首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report observations of Icelandic hillside gully systems that are near duplicates of gullies observed on high-latitude martian hillsides. The best Icelandic analogs involve basaltic talus slopes at the angle of repose, with gully formation by debris flows initiated by ground water saturation, and/or by drainage of water from upslope cliffs. We report not only the existence of Mars analog gullies, but also an erosional sequence of morphologic forms, found both on Mars and in Iceland. The observations support hypotheses calling for creation of martian gullies by aqueous processes. Issues remain whether the water in each case comes only from surficial sources, such as melting of ground ice or snow, or from underground sources such as aquifers that gain surface access in hillsides. Iceland has many examples of the former, but the latter mechanism is not ruled out. Our observations are consistent with the martian debris flow mechanism of F. Costard et al. (2001c, Science295, 110-113), except that classic debris flows begin at midslope more frequently than on Mars. From morphologic observations, we suggest that some martian hillside gully systems not only involve significant evolution by extended erosive activity, but gully formation may occur in episodes, and the time interval since the last episode is considerably less than the time interval needed to erase the gully through normal martian obliteration processes.  相似文献   

2.
In this work we consider when and how much liquid water during present climate is possible within the gullies observed on the surface of Mars. These features are usually found on poleward directed slopes. We analyse the conditions for melting of H2O ice, which seasonally condenses within the gullies. We follow full annual cycle of condensation and sublimation of atmospheric CO2 and H2O, accounting for the heat and mass transport in the soil. During the summer, once the facets of the gullies are exposed to the Sun the water ice can melt and evaporate. Two mid latitude locations in both hemispheres are considered. The model includes both the rough geometry of the gullies as well as the slope of the surface where the gullies appear. It is an extension of the model developed to calculate condensation of CO2 ice in troughs of different sizes, including polygonal features on Mars (Kossacki and Markiewicz, 2002, Icarus 160, 73; Kossacki et al., 2003, Planet. Space Sci. 51, 569). We have found, that water ice accumulated during winter can undergo transition to the liquid phase after complete sublimation of CO2 ice. The amount of liquid water depends on water content in the atmosphere and on the local wind speed. It is probably not enough to destabilise the slope and cause flow of the surface material. However, even the small amounts of liquid water predicted, can play an important role in surface chemistry, in increasing the cohesive strength of the soil's surface layer and possibly may have some exobiological implications.  相似文献   

3.
Gullies are extremely young erosional/depositional systems on Mars that have been carved by an agent that was likely to have been comprised in part by liquid water [Malin, M.C., Edgett, K.S., 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330-2335; McEwen, A.S. et al., 2007. A closer look at water-related geologic activity on Mars. Science 317, 1706-1709]. The strong latitude and orientation dependencies that have been documented for gullies require (1) a volatile near the surface, and (2) that insolation is an important factor for forming gullies. These constraints have led to two categories of interpretations for the source of the volatiles: (1) liquid water at depth beneath the melting isotherm that erupts suddenly (“groundwater”), and (2) ice at the surface or within the uppermost layer of soil that melts during optimal insolation conditions (“surface/near-surface melting”). In this contribution we synthesize global, hemispheric, regional and local studies of gullies across Mars and outline the criteria that must be met by any successful explanation for the formation of gullies. We further document trends in both hemispheres that emphasize the importance of top-down melting of recent ice-rich deposits and the cold-trapping of atmospherically-derived H2O frost/snow as important components in the formation of gullies. This provides context for the incorporation of high-resolution multi-spectral and hyper-spectral data from the Mars Reconnaissance Orbiter that show that (1) cold-trapping of seasonal H2O frost occurs at the alcove/channel-level on contemporary Mars; (2) gullies are episodically active systems; (3) gullies preferentially form in the presence of deposits plausibly interpreted as remnants of the Late Amazonian emplacement of ice-rich material; and (4) gully channels frequently emanate from the crest of alcoves instead of the base, showing that alcove generation is not necessarily a product of undermining and collapse at these locations, a prediction of the groundwater model. We interpret these various lines of evidence to mean that the majority of gullies on Mars are explained by the episodic melting of atmospherically emplaced snow/ice under spin-axis/orbital conditions characteristic of the last several Myr.  相似文献   

