首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Radio pulsars show remarkable clock-like stability, which make them useful astronomy tools in experiments to test equation of state of neutron stars and detecting gravitational waves using pulsar timing techniques. A brief review of relevant astrophysical experiments is provided in this paper highlighting the current state-of-the-art of these experiments. A program to monitor frequently glitching pulsars with Indian radio telescopes using high cadence observations is presented, with illustrations of glitches detected in this program, including the largest ever glitch in PSR B0531+21. An Indian initiative to discover sub-\(\mu \)Hz gravitational waves, called Indian Pulsar Timing Array (InPTA), is also described briefly, where time-of-arrival uncertainties and post-fit residuals of the order of \(\mu \)s are already achievable, comparable to other international pulsar timing array experiments. While timing the glitches and their recoveries are likely to provide constraints on the structure of neutron stars, InPTA will provide upper limits on sub-\(\mu \)Hz gravitational waves apart from auxiliary pulsar science. Future directions for these experiments are outlined.  相似文献   

2.
G. Srinivasan et al. (1990) proposed a simple and elegant explanation for the reduction of the neutron star magnetic dipole moment during binary evolution leading to low mass X-ray binaries and eventually to millisecond pulsars: Quantized vortex lines in the neutron star core superfluid will pin against the quantized flux lines of the proton superconductor. As the neutron star spins down in the wind accretion phase of binary evolution, outward motion of vortex lines will reduce the dipole magnetic moment in proportion to the rotation rate. The presence of a toroidal array of flux lines makes this mechanism inevitable and independent of the angle between the rotation and magnetic axes. The incompressibility of the flux-line array (Abrikosov lattice) determines the epoch when the mechanism will be effective throughout the neutron star. Flux vortex pinning will not be effective during the initial young radio pulsar phase. It will, however, be effective and reduce the dipole moment in proportion with the rotation rate during the epoch of spindown by wind accretion as proposed by Srinivasan et al. The mechanism operates also in the presence of vortex creep.  相似文献   

3.
Exploring weakly perturbed Keplerian motion within the restricted three-body problem, Lidov (Planet Space Sci 9:719–759, 1962) and, independently, Kozai (Astron J 67:591–598, 1962) discovered coupled oscillations of eccentricity and inclination (the KL cycles). Their classical studies were based on an integrable model of the secular evolution, obtained by double averaging of the disturbing function approximated with its first non-trivial term. This was the quadrupole term in the series expansion with respect to the ratio of the semimajor axis of the disturbed body to that of the disturbing body. If the next (octupole) term is kept in the expression for the disturbing function, long-term modulation of the KL cycles can be established (Ford et al. in Astrophys J 535:385–401, 2000; Naoz et al. in Nature 473:187–189, 2011; Katz et al. in Phys Rev Lett 107:181101, 2011). Specifically, flips between the prograde and retrograde orbits become possible. Since such flips are observed only when the perturber has a nonzero eccentricity, the term “eccentric Kozai–Lidov effect” (or EKL effect) was proposed by Lithwick and Naoz (Astrophys J 742:94, 2011) to specify such behavior. We demonstrate that the EKL effect can be interpreted as a resonance phenomenon. To this end, we write down the equations of motion in terms of “action-angle” variables emerging in the integrable Kozai–Lidov model. It turns out that for some initial values the resonance is degenerate and the usual “pendulum” approximation is insufficient to describe the evolution of the resonance phase. Analysis of the related bifurcations allows us to estimate the typical time between the successive flips for different parts of the phase space.  相似文献   

4.
By applying Birkhoff’s theorem to the problem of the general relativistic collapse of a uniform density dust, we directly show that the density of the dust ρ=0 even when its proper number density n would be assumed to be finite! The physical reason behind this exact result can be traced back to the observation of Arnowitt et al. (Phys. Rev. Lett. 4: 375, 1960) that the gravitational mass of a neutral point particle is zero: m=0. And since, a dust is a mere collection of neutral point particles, unlike a continuous hydrodynamic fluid, its density ρ=mn=0. It is nonetheless found that for k=?1, a homogeneous dust can collapse and expand special relativistically in the fashion of a Milne universe. Thus, in reality, general relativistic homogeneous dust collapse does not lead to the formation of any black hole in conformity of many previous studies (Logunov et al., Phys. Part. Nucl. 37: 317, 2006; Kiselev et al., Theor. Math. Phys. 164: 972, 2010; Mitra, J. Math. Phys. 50: 042502, 2009a; Suggett, J. Phys. A 12: 375 1979b). Interestingly, this result is in agreement with the intuition of Oppenheimer and Snyder (Phys. Rev. 56: 456, 1939) too:“Physically such a singularity would mean that the expressions used for the energy-momentum tensor does not take into account some essential physical fact which would really smooth the singularity out. Further, a star in its early stages of development would not possess a singular density or pressure, it is impossible for a singularity to develop in a finite time.”  相似文献   

