首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– As part of our continuing survey of meteorite physical properties, we measured grain and bulk density, porosity, and magnetic susceptibility for 41 stones from 23 enstatite chondrites (ECs), all with masses greater than 10 g, representing the majority of falls and a significant percentage of all available non‐Antarctic EC meteorites. Our sampling included a mix of falls and finds. For falls, grain densities range from 3.45 to 4.17 g cm?3, averaging 3.66 g cm?3; bulk densities range from 3.15 to 4.10 g cm?3, averaging 3.55 g cm?3; porosities range from 0 to 12% with the majority less than 7%, and magnetic susceptibilities (in log units of 10?9 m3 kg?1) from 5.30 to 5.64, with an average of 5.47. For finds, weathering reduces both grain and bulk densities as well as magnetic susceptibilities. On average, finds have much higher porosity than falls. The two EC subgroups EH and EL, nominally distinguished by total iron content, exhibit similar values for all of the properties measured, indicating similar metallic iron content in the bulk stones of both subgroups. We also observed considerable intra‐meteorite variation, with inhomogeneities in bulk and grain densities at scales up to approximately 40 g (approximately 12 cm3).  相似文献   

2.
Abstract— The bulk densities of 82 samples of 72 ordinary chondrites (OCs) were measured to an accuracy of ~1% using a modified Archimedian method. We found the average bulk density to be 3.44 ± 0.19 g/cm3 for the H group, 3.40 ± 0.15 g/cm3 for the L group, and 3.29 ± 0.17 g/cm3 for the LL group (± represent 1σ). Bulk density measurements of 11 pieces of one fall, Pultusk (H group), were also found to vary considerably (3.31 to 3.63 g/cm3). To investigate controls on bulk density within the OCs, we compared density with bulk chemical composition (the ratio of Fe metal to total Fe; the ratio of total Fe to SiO2; the ratio of FeO to total Fe and MgO). Within each OC group, bulk chemical composition is nearly invariant whereas bulk density varies from about 3.0 to 3.8 g/cm3. Slight but systematic differences in average density between the H, L, and LL groups presumably relate to differences in metallic Fe abundance. However, considerable overlap between OC groups and the wide range of bulk densities within each group suggest differences in porosity dominantly control variations of density within the OC subgroups.  相似文献   

3.
In 2003, we initiated a long-term Adaptive Optics campaign to study the orbit of various main-belt asteroidal systems. Here we present a consistent solution for the mutual orbits of four binary systems: 22 Kalliope, 45 Eugenia, 107 Camilla and 762 Pulcova. With the exception of 45 Eugenia, we did not detect any additional satellites around these systems although we have the capability of detecting a loosely-bound fragment (located at 1/4×RHill) that is ∼40 times smaller in diameter than the primary. The common characteristic of these mutual orbits is that they are roughly circular. Three of these binary systems belong to a C-“group” taxonomic class. Our estimates of their bulk densities are consistently lower (∼1 g/cm3) than their associated meteorite analogs, suggesting an interior porosity of 30-50% (taking CI-CO meteorites as analogs). 22 Kalliope, a W-type asteroid, has a significantly higher bulk density of ∼3 g/cm3, derived based on IRAS radiometric size measurement. We compare the characteristics of these orbits in the light of tidal-effect evolution.  相似文献   

4.
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density 〈ρbulk〉=3.46±0.07 g/cm3, grain density 〈ρgrain〉=3.53±0.08 g/cm3, porosity 〈P(%)〉=2.46±1.39, and bulk mass magnetic susceptibility 〈log χ〉=5.23±0.11. Measurements of the specific heat capacity for a 3.01-g Gao-Guenie sample, a 61.37-g Gao-Guenie sample, a 62.35-g Jilin H5 chondrite meteorite sample, and a 51.37-g Sikhote-Alin IIAB Iron meteorite sample are also presented. Temperature interpolation formula are further provided for the specific heat capacity, thermal conductivity, and thermal diffusivity of the 3.01-g Gao-Guenie sample in the temperature range 300<T (K)<800. We briefly review the possible effects of the newly deduced specific heat and thermal conductivity values on the ablation of meteoroids within the Earth's atmosphere, the modeling of asteroid interiors and the orbital evolution of meteoroids through the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect.  相似文献   

