首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

2.
The recent discovery of extrasolar planets and planetary systems has raised many new research problems for astronomers. It has become apparent that the newly discovered systems differ significantly from the Solar System. In particular, many massive planets of other stars, in contrast to Jupiter, have large orbital eccentricities. In the present paper, we investigate several dynamic implications of this finding. Numerical integration results show that the orbits of low-mass planets in such systems usually have large evolving eccentricities. If the motion remains regular and no close encounters occur, the orbital evolution can be described analytically by using secular perturbations of Laplace–Lagrange equations. In terms of the Lagrange variables, the trajectories are circles, and the semimajor axis remains constant. The loss of the regularity of motion is normally followed by a nonmonotone synchronous increase in the semimajor axis and eccentricity, and the orbit becomes similar to that of a large-period comet. Narrow resonance-related regions include more complex motions.  相似文献   

3.
The most puzzling property of the extrasolar planets discovered by recent radial velocity surveys is their high orbital eccentricities, which are very difficult to explain within our current theoretical paradigm for planet formation. Current data reveal that at least 25% of these planets, including some with particularly high eccentricities, are orbiting a component of a binary star system. The presence of a distant companion can cause significant secular perturbations in the orbit of a planet. At high relative inclinations, large-amplitude, periodic eccentricity perturbations can occur. These are known as “Kozai cycles” and their amplitude is purely dependent on the relative orbital inclination. Assuming that every planet host star also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, we determine the resulting eccentricity distribution of planets and compare it to observations? We find that perturbations from a binary companion always appear to produce an excess of planets with both very high (?0.6) and very low (e ? 0.1) eccentricities. The paucity of near-circular orbits in the observed sample implies that at least one additional mechanism must be increasing eccentricities. On the other hand, the overproduction of very high eccentricities observed in our models could be combined with plausible circularization mechanisms (e.g., friction from residual gas) to create more planets with intermediate eccentricities (e? 0.1–0.6).  相似文献   

4.
The significant orbital eccentricities of most giant extrasolar planets may have their origin in the gravitational dynamics of initially unstable multiple planet systems. In this work, we explore the dynamics of two close planets on inclined orbits through both analytical techniques and extensive numerical scattering experiments. We derive a criterion for two equal mass planets on circular inclined orbits to achieve Hill stability, and conclude that significant radial migration and eccentricity pumping of both planets occurs predominantly by 2:1 and 5:3 mean motion resonant interactions. Using Laplace-Lagrange secular theory, we obtain analytical secular solutions for the orbital inclinations and longitudes of ascending nodes, and use those solutions to distinguish between the secular and resonant dynamics which arise in numerical simulations. We also illustrate how encounter maps, typically used to trace the motion of massless particles, may be modified to reproduce the gross instability seen by the numerical integrations. Such a correlation suggests promising future use of such maps to model the dynamics of more coplanar massive planet systems.  相似文献   

5.
Andrew W. Smith 《Icarus》2009,201(1):381-58
An investigation of the stability of systems of 1 M (Earth-mass) bodies orbiting a Sun-like star has been conducted for virtual times reaching 10 billion years. For the majority of the tests, a symplectic integrator with a fixed timestep of between 1 and 10 days was employed; however, smaller timesteps and a Bulirsch-Stoer integrator were also selectively utilized to increase confidence in the results. In most cases, the planets were started on initially coplanar, circular orbits, and the longitudinal initial positions of neighboring planets were widely separated. The ratio of the semimajor axes of consecutive planets in each system was approximately uniform (so the spacing between consecutive planets increased slowly in terms of distance from the star). The stability time for a system was taken to be the time at which the orbits of two or more planets crossed. Our results show that, for a given class of system (e.g., three 1 M planets), orbit crossing times vary with planetary spacing approximately as a power law over a wide range of separation in semimajor axis. Chaos tests indicate that deviations from this power law persist for changed initial longitudes and also for small but non-trivial changes in orbital spacing. We find that the stability time increases more rapidly at large initial orbital separations than the power-law dependence predicted from moderate initial orbital separations. Systems of five planets are less stable than systems of three planets for a specified semimajor axis spacing. Furthermore, systems of less massive planets can be packed more closely, being about as stable as 1 M planets when the radial separation between planets is scaled using the mutual Hill radius. Finally, systems with retrograde planets can be packed substantially more closely than prograde systems with equal numbers of planets.  相似文献   

