or convective flows as a locally statistically homogeneous and isotropic, but not mirror-symmetric, random field. Using an ABC flow, which is a classical example of a flow with deterministic chaos, we ascertain the extent to which the behavior of the magnetic field in such a flow is similar to the behavior of the magnetic field in mirror-asymmetric turbulence. Such a similarity has been found to be achieved if its coefficients A, B, and C are assumed to be random processes.  相似文献   

14.
Wide-field far-UV (FUV, 1344–1786 Å) and near-UV (NUV, 1771–2831 Å) imaging from GALEX provides a deep, comprehensive view of the young stellar populations in hundreds of nearby galaxies, shedding new light on the process of star formation (SF) in different environments, and on the interplay between dust and SF. GALEX’s FUV-NUV color is extremely sensitive to stellar populations of ages up to a few hundred Myrs, unambiguously probing their presence and enabling age-dating and stellar mass estimate, together with the characterization of interstellar dust extinction. The deep sensitivity, combined with the wide field-of-view, made possible in particular the discovery and characterization of star formation in extremely low-density, diffuse gas environments such as outer galaxy disks, tidal tails, low-surface-brightness galaxies (LSB) and dwarf Irregular galaxies, and of rejuvenation episodes in early-type galaxies. Such results provide several missing links for interpreting galaxy classes in an evolutionary context, extend our knowledge of the star-formation process to previously unexplored conditions, constrain models of galaxy disk formation, and clarify the mutual role of dust and star formation. We review a variety of star-forming environments studied by GALEX, and provide some model analysis tools useful for interpretation of GALEX measurements, and potentially as basic science planning tools for next-generation UV instruments.  相似文献   

15.
The experience gained with the current generation of X-ray telescopes like Chandra and XMM-Newton has shown that low energy “soft” protons can pose a severe threat to the possibility to exploit scientific data, reducing the available exposure times by up to 50% and introducing a poorly reproducible background component. These soft protons are present in orbits outside the radiation belts and enter the mirrors, being concentrated towards the focal plane instruments, losing energy along their path and finally depositing their remaining energy in the detectors. Their contribution to the residual background will be even higher for ATHENA with respect to previous missions, given the much higher collecting area of the mirrors, even if the instruments will likely suffer no significant radiation damage from this particles flux. As a consequence this soft proton flux shall be damped with the use of a magnetic diverter to avoid excess background loading on the WFI or X-IFU instruments. We present here a first complete evaluation of this background component for the two focal plane instruments of the ATHENA mission in absence of a magnetic diverter, and derive the requirements for such device to reduce the soft protons induced background below the level required to enable the mission science. We estimate the soft proton flux expected in L2 for the interplanetary component and for the component generated locally by acceleration processes in the magnetotail. We produce a proton response matrix for each of the two instruments of ATHENA focal plane, exploiting two independent Monte Carlo simulations to estimate the optics concentration efficiency, and Geant4 simulations to evaluate the energy loss inside the radiation filters and deposited in the detector. With this modular approach we derive the expected fluxes and spectra for the soft protons component of the background. Finally, we calculate the specifics of a magnetic diverter able to reduce such flux below the required level for both X-IFU and WFI.  相似文献   

16.
In the near future, Parker Solar Probe and Solar Orbiter will provide the first comprehensive in-situ measurements of the solar wind in the inner heliosphere since the Helios mission in the 1970s. We describe a reprocessing of the original Helios ion distribution functions to provide reliable and reproducible data to characterise the proton core population of the solar wind in the inner heliosphere. A systematic fitting of bi-Maxwellian distribution functions was performed to the raw Helios ion distribution function data to extract the proton core number density, velocity, and temperatures parallel and perpendicular to the magnetic field. We present radial trends of these derived proton parameters, forming a benchmark to which new measurements in the inner heliosphere will be compared. The new dataset has been made openly available for other researchers to use, along with the source code used to generate it.  相似文献   

17.
We have classified a sample of 37,492 objects from SDSS into QSOs, galaxies and stars using photometric data over five wave bands (u, g, r, i and z) and UV GALEX data over two wave bands (near-UV and far-UV) based on a template fitting method. The advantage of this method of classification is that it does not require any spectroscopic data and hence the objects for which spectroscopic data is not available can also be studied using this technique. In this study, we have found that our method is consistent by spectroscopic methods given that their UV information is available. Our study shows that the UV colours are especially important for separating quasars and stars, as well as spiral and starburst galaxies. Thus it is evident that the UV bands play a crucial role in the classification and characterization of astronomical objects that emit over a wide range of wavelengths, but especially for those that are bright at UV. We have achieved the efficiency of 89% for the QSOs, 63% for the galaxies and 84% for the stars. This classification is also found to be in agreement with the emission line diagnostic diagrams.  相似文献   

18.
Five sky areas about the radio sources ICRS 1254+571, ICRS 1345+125, ICRS 1641+399, ICRS 1732+389, and ICRS 1807+698 were observed with the aim to identify reliably the extragalactic radio sources in these areas with bright infrared objects and objects in the optical range. The test CCD observations were made in the U, V, and R bands of the Johnson system with the 2-meter telescope of the Terskol Peak Observatory (North Caucasus, Russian Federation). The U, V, and B magnitudes and the equatorial coordinates α and δ in the USNO-A2.0 catalog system were determined for objects down to V ≈ 23m in 8.5′ × 8.5′ areas, and these objects were identified with stars and infrared objects in the 2MASS catalog. The CCD image processing realized within the MIDAS/ROMAFOT program package on the basis of a new method for flat-field elimination is briefly described.  相似文献   

19.
We consider the influence of a finite conductivity on the spectrum of solar p-modes (by taking into account their absorption at cusp resonance levels) in a plane two-layer model that consists of an upper isothermal layer with a uniform horizontal magnetic field and a lower adiabatic layer with a linear increase in temperature with depth. We show that an allowance for the finite, but high conductivity of the medium is required only to calculate the eigenfrequencies of the p-modes for which the resonance levels are located almost at the interface between the layers.  相似文献   

20.
We show that for the discussed scenario of a neutron-star merger in highly neutronized ejecta (Y e ?0.1), neutron-induced fission plays a major role in the r-process cycling and is the main obstacle to the formation of superheavy elements. At the final stage of the r-process, when the free-neutron density is already too low to maintain rapid nucleosynthesis and only beta-decay and beta-delayed fission take place, the leading role in forming the final abundances of chemical elements passes to delayed fission. The latter ultimately changes the abundances of individual isotopes in the region before the second peak and heavier than lead, which, in particular, affects the determination of the age of the Galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号