5.
Density,porosity, and magnetic susceptibility of carbonaceous chondrites   总被引:1,自引:0,他引:1  
Abstract– We report physical properties (bulk and grain density, magnetic susceptibility, and porosity) measured using nondestructive and noncontaminating methods for 195 stones from 63 carbonaceous chondrites. Grain densities over the whole population average 3.44 g cm?3, ranging from 2.42 g cm?3 (CI1 Orgueil) to 5.66 g cm?3 (CB Bencubbin). Magnetic susceptibilities (in log units of 10?9 m3 kg?1) averaged log χ = 4.22, ranging from 3.23 (CV3 Axtell) to 5.79 (CB Bencubbin). Porosities averaged 17%, ranging from 0 (for a number of meteorites) to 41% (for one stone of the CO Ornans). Notably, we found significant differences in porosity between the oxidized and reduced CV subgroups, with the porosities of CVo averaging approximately 20% and CVr porosities approximately 4%. Overall, porosities of carbonaceous chondrite falls trend with petrographic type, from type 1 (CI) near 35%, type 2 (CM, CR) averaging 23%, type 3 (CV, CO) 21%, to type 4 (CK and some CO) averaging 15%. There is also a significant decrease in porosity between meteorites of shock stage S1 and those of S2, indicative of shock compression.  相似文献   

6.
Recent estimates of the bulk density of the largest M-type asteroid 16 Psyche (1.4 and 1.8 g/cm3) seem to be too low for asteroids of this type. The interpretation of such low densities for the asteroid 16 Psyche with its increased metal content led to estimates of its macroporosity of 70%. In the present paper, it has been shown that the extremely low density estimates are caused primarily by the usage of a very high value of the IRAS diameter of the asteroid (D = 264 km, which corresponds to an IRAS albedo of 0.10). The application of the more accurate polarimetric albedo (0.170) and diameter (213 km) of Psyche results in a bulk density of the asteroid of 3.3 ± 0.7 g/cm3. For a moderate asteroid macroporosity of 30–40%, this density even agrees with the 50% metal content and, therefore, removes both the contradiction with the radar data and the problems of the very low density and unlikely high porosity of the asteroid 16 Psyche.  相似文献   

7.
We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.  相似文献   

8.
Bearing load vs penetration curves have been measured on a 1.3 g sample of lunar soil from the scoop of the Surveyor 3 soil mechanics surface sampler, using a circular indentor 2 mm in diameter. Measurements were made in an Earth laboratory, in air. This sample provided a unique opportunity to evaluate earlier, remotely controlled, in-situ measurements of lunar surface bearing properties. Bearing capacity, measured at a penetration equal to the indentor diameter, varied from 0.02–0.04 N cm–2 at bulk densities of 1.15 g cm–3 to 30-100 N cm–2 at 1.9 g cm–3. Deformation was by compression directly below the indentor at bulk densities below 1.61 g cm–3, by outward displacement at bulk densities over 1.62 g cm–3. Preliminary comparison of in-situ remote measurements with those on returned material indicates good agreement if the lunar regolith at Surveyor 3 has a bulk density of 1.6 g cm–3 at 2.5 cm. depth; definitive comparison awaits both better data on bulk density of the undisturbed lunar soil and additional mechanical-property measurements on returned material.  相似文献   