5.
Hot WDs in binary systems with a less evolved star are particularly invaluable astrophysical probes, the unevolved companion enabling better derivation of distance and age than is usually possible for post-AGB objects, and therefore also of their radius and luminosity. But hot white dwarfs (WD) are elusive at all wavelengths except the UV (Bianchi et al. 2011a). From our GALEX UV source catalogs (Bianchi et al. 2011a,b, 2014, 2017) matched to SDSS, we identified thousands of candidate hot WDs including WDs in binary systems consisting of a hot WD and a companion of spectral type from A to M. The identification and preliminary characterization of the stellar parameters is based on the analysis of the photometric SED from far-UV to z-band.We have observed subsamples of the UV-selected WDs with the Hubble Space Telescope (HST) to better characterize their stellar parameters. We obtained (1) UV spectroscopy with STIS and analyzed the UV spectra together with optical SDSS spectra, and (2) multi-band imaging with WFC3 (\(0.04^{\prime\prime}/\mbox{pixel}\)) to measure angular separation and individual SEDs of the pair’s components in binary systems. In our HST/WFC3 sample of 59 hot-WD binaries with late-type companions, we found that at least a dozen have possibly evolved without exchanging mass. The UV STIS spectroscopy led to the revision of previous results based on optical spectra only, because of the often undetectable or unquantifiable contribution of the hot component to the optical fluxes.  相似文献   

6.
Contemporary piece of writing devotes to the investigation of plane symmetric cosmological model with quark and strange quark matter in the deformations of the Einstein’s theory of General Relativity (GR). At small or large scales (ultraviolet or infrared gravity), deformations of the Einstein’s theory could provide a better handling of cosmic acceleration without magnetism (along with singularities). In particular, a proper deformation of GR in the ultraviolet regime could play the role of describing the transition between GR and quantum gravity. As a matter of fact, although with a different purpose in mind, it was Einstein himself who proposed in the 30’s the reformulation of GR by taking the field of orthonormal frames or tetrads as the dynamical variable instead of the metric tensor (Einstein, Phys. Math. Kl 217, 401, 1928). As per the observation, pressure and energy density of the model approaches the bag constant in negative and positive ways at \(t\rightarrow \infty \), i.e. \(p\rightarrow -B_c \) and \(\rho \rightarrow B_c \), the negative pressure due to the Dark Energy (DE) in the context of accelerated expansion of the universe. So the strange quark matter gives an idea of existence of dark energy in the universe and supports the observations of the SNe-I (Riess et al., Astron. J. 116,1009, 1998; Perlmutter et al., Astrophys. J. 517, 565, 1999). Also these results agree with the study of Aktas and Aygun (Chinese J. Phys. 55, 71, 2017) and Sahoo et al. (New. Astron. 60, 80, 2018).  相似文献   

7.
The dependence of the spin frequency derivative \(\dot \nu \) of accreting neutron stars with a strongmagnetic field (X-ray pulsars) on the mass accretion rate (bolometric luminosity, Lbol) has been investigated for eight transient pulsars in binary systems with Be stars. Using data from the Fermi/GBM and Swift/BAT telescopes, we have shown that for seven of the eight systems the dependence \(\dot \nu \) (Lbol) can be fitted by the model of angular momentum transfer through an accretion disk, which predicts the relation \(\dot \nu \)L6/7bol. Hysteresis in the dependence \(\dot \nu \) (Lbol) has been confirmed in the system V 0332+53 and has been detected for the first time in the systems KS 1947+300, GRO J1008-57, and 1A 0535+26. Estimates for the radius of the neutron star magnetosphere in all of the investigated systems have been obtained. We show that this quantity varies from pulsar to pulsar and depends strongly on the analytical model and the estimates for the neutron star and binary system parameters.  相似文献   

8.
The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, \(B_{\mathrm{new}}^{0}=3.3\times10^{-4}B/P\), where \(P\) is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the \(\cot\chi\)-law, where \(\chi\) is a random quantity uniformly distributed in the interval \([0,\pi/2]\). Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle between the magnetic and rotational axes and gives insight into the neutron star unification on the geometrical basis.  相似文献   