6.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

7.
We numerically investigate the stability of systems of 1 \({{\rm M}_{\oplus}}\) planets orbiting a solar-mass star. The systems studied have either 2 or 42 planets per occupied semimajor axis, for a total of 6, 10, 126, or 210 planets, and the planets were started on coplanar, circular orbits with the semimajor axes of the innermost planets at 1 AU. For systems with two planets per occupied orbit, the longitudinal initial locations of planets on a given orbit were separated by either 60° (Trojan planets) or 180°. With 42 planets per semimajor axis, initial longitudes were uniformly spaced. The ratio of the semimajor axes of consecutive coorbital groups in each system was approximately uniform. The instability time for a system was taken to be the first time at which the orbits of two planets with different initial orbital distances crossed. Simulations spanned virtual times of up to 1 × 108, 5 × 105, and 2 × 105 years for the 6- and 10-planet, 126-planet, and 210-planet systems, respectively. Our results show that, for a given class of system (e.g., five pairs of Trojan planets orbiting in the same direction), the relationship between orbit crossing times and planetary spacing is well fit by the functional form log(t c /t 0) = b β + c, where t c is the crossing time, t 0 = 1 year, β is the separation in initial orbital semimajor axis (in terms of the mutual Hill radii of the planets), and b and c are fitting constants. The same functional form was observed in the previous studies of single planets on nested orbits (Smith and Lissauer 2009). Pairs of Trojan planets are more stable than pairs initially separated by 180°. Systems with retrograde planets (i.e., some planets orbiting in the opposite sense from others) can be packed substantially more closely than can systems with all planets orbiting in the same sense. To have the same characteristic lifetime, systems with 2 or 42 planets per orbit typically need to have about 1.5 or 2 times the orbital separation as orbits occupied by single planets, respectively.  相似文献   

8.
赵佳  赵刚 《天文学进展》2012,30(1):48-63
自1995年第一颗类太阳恒星周围的系外行星发现以来,随着已发现的系外行星数目的增多,对系外行星性质的统计分析变得重要和有意义。截至2011年6月9日,共发现系外行星555颗。以这些系外行星的轨道参数为依据,对系外行星的性质进行统计分析,得出了一些有意义的结论。同时简要介绍现有的行星形成与演化模型并依据得出的行星统计性质对其进行检验,这对于系外行星的进一步探测具有一定的指导作用。  相似文献   

9.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

10.
Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.  相似文献   

11.
We present three improved and five new mutual orbits of transneptunian binary systems (58534) Logos-Zoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK183, (149780) Altjira, 2001 QY297, 2003 QW111, and 2003 QY90 based on Hubble Space Telescope and Keck II laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1600 to 37,000 km, eccentricities ranging from 0 to 0.8, and system masses ranging from 2 × 1017 to 2 × 1022 kg. Based on the relative brightnesses of primaries and secondaries, most of these systems consist of near equal-sized pairs, although a few of the most massive systems are more lopsided. The observed distribution of orbital properties suggests that the most loosely-bound transneptunian binary systems are only found on dynamically cold heliocentric orbits. Of the 22 known binary mutual orbits, orientation ambiguities are now resolved for 9, of which 7 are prograde and 2 are retrograde, consistent with a random distribution of orbital orientations, but not with models predicting a strong preference for retrograde orbits. To the extent that other perturbations are not dominant, the binary systems undergo Kozai oscillations of their eccentricities and inclinations with periods of the order of tens of thousands to millions of years, some with strikingly high amplitudes.  相似文献   

12.
In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5?C6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4?C5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet??s semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5?C2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet?Cplanet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.  相似文献   

13.
We present the results of hydrodynamic simulations of Jovian mass protoplanets that form in circumbinary discs. The simulations follow the orbital evolution of the binary plus protoplanet system acting under their mutual gravitational forces, and forces exerted by the viscous circumbinary disc. The evolution involves the clearing of the inner circumbinary disc initially, so that the binary plus protoplanet system orbits within a low density cavity. Continued interaction between disc and protoplanet causes inward migration of the planet towards the inner binary. Subsequent evolution can take three distinct paths: (i) the protoplanet enters the 4 : 1 mean motion resonance with the binary, but is gravitationally scattered through a close encounter with the secondary star; (ii) the protoplanet enters the 4 : 1 mean motion resonance, the resonance breaks, and the planet remains in a stable orbit just outside the resonance; (iii) when the binary has initial eccentricity   e bin≥ 0.2  , the disc becomes eccentric, leading to a stalling of the planet migration, and the formation of a stable circumbinary planet.
These results have implications for a number of issues in the study of extrasolar planets. The ejection of protoplanets in close binary systems provides a source of 'free-floating planets', which have been discovered recently. The formation of a large, tidally truncated cavity may provide an observational signature of circumbinary planets during formation. The existence of protoplanets orbiting stably just outside a mean motion resonance (4 : 1) in the simulations indicate that such sites may harbour planets in binary star systems, and these could potentially be observed. Finally, the formation of stable circumbinary planets in eccentric binary systems indicates that circumbinary planets may not be uncommon.  相似文献   