9.
Abstract– Bulk density is an important intrinsic property of meteorites, but the necessary bulk volume measurement is difficult to do in a truly nondestructive way. Archimedean methods involving the displacement of a 40–100 μm beads “fluid” are commonly applied, but can encounter systematic errors. Herein, we report a visible light laser imaging technique for the nondestructive measurement of meteorite surface features, allowing for the subsequent assembly of 3‐D volumetric models; the method is particularly applicable to small meteorite fragments and to fragile specimens. We have acquired laser image data for 24 fragments from 18 ordinary chondrites, carbonaceous chondrites, and achondrites, with masses ranging from 265.0 to 1.2 g. Laser imaging bulk density is consistent between sister fragments of meteorites down to sizes of about 0.5 cm3, an order of magnitude smaller than can be reliably measured with Archimedean beads techniques. Uncertainty is less than 2% for fragments >4 cm3, and typically between 2 and 4% for small fragments <4 cm3. For 10 fragments, 3‐D laser imaging volumes are on average 1.3% smaller than those obtained with Archimedean beads. In a wider comparison using 21 meteorite fragments, 3‐D laser imaging bulk densities are on average 2.14 ± 2.36% greater than the corresponding Archimedean method literature values for these meteorites. Difficulties in the procedure of 3‐D image alignment may lead to a slight overestimation of meteorite bulk density, and so laser imaging‐based bulk densities are maximum estimates that can be viewed as being complementary to the minimum bulk density estimates obtained using Archimedean beads methods.  相似文献   

10.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

11.
We report on Adaptive Optics observations of the satellite of Asteroid 121 Hermione with the ESO-Paranal UT4 VLT and the Keck AO telescopes. The binary system, belonging to the Cybele family, was observed during two observing campaigns in January 2003 and January 2004 aiming to confirm its trajectory and accurately determine its orbital elements. A precessing Keplerian model was used to describe the motion of S/2002 (121) 1. We find that the satellite of Hermione revolves at a=768±11 km from the primary in P=2.582±0.002 days with a roughly circular and prograde orbit (e=0.001±0.001, i=3±2° w.r.t. equator primary). These extensive astrometric measurements enable us to determine the mass of Hermione to be 0.54±0.03×1019 kg and its pole solution (λ0=1.5°±2.00, β0=10°±2.0 in ecliptic J2000). Additional Keck AO observations taken close to the asteroid opposition in December 2003 give us direct insight into the structure of the primary which presents a bilobated shape. Since the angular resolution is limited to the theoretical angular resolution of the telescope (43 mas corresponding to a spatial resolution of 80 km), two shape models (called snowman and peanut) are proposed based on the images which were deconvolved with MISTRAL deconvolution process. Assuming a purely synchronous orbit and knowing the mass of the primary, the peanut shape composed of two separated components is quite unlikely. Additionally the J2 calculated from the analysis of the secondary orbit is not in agreement with the peanut model, but close to the snowman shape. The bulk density of the primary as derived from the observed size of the snowman shape is estimated to ρ∼1.8±0.2 g/cm3 implying a porosity ∼14% for this C-type asteroid, corresponding to a fractured asteroid. Considering the IRAS diameter, the density is lower (ρ=1.1±0.3 g/cm3) leading to a high porosity (p=30-60%) with a nominal value of p=48%, which indicates a completely loose rubble-pile structure for the primary. Further work is necessary to better constrain the size, shape, and then internal structure of Hermione's primary.  相似文献   

12.
Soil from the scoop of Surveyor 3, returned to Earth by Apollo 12 astronauts, has been tested in a miniature shear box at five bulk densities, from 0.99 to 1.87 g cm–3. Cohesion increased with bulk density from 3 × 10–2 to 3 × 10–1 N cm–2; internal friction angle increased from 13° to 56°. Shear stress vs normal stress data fit a logarithmic relationship better than a linear one, at normal stresses of 3 × 10–3 to 3 x 100 N cm–2. Results of these tests, in air, show no systematic differences from those for tests made elsewhere in vacuum and nitrogen. Results agree with those obtained in remotely controlled lunar surface operations with Surveyor 3 and other spacecraft provided that the bulk density was slightly underestimated for the on-surface measurements.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.This work represents one phase of research conducted at the Jet Propulsion Laboratory, California Institute of Technology, for the National Aeronautics and Space Administration, under Contract NAS 7-100.  相似文献   