4.
J. Raack  D. Reiss  H. Hiesinger 《Icarus》2012,219(1):129-141
We investigated gullies and their relationships to the atmospherically derived dust–ice mantle and aeolian features in the northwestern part of the Argyre basin. A detailed morphologic map of the Argyre study region allowed us to constrain the stratigraphic relationships and relative ages of gullies. In addition, we investigated the morphologic characteristics and orientations of all gullies in the Argyre study region. Maximum absolute ages for gullies were determined with crater size–frequency distribution measurements of the dust–ice mantle, which is the source material of gullies in the study area. Gullies only evolve from this mantle probably by melting of its ice content. Two different morphologies of pristine and degraded gullies were identified, mostly occurring on pole- and equatorward-facing slopes, respectively. We conclude that the morphologies and orientations were initiated either by a more rapid and extensive erosion of equatorward-facing gullies or by at least two generations of gullies with generally older gullies on equatorward-facing slopes and younger ones on pole-facing slopes. Different intensities of solar insolation on equator- and pole-facing slopes might be responsible for the different development of pristine and degraded gullies. Gullies in the study area generally have ages ?20 Ma. Some uncratered (and thus very young) aeolian dunes are superposed by a few gullies in some locations, indicating another even younger generation of gullies with an upper limit absolute model age of about <500 ka.  相似文献   

5.
The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.  相似文献   

6.
The recently discovered water vapor plumes on Saturn's moon Enceladus, the polar caps of planet Mars and the possible ice volcanism on the Jovian satellites call for suitable techniques to explore deep ice layers of the solar system bodies. This paper presents a novel approach to deliver scientific probes into deeper layers of planetary ice. Several existing locomotion concepts and techniques for such probes are presented. After studying the mathematical framework of the melting locomotion process, melting tests with different head forms were done to evaluate the influence of the head's geometry on the melting process. This work led to a novel concept of a thermal drill head, using heat and mechanical drill in combination to penetrate the ice. We compare the performance of such a hybrid concept versus the melting penetration alone by a mathematical model and tests in ice with a prototype of the melting drill head.  相似文献   

7.
David Wallace  Carl Sagan 《Icarus》1979,39(3):385-400
The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. These calculations differ from those of Lingenfelter et al. [(1968) Science161, 266–269] for putative lunar channels in including the effect of the atmosphere. Evaporation from the surface is governed by two physical phenomena: wind and free convection. In the former case, water vapor diffuses from the surface of the ice through a lamonar boundary layer and then is carried away by eddy diffusion above, provided by the wind. The latter case, in the absence of wind, is similar, except that the eddy diffusion is caused by the lower density of water vapor than the Martian atmosphere. For mean Martian insolations the evaporation rate above the ice is ~ 10?8 g cm?2 sec?1. Thus, even under present Martian conditions a flowing channel of liquid water will be covered with ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with quite modest discharges. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-choked rivers. Typical equilibrium thicknesses of such ice covers are ~ 10 to 30 m; typical surface temperatures are 210 to 235°K. Ice-covered channels or lakes on Mars today may be of substantial biological interest. Ice is a sufficiently poor conductor of heat that sunlight which penetrates it can cause melting to a depth of several meters or more. Because the obliquity of Mars can vary up to some 35°, the increased polar heating at such times seems able to cause subsurface melting of the ice caps to a depth which corresponds to the observed lamina thickness and may be responsible for the morphology of these polar features.  相似文献   

8.
There is increasing evidence that the nature of extended dark features on slopes of Martian craters and uplands is related to existing sources of liquid water located on these slopes and to confined water flows rather than to the movement of large masses of dry sand (dust) or rock falls. Images acquired by the Mars Global Surveyor Mars Orbiter Camera at spatial resolutions of a few meters per pixel make it possible to distinguish such objects. The availability of big reserves of ground ice on Mars and conditions for the local conversion of ice to the liquid phase is now universally accepted. Although the presence of liquid water on the Martian surface is usually thought to be impossible because of low pressures and low mean temperatures, there is a sufficient number of lowlands on Mars where pressure exceeds the critical value required for the existence of liquid water. The extended narrow gullies on slopes with tributaries were formed, as it is supposed, by water streams. The structure of gullies has an unusual appearance, reverse of that of mountain rivers on Earth: gullies are broad in the upper part of a slope, narrow downslope, end with a thin stream, and disappear at the valley or crater floor. Both tributaries and the major channel seem to be directed uphill. This paper provides a simple explanation of this apparent paradox. Under low-temperature conditions, the conversion of liquid water to the ice phase should be considered in dynamics: the water released by the source comes in contact with a cold ground, partly soaks in ground, and freezes, forming an ice bed along which the stream moves further and continues to interact with ground. The distance from the source at which water completely disappears depends on the initial temperature of the source, its abundance, and the ground temperature. The apparent paradox is explained by the interaction of a cooling stream with a very cold ground. As regards the side structures, they are not tributaries but branches, which rapidly freeze. This paper also shows that a high source debit and/or sufficiently high ambient temperature promote the formation on the valley floor of a small pond that accumulates water flows. The walls of this pond consist of frozen ground and ice. Objects that might be small water reservoirs are detected in some new images of Mars. High concentration of sources of groundwater in two equatorial regions of Mars may serve as a useful indication to the location of places promising for searching traces of life on this planet.  相似文献   