9.
The term “jumping” Trojan was introduced by Tsiganis et al. (Astron Astrophys 354:1091–1100, 2000) in their studies of long-term dynamics exhibited by the asteroid (1868) Thersites, which had been observed to jump from librations around \(L_4\) to librations around \(L_5\). Another example of a “jumping” Trojan was found by Connors et al. (Nature 475:481–483, 2011): librations of the asteroid 2010 TK7 around the Earth’s libration point \(L_4\) preceded by its librations around \(L_5\). We explore the dynamics of “jumping” Trojans under the scope of the restricted planar elliptical three-body problem. Via double numerical averaging we construct evolutionary equations, which allow analyzing transitions between different regimes of orbital motion.  相似文献   

10.
Fast Radio Bursts (FRBs) are short duration highly energetic dispersed radio pulses. We developed a generic formalism (Bera et al. 2016, MNRAS, 457, 2530) to estimate the FRB detection rate for any radio telescope with given parameters. By using this model, we estimated the FRB detection rate for two Indian radio telescope; the Ooty Wide Field Array (OWFA) (Bhattacharyya et al. 2017, J. Astrophys. Astr., 38, 17) and the upgraded Giant Metrewave Radio Telescope (uGMRT) (Bhattacharyya et al. 2018, J. Astrophys. Astr.) with three beam-forming modes. Here, we summarize these two works. We considered the energy spectrum of FRBs as a power law and the energy distribution of FRBs as a Dirac delta function and a Schechter luminosity function. We also considered two scattering models proposed by Bhat et al. (2004, Astrophys. J. Suppl. Series, 206, 1) and Macquart & Koay (2013, ApJ, 776, 125) for these works and we consider FRB pulse without scattering as a special case. We found that the future prospects of detecting FRBs by using these two Indian radio telescopes is good. They are capable to detect a significant number of FRBs per day. According to our prediction, we can detect \(\sim 10^5{-}10^8\), \(\sim 10^3{-}10^6\) and \(\sim 10^5{-}10^7\) FRBs per day by using OWFA, commensal systems of GMRT and uGMRT respectively. Even a non detection of the predicted events will be very useful in constraining FRB properties.  相似文献   

11.
We present a new spectroscopic sample of 11 quasars at intermediate redshift observed with the Infrared Spectrometer and Array Camera (ISAAC) on the ESO Very Large Telescope (VLT), covering O i λ8446 and the Ca ii triplet 8498, 8542, 8662. The new observations – that supplement the sample presented by Martínez-Aldama et al. (2015) – allow us to confirm the constraints on physical conditions and location of the region emitting the low ionization lines, as well as the relation between Ca ii and Fe ii.  相似文献   

12.
Here we report an in-depth reanalysis of an article by Vats et al. (Astrophys. J. 548, L87, 2001) that was based on measurements of differential rotation with altitude as a function of observing frequencies (as lower and higher frequencies indicate higher and lower heights, respectively) in the solar corona. The radial differential rotation of the solar corona is estimated from daily measurements of the disc-integrated solar radio flux at 11 frequencies: 275, 405, 670, 810, 925, 1080, 1215, 1350, 1620, 1755, and 2800 MHz. We use the same data as were used in Vats et al. (2001), but instead of the twelfth maxima of autocorrelograms used there, we use the first secondary maximum to derive the synodic rotation period. We estimate synodic rotation by Gaussian fit of the first secondary maximum. Vats et al. (2001) reported that the sidereal rotation period increases with increasing frequency. The variation found by them was from 23.6 to 24.15 days in this frequency range, with a difference of only 0.55 days. The present study finds that the sidereal rotation period increases with decreasing frequency. The variation range is from 24.4 to 22.5 days, and the difference is about three times larger (1.9 days). However, both studies give a similar rotation period at 925 MHz. In Vats et al. (2001) the Pearson’s factor with trend line was 0.86, whereas present analysis obtained a \({\sim}\,0.97\) Pearson’s factor with the trend line. Our study shows that the solar corona rotates more slowly at higher altitudes, which contradicts the findings reported in Vats et al. (2001).  相似文献   