13.
The Archimedean glass bead method for determining meteorite bulk density has become widely applied. We used well characterized, zero-porosity quartz and topaz samples to determine the systematic error in the glass bead method to support bulk density measurements of meteorites for our ongoing meteorite survey. Systematic error varies according to bead size, container size and settling method, but in all cases is less than 3%, and generally less than 2%. While measurements using larger containers (above 150 cm3) exhibit no discernible systematic error but much reduced precision, higher precision measurements with smaller containers do exhibit systematic error. For a 77 cm3 container using 40-80 μm diameter beads, the systematic error is effectively eliminated within measurement uncertainties when a “secured shake” settling method is employed in which the container is held securely to the shake platform during a 5 s period of vigorous shaking. For larger 700-800 μm diameter beads using the same method, bulk volumes are uniformly overestimated by 2%. Other settling methods exhibit sample-volume-dependent biases. For all methods, reliability of measurement is severely reduced for samples below ∼5 cm3 (10-15 g for typical meteorites), providing a lower-limit selection criterion for measurement of meteoritical samples.  相似文献   

14.
Triplicity and physical characteristics of Asteroid (216) Kleopatra   总被引:2,自引:0,他引:2  
To take full advantage of the September 2008 opposition passage of the M-type Asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis, F. et al. [2008a]. (3749) Balam. In: Green, D.W.E. (Ed.), IAU Circ. 8928; Marchis, F., Descamps, P., Berthier, J., Emery, J.P. [2008b]. S/2008 ((216)) 1 and S/2008 ((216)) 2. In: Green, D.W.E. (Ed.), IAU Circ. 8980). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64 ± 0.02 × 1018 kg. This translates into a bulk density of 3.6 ± 0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ∼30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.  相似文献   

15.
F.P. Fanale 《Icarus》1976,28(2):179-202
Observations of Mars and cosmochemical considerations imply that the total inventory of degassed volatiles on Mars is 102 to 103 times that present in Mars' atmosphere and polar caps. The degassed volatiles have been physically and chemically incorporated into a layer of unconsolidated surface rubble (a “megaregolith”) up to 2km thick. Tentative lines of evidence suggest a high concentration (~5g/cm2) of 40 Ar in the atmosphere of Mars. If correct, this would be consistent with a degassing model for Mars in which the Martian “surface” volatile inventory is presumed identical to that of Earth but scaled to Mars' smaller mass and surface area. The implied inventory would be: (40Ar) = 4g/cm2, (H2O) = 1 × 105g/cm2, (CO2) = 7 × 103g/cm2, (N2) = 3 × 102g/cm2, (Cl) = 2 × 103g/cm2, and (S) = 2 × 102g/cm2. Such a model is useful for testing, but differences in composition and planetary energy history may be anticipated between Mars and Earth on theoretical grounds. Also, the model demands huge regolith sinks for the volatiles listed.If the regolith were in physical equilibrium with the atmosphere, as much as 2 × 104g/cm2 of H2O could be stored in it as hard-frozen permafrost, or 5 × 104g/cm2 if equilibrium with the atmosphere were inhibited. Spectral measurements of Martian regolith material and laboratory measurement of weathering kinetics on simulated regolith material suggest large amounts of hydrated iron oxides and clay minerals exist in the regolith; the amount of chemically bound H2O could be from 1 × 104 to 4 × 104g/cm2. In an Earth-analogous model, a 2 km mixed regolith must contain the following concentrations of other volatile-containing compounds by weight: carbonates = 1.5%, nitrates = 0·3%, chlorides = 0.6%, and sulfates = 0.1%. Such concentrations would be undetectable by current Earth-based spectral reflectance measurements, and (except the nitrates) formation of the “required” amounts of these compounds could result from interaction of adsorbed H2O and ice with primary silicates expected on Mars. Most of the CO2 could be physically adsorbed on the regolith.Thus, maximum amounts of H2O and other volatiles which could be stored in the Mars regolith are marginally compatible with those required by an Earth-analogous model, although a lower atmospheric 40Ar concentration and regolith volatile inventory would be easier to reconcile with observational constraints. Differences in the ratios of H2O and other volatiles to 40Ar between surface volatiles on the real Mars and on an Earth-analogous Mars could result from and reflect differences in bulk composition and time history of degassing between Mars and Earth. Models relating Viking-observable parameters, e.g., (40Ar) and (36Ar), to the time history and overall intensity of