9.
J.S. Levy  J.W. Head  J.L. Dickson 《Icarus》2009,201(1):113-126
We describe the morphology and spatial relationships between composite-wedge polygons and Mars-like gullies (consisting of alcoves, channels, and fans) in the hyper-arid Antarctic Dry Valleys (ADV), as a basis for understanding possible origins for martian gullies that also occur in association with polygonally patterned ground. Gullies in the ADV arise in part from the melting of atmospherically-derived, wind-blown snow trapped in polygon troughs. Snowmelt that yields surface flow can occur during peak southern hemisphere summer daytime insolation conditions. Ice-cemented permafrost provides an impermeable substrate over which meltwater flows, but does not significantly contribute to meltwater generation. Relationships between contraction crack polygons and sedimentary fans at the distal ends of gullies show deposition of fan material in polygon troughs, and dissection of fans by expanding polygon troughs. These observations suggest the continuous presence of meters-thick ice-cemented permafrost beneath ADV gullies. We document strong morphological similarities between gullies and polygons on Mars and those observed in the ADV Inland Mixed microclimate zone. On the basis of this morphological comparison, we propose an analogous, top-down melting model for the initiation and evolution of martian gullies that occur on polygonally-patterned, mantled surfaces.  相似文献   

10.
N.L. Lanza  G.A. Meyer  H.E. Newsom 《Icarus》2010,205(1):103-112
The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice.  相似文献   

11.
Astronomical observations and cosmochemical calculations suggest that the planet Mercury may be composed of materials which condensed at relatively high temperatures in the primitive solar nebula and may have a basaltic crust similar to parts of the moon. These findings, plus the long standing inference that Mercury is much richer in metallic iron than the other terrestrial planets, provide important constraints which we apply to models of the thermal evolution and density structure of the planet. The thermal history calculations include explicitly the differing thermal properties of iron and silicates and account for core segregation, melting and differentiation of heat sources, and simulated convection during melting. If the U and Th abundances of Mercury are taken from the cosmochemical model of Lewis, then the planet would have fully differentiated a metal core from the silicate mantle for all likely initial temperature distributions and heat transfer properties. Density distributions for the planet are calculated from the mean density and estimates of the present-day temperature. For the fully differentiated model, the moment of inertia C/MR2 is 0.325 (J2=0.302×10?6). For models with lower heat source abundances, the planet may not yet have differentiated. The density profiles for such models give C/MR2=0.394 (J2=0.487×10?6). These results should be useful for preliminary interpretation of the Mariner 10 measurements of Mercury's gravitational field.  相似文献   

12.
The discovery of presumably geologically recent gully features on Mars (Malin and Edgett, 2000, Science 288, 2330-2335) has spawned a wide variety of proposed theories of their origin including hypotheses of the type of erosive material. To test the validity of gully formation mechanisms, data from the Mars Global Surveyor spacecraft has been analyzed to uncover trends in the dimensional and physical properties of the gullies and their surrounding terrain. We located 106 Mars Orbiter Camera (MOC) images that contain clear evidence of gully landforms, distributed in the southern mid and high latitudes, and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. We find that the number of gully systems normalized to the number of MOC images steadily declines as one moves poleward of 30° S, reaches a minimum value between 60°-63° S, and then again rises poleward of 63° S. All gully alcove heads occur within the upper one-third of the slope encompassing the gully and the alcove bases occur within the upper two-thirds of the slope. Also, the gully alcove heads occur typically within the first 200 meters of the overlying ridge with the exception of gullies equatorward of 40° S where some alcove heads reach a maximum depth of 1000 meters. While gullies exhibit complex slope orientation trends, gullies are found on all slope orientations at all the latitudes studied. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 79% of the gully alcove bases lie at depths where subsurface temperatures are greater than 273 K and 21% of the alcove bases lie within the solid water regime. Most of the gully alcoves lie outside the temperature-pressure phase stability of liquid CO2. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although some discrepancies still exist between prediction and observation, the shallow and deep aquifer models remain as the most plausible theories. Interior processes involving subsurface fluid sources are generally favored over exogenic processes such as wind and snowfall for explaining the origin of the martian gullies.  相似文献   