13.
We consider a cosmological model based on a generalization of the equation of state proposed by Nojiri and Odintsov (2004) and ?tefan?i? (2005, 2006). We argue that this model works as a dark fluid model which can interpolate between dust equation of state and the dark energy equation of state. We show how the asymptotic behavior of the equation of state constrained the parameters of the model. The causality condition for the model is also studied to constrain the parameters and the fixed points are tested to determine different solution classes. Observations of Hubble diagram of SNe Ia supernovae are used to further constrain the model. We present an exact solution of the model and calculate the luminosity distance and the energy density evolution. We also calculate the deceleration parameter to test the state of the universe expansion.  相似文献   

14.
We have established an iterative scheme to calculate with 15-digit accuracy the numerical values of Ambartsumian-Chandrasekhar’s \(H\)-functions for anisotropic scattering characterized by the four-term phase function: the method incorporates some advantageous features of the iterative procedure of Kawabata (Astrophys. Space Sci. 358:32, 2015) and the double-exponential integration formula (DE-formula) of Takahashi and Mori (Publ. Res. Inst. Math. Sci. Kyoto Univ. 9:721, 1974), which proved highly effective in Kawabata (Astrophys. Space Sci. 361:373, 2016). Actual calculations of the \(H\)-functions have been carried out employing 27 selected cases of the phase function, 56 values of the single scattering albedo \(\varpi_{0}\), and 36 values of an angular variable \(\mu(= \cos\theta)\), with \(\theta\) being the zenith angle specifying the direction of incidence and/or emergence of radiation. Partial results obtained for conservative isotropic scattering, Rayleigh scattering, and anisotropic scattering due to a full four-term phase function are presented. They indicate that it is important to simultaneously verify accuracy of the numerical values of the \(H\)-functions for \(\mu<0.05\), the domain often neglected in tabulation. As a sample application of the isotropic scattering \(H\)-function, an attempt is made in Appendix to simulate by iteratively solving the Ambartsumian equation the values of the plane and spherical albedos of a semi-infinite, homogeneous atmosphere calculated by Rogovtsov and Borovik (J. Quant. Spectrosc. Radiat. Transf. 183:128, 2016), who employed their analytical representations for these quantities and the single-term and two-term Henyey-Greenstein phase functions of appreciably high degrees of anisotropy. While our results are in satisfactory agreement with theirs, our procedure is in need of a faster algorithm to routinely deal with problems involving highly anisotropic phase functions giving rise to near-conservative scattering.  相似文献   

15.
Satellite orbits around a central body with arbitrary zonal harmonics are considered in a relativistic framework. Our starting point is the relativistic Celestial Mechanics based upon the first post-Newtonian approximation to Einstein’s theory of gravity as it has been formulated by Damour et al. (Phys Rev D 43:3273–3307, 1991; 45:1017–1044, 1992; 47:3124–3135, 1993; 49:618–635, 1994). Since effects of order \((\mathrm{GM}/c^2R) \times J_k\) with \(k \ge 2\) for the Earth are very small (of order \( 7 \times 10^{-10}\,\times \,J_k\)) we consider an axially symmetric body with arbitrary zonal harmonics and a static external gravitational field. In such a field the explicit \(J_k/c^2\)-terms (direct terms) in the equations of motion for the coordinate acceleration of a satellite are treated first with first-order perturbation theory. The derived perturbation theoretical results of first order have been checked by purely numerical integrations of the equations of motion. Additional terms of the same order result from the interaction of the Newtonian \(J_k\)-terms with the post-Newtonian Schwarzschild terms (relativistic terms related to the mass of the central body). These ‘mixed terms’ are treated by means of second-order perturbation theory based on the Lie-series method (Hori–Deprit method). Here we concentrate on the secular drifts of the ascending node \(<\!{\dot{\Omega }}\!>\) and argument of the pericenter \(<\!{\dot{\omega }}\!>\). Finally orders of magnitude are given and discussed.  相似文献   

16.
A growing body of evidence suggests the operation of life and life processes in comets as well in larger icy bodies in the solar system including Enceladus. Attempts to interpret such data without invoking active biology are beginning to look weak and flawed. The emerging new paradigm is that life is a cosmic phenomenon as proposed by Hoyle and Wickramasinghe (Lifecloud: the Origin of Life in the Galaxy, 1978) and first supported by astronomical spectroscopy (Wickramasinghe and Allen, Nature 287:518, 1980; Allen and Wickramasinghe, Nature 294:239, 1981; Wickramasinghe and Allen, Nature 323:44, 1986). Comets are the transporters and amplifiers of microbial life throughout the Universe and are also, according to this point of view, the carriers of viruses that contribute to the continued evolution of life. Comets brought life to Earth 4.2 billion years ago and they continue to do so. Space extrapolations of comets, Enceladus and possibly Pluto supports this point of view. Impacts of asteroids and comets on the Earth as well as on other planetary bodies leads to the ejection of life-bearing dust and rocks and a mixing of microbiota on a planetary scale and on an even wider galactic scale. It appears inevitable that the entire galaxy will be a single connected biosphere.  相似文献   