14.
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.  相似文献   

15.
Dynamical relaxation and massive extrasolar planets   总被引:1,自引:0,他引:1  
Following the suggestion of Black that some massive extrasolar planets may be associated with the tail of the distribution of stellar companions, we investigate a scenario in which 5 N 100 planetary mass objects are assumed to form rapidly through a fragmentation process occuring in a disc or protostellar envelope on a scale of 100 au. These are assumed to have formed rapidly enough through gravitational instability or fragmentation that their orbits can undergo dynamical relaxation on a time-scale of ∼100 orbits.
Under a wide range of initial conditions and assumptions, the relaxation process ends with either (i) one potential 'hot Jupiter' plus up to two 'external' companions, i.e. planets orbiting near the outer edge of the initial distribution; (ii) one or two 'external' planets or even none at all; (iii) one planet on an orbit with a semi-major axis of 10 to 100 times smaller than the outer boundary radius of the inital distribution together with an 'external' companion. Most of the other objects are ejected and could contribute to a population of free-floating planets. Apart from the potential 'hot Jupiters', all the bound objects are on orbits with high eccentricity, and also with a range of inclination with respect to the stellar equatorial plane. We found that, apart from the close orbiters, the probability of ending up with a planet orbiting at a given distance from the central star increases with the distance. This is because of the tendency of the relaxation process to lead to collisions with the central star. The scenario we envision here does not impose any upper limit on the mass of the planets. We discuss the application of these results to some of the more massive extrasolar planets.  相似文献   

16.
We consider particles with low free or proper eccentricity that are orbiting near planets on eccentric orbits. Through collisionless particle integration, we numerically find the location of the boundary of the chaotic zone in the planet's corotation region. We find that the distance in semimajor axis between the planet and boundary depends on the planet mass to the 2/7 power and is independent of the planet eccentricity, at least for planet eccentricities below 0.3. Our integrations reveal a similarity between the dynamics of particles at zero eccentricity near a planet in a circular orbit and with zero free eccentricity particles near an eccentric planet. The 2/7th law has been previously explained by estimating the semimajor at which the first-order mean motion resonances are large enough to overlap. Orbital dynamics near an eccentric planet could differ due to first-order corotation resonances that have strength proportional to the planet's eccentricity. However, we find that the corotation resonance width at low free eccentricity is small; also the first-order resonance width at zero free eccentricity is the same as that for a zero-eccentricity particle near a planet in a circular orbit. This accounts for insensitivity of the chaotic zone width to planet eccentricity. Particles at zero free eccentricity near an eccentric planet have similar dynamics to those at zero eccentricity near a planet in a circular orbit.  相似文献   

17.
Öpik's assumptions on the geometry of particle trajectories leading to and through planetary close encounters are used to compute the distribution of changes in heliocentric orbital elements that result from such encounters for a range of initial heliocentric orbits. Behaviour at encounter is assumed to follow two-body (particle—planet) gravitational scattering, while before and after encounter particle motion is only governed by the force of the Sun. Derivation of these distributions allows precise analysis of the probability of various outcomes in terms of the physical characteristics of the bodies involved. For example, they allow an explanation and prediction of the asymmetry of the extreme energy perturbations for different initial orbits. The formulae derived here may be applied to problems including the original accumulation of planets and satellites, and the continuing evolution of populations of small bodies, such as asteroids and comets.  相似文献   

18.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

19.
Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] have proposed that the current orbital architecture of the outer Solar System could have been established if it was initially compact and Jupiter and Saturn crossed the 2:1 orbital resonance by divergent migration. The crossing led to close encounters among the giant planets, but the orbital eccentricities and inclinations were damped to their current values by interactions with planetesimals. Brunini [Brunini, A., 2006. Nature 440, 1163-1165] has presented widely publicized numerical results showing that the close encounters led to the current obliquities of the giant planets. We present a simple analytic argument which shows that the change in the spin direction of a planet relative to an inertial frame during an encounter between the planets is very small and that the change in the obliquity (which is measured from the orbit normal) is due to the change in the orbital inclination. Since the inclinations are damped by planetesimal interactions on timescales much shorter than the timescales on which the spins precess due to the torques from the Sun, especially for Uranus and Neptune, the obliquities should return to small values if they are small before the encounters. We have performed simulations using the symplectic integrator SyMBA, modified to include spin evolution due to the torques from the Sun and mutual planetary interactions. Our numerical results are consistent with the analytic argument for no significant remnant obliquities.  相似文献   

20.
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analogue of the Solar system. Our work is inspired by the work of Malhotra & Minton. Using the linear Laplace–Lagrange theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However, due to uncertain or unconstrained orbital parameters, the subsystem of Jupiters may be found in a dynamically active region of the phase space spanned by low-order mean-motion resonances. To generalize this secular model, we construct a semi-analytical averaging method in terms of the restricted problem. The secular orbits of large planets are approximated by numerically averaged osculating elements. They are used to calculate the mean orbits of terrestrial planets by means of a high-order analytic secular theory developed in our previous works. We found regions in the parameter space of the problem in which stable, quasi-circular orbits in the HZ are permitted. The excitation of eccentricity in the HZ strongly depends on the apsidal angle of jovian orbits. For some combinations of that angle, eccentricities and semimajor axes consistent with the observations, a terrestrial planet may survive in low eccentric orbits. We also study the effect of post-Newtonian gravity correction on the innermost secular resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号