13.
The mode of formation of gullies on Mars, very young erosional–depositional landforms consisting of an alcove, channel, and fan, is one of the most enigmatic problems in martian geomorphology. Major questions center on their ages, geographic and stratigraphic associations, relation to recent ice ages, and, if formed by flowing water, the sources of the water to cause the observed erosion/deposition. Gasa (35.72°S, 129.45°E), a very fresh 7-km diameter impact crater and its environment, offer a unique opportunity to explore these questions. We show that Gasa crater formed during the most recent glacial epoch (2.1–0.4 Ma), producing secondary crater clusters on top of the latitude-dependent mantle (LDM), interpreted to be a layered ice-dust-rich deposit emplaced during this glacial epoch. High-resolution images of a pre-Gasa impact crater ~100 km northeast of Gasa reveal that portions of the secondary-crater-covered LDM have been removed from pole-facing slopes in crater interiors near Gasa; gullies are preferentially located in these areas and channels feeding alcoves and fans can be seen to emerge from the eroding LDM layers to produce multiple generations of channel incision and fan lobes. We interpret these data to mean that these gullies formed extremely recently in the post-Gasa-impact time-period by melting of the ice-rich LDM. Stratigraphic and topographic relationships are interpreted to mean that under favorable illumination geometry (steep pole-facing slopes) and insolation conditions, melting of the debris-covered ice-rich mantle took place in multiple stages, most likely related to variations in spin-axis/orbital conditions. Closer to Gasa, in the interior of the ~18 km diameter LDM-covered host crater in which Gasa formed, the pole-facing slopes display two generations of gullies. Early, somewhat degraded gullies, have been modified by proximity to Gasa ejecta emplacement, and later, fresh appearing gullies are clearly superposed, cross-cut the earlier phase, and show multiple channels and fans, interpreted to be derived from continued melting of the LDM on steep pole-facing slopes. Thus, we conclude that melting of the ice-rich LDM is a major source of gully activity both pre-Gasa crater and post-Gasa crater formation. The lack of obscuration of Gasa secondary clusters formed on top of the LDM is interpreted to mean that the Gasa impact occurred following emplacement of the last significant LDM layers at these low latitudes, and thus near the end of the ice ages. This interpretation is corroborated by the lack of LDM within Gasa. However, Gasa crater contains a robustly developed set of gullies on its steep, pole-facing slopes, unlike other very young post-LDM craters in the region. How can the gullies inside Gasa form in the absence of an ice-rich LDM that is interpreted to be the source of water for the other adjacent and partly contemporaneous gullies? Analysis of the interior (floor and walls) of the host crater suggest that prior to the Gasa impact, the pole-facing walls and floor were occupied by remnant debris-covered glaciers formed earlier in the Amazonian, which are relatively common in crater interiors in this latitude band. We suggest that the Gasa impact cratering event penetrated into the southern portion of this debris-covered glacier, emplaced ejecta on top of the debris layer covering the ice, and caused extensive melting of the buried ice and flow of water and debris slurries on the host crater floor. Inside Gasa, the impact crater rim crest and wall intersected the debris-covered glacier deposits around the northern, pole-facing part of the Gasa interior. We interpret this exposure of ice-rich debris-covered glacial material in the crater wall to be the source of meltwater that formed the very well-developed gullies along the northern, pole-facing slopes of Gasa crater.  相似文献   

14.
Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites.  相似文献   

15.
The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.  相似文献   

16.
The discovery of gullies on Mars suggests liquid water activity near the surface of the planet in recent times. Since liquid water is unstable under the present-day P-T martian conditions, the formation mechanisms of the gullies, and the source of the putative water, have been a matter of debate for the last years. To provide new insights into these matters, we have approached the problem studying the gullies in relation to their regional setting. A major point in our study relates to the geographic orientation of gullies, an aspect that has been previously regarded as a crucial matter in different models, and has profound implications regarding their origin. We present a comprehensive and detailed survey of the Gorgonum-Newton region, and a study of the Dao and Nirgal Vallis regions. The survey was carried out with the aid of 965 high-resolution MOC images (752 for Gorgonum-Newton, 102 for Nirgal Vallis and 111 for Dao Vallis regions), and MOLA-derived DEMs. We found that gullies display a clear regional pattern, geographically and topographically consistent with a decreasing regional slope. We interpret the results in terms of the existence of several groundwater flow systems operating at different scales, which ultimately may have led to gully formation by seepage at the slopes of craters and canyons. We suggest that aquifers discharging at gully systems may have recharged from the surface, in response to the melting of young partially eroded ice-rich deposits.  相似文献   