17.
Photon-photon scattering of gamma-rays on the cosmic microwave background has been studied using the low energy approximation of the total cross section by Zdziarski and Svensson (Astrophys. J. 344:551, 1989), Svensson and Zdziarski (Astrophys. J. 349:415, 1990). Here, the cosmic horizon due to photon-photon scattering is accurately determined using the exact cross section and we find that photon-photon scattering dominates over the pair production at energies smaller than 1.68 GeV and at redshifts larger than 180.  相似文献   

18.
This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res.120, 7094, 2015 and Yermolaev et al. in Solar Phys.292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, \(\varphi\), in CIRs from ?2 to \(2^{\circ}\) agree with earlier results (e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle \(\varphi\) in ICMEs changes from 2 to \(-2^{\circ}\), while in sheaths it changes from ?2 to \(2^{\circ}\) (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle \(\vartheta\) on all the intervals of the chosen SW types, the angle \(\vartheta\) is almost constant at \({\sim}\,1^{\circ}\). We made for the first time a selection of SW events with increasing and decreasing \(\vartheta\) and found that the average \(\vartheta\) temporal profiles in the selected events have the same “integral-like” shape as for \(\varphi\). The difference in \(\varphi\) and \(\vartheta\) average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.  相似文献   

19.
It has been argued (Gough and McIntyre in Nature 394, 755, 1998) that the only way for the radiative interior of the Sun to be rotating uniformly in the face of the differentially rotating convection zone is for it to be pervaded by a large-scale magnetic field, a field which is responsible also for the thinness of the tachocline. It is most likely that this field is the predominantly dipolar residual component of a tangled primordial field that was present in the interstellar medium from which the Sun condensed (Braithwaite and Spruit in Nature 431, 819, 2004), and that advection by the meridional flow in the tachocline has caused the dipole axis to be inclined from the axis of rotation by about \(60^{\circ}\) (Gough in Geophys. Astrophys. Fluid Dyn., 106, 429, 2012). It is suggested here that, notwithstanding its turbulent passage through the convection zone, a vestige of that field is transmitted by the solar wind to Earth, where it modulates the geomagnetic field in a periodic way. The field variation reflects the inner rotation of the Sun, and, unlike turbulent-dynamo-generated fields, must maintain phase. I report here a new look at an earlier analysis of the geomagnetic field by Svalgaard and Wilcox (Solar Phys. 41, 461, 1975), which reveals evidence for appropriate phase coherence, thereby adding support to the tachocline theory.  相似文献   

20.
This paper deals with a new formulation of the creep tide theory (Ferraz-Mello in Celest Mech Dyn Astron 116:109, 2013—Paper I) and with the tidal dissipation predicted by the theory in the case of stiff bodies whose rotation is not synchronous but is oscillating around the synchronous state with a period equal to the orbital period. We show that the tidally forced libration influences the amount of energy dissipated in the body and the average perturbation of the orbital elements. This influence depends on the libration amplitude and is generally neglected in the study of planetary satellites. However, they may be responsible for a 27% increase in the dissipation of Enceladus. The relaxation factor necessary to explain the observed dissipation of Enceladus (\(\gamma =1.2{-}3.8\times 10^{-7}\ \mathrm{s}^{-1}\)) has the expected order of magnitude for planetary satellites and corresponds to the viscosity \(0.6{-}1.9 \times 10^{14}\) Pa s, which is in reasonable agreement with the value recently estimated by Efroimsky (Icarus 300:223, 2018) (\(0.24 \times 10^{14}\) Pa s) and with the value adopted by Roberts and Nimmo (Icarus 194:675, 2008) for the viscosity of the ice shell (\(10^{13}{-}10^{14}\) Pa s). For comparison purposes, the results are extended also to the case of Mimas and are consistent with the negligible dissipation and the absence of observed tectonic activity. The corrections of some mistakes and typos of paper II (Ferraz-Mello in Celest Mech Dyn Astron 122:359, 2015) are included at the end of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号