17.
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different. We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii) porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample, phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the melting probe works effectively.  相似文献   

18.
Given the heat that is reaching the surface from the interior of Enceladus, we ask whether liquid water is likely and at what depth it might occur. The heat may be carried by thermal conduction through the solid ice, by the vapor as it diffuses through a porous matrix, or by the vapor flowing upward through open cracks. The vapor carries latent heat, which it acquires when ice or liquid evaporates. As the vapor nears the surface it may condense onto the cold ice, or it may exit the vent without condensing, carrying its latent heat with it. The ice at the surface loses its heat by infrared radiation. An important physical principle, which has been overlooked so far, is that the partial pressure of the vapor in the pores and in the open cracks is nearly equal to the saturation vapor pressure of the ice around it. This severely limits the ability of ice to deliver the observed heat to the surface without melting at depth. Another principle is that viscosity limits the speed of the flow, both the diffusive flow in the matrix and the hydrodynamic flow in open cracks. We present hydrodynamic models that take these effects into account. We find that there is no simple answer to the question of whether the ice melts or not. Vapor diffusion in a porous matrix can deliver the heat to the surface without melting if the particle size is greater than ∼1 cm and the porosity is greater than ∼0.1, in other words, if the matrix is a rubble pile. Whether such an open matrix can exist under its own hydrostatic load is unclear. Flow in open cracks can deliver the heat without melting if the width of the crack is greater than ∼10 cm, but the heat source must be in contact with the crack. Frictional heating on the walls due to tidal stresses is one such possibility. The lifetime of the crack is a puzzle, since condensation on the walls in the upper few meters could seal the crack off in a year, and it takes many years for the heat source to warm the walls if the crack extends down to km depths. The 10:1 ratio of radiated heat to latent heat carried with the vapor is another puzzle. The models tend to give a lower ratio. The resolution might be that each tiger stripe has multiple cracks that share the heat, which tends to lower the ratio. The main conclusion is that melting depends on the size of the pores and the width of the cracks, and these are unknown at present.  相似文献   

19.
Hydrogeological modification of Meteor Crater produced a spectacular set of gullies throughout the interior wall in response to rainwater precipitation, snow melting, and possible groundwater discharge. The crater wall has an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels, and fans. Some of the gullies originate from the rim crest and others from the middle crater wall where a lithologic transition occurs; broad gullies occur along the crater corner radial faults. Deeply incised alcoves are well developed on the soft Coconino Sandstone exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of erosion due to preferential rock breakup from faulting, and groundwater flow/discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing erosion and crater degradation. Channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. Caves exposed on the lower crater level point to percolation of surface runoff and selective discharge through fractures on the crater wall. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when the water table was higher, and groundwater may have seeped from springs on the crater wall. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift. This climate shift and the hydrological modifications observed at Meteor Crater provide insights for landscape sculpturing on Mars during various parts of its history.  相似文献   

20.
It is well-known that the permanent terrestrial ice sheets (glaciers and polar caps) contain a lot of information about the recent geological history and in particular about climatic changes. Extrapolating this fact to other ice sheets in the solar system (e.g. the Mars polar regions, the icy moons of the outer planets, etc.), we may expect a similar wealth of information. To obtain this information it is possible to drill holes or melt the ice by a heated probe, which in this way is able to penetrate the surface and investigate the deeper layers in situ. In the latter case the driving agent is the heating power and the weight of the probe. In this paper we consider the application of such “melting probes” for exploring the structure of ice sheets in extraterrestrial environments. We describe several laboratory experiments with simple melting probes performed under cryo-vacuum conditions and compare the results with tests in a terrestrial environment. The experiments revealed that under space conditions the downward motion of a heated probe in an ice sheet is characterized by intermittent periods of sublimation and melting of the surrounding ice, sometimes interrupted by periods where a part of the probe's outer surface is frozen to the surrounding ice. This leads to a temporary blocking of the probe's downward motion. A similar situation can occur when the trailing tether is frozen in behind the probe. During the periods of ice sublimation the penetration process is significantly more power consuming, due to the large difference between the latent heat of sublimation and the latent heat of melting for water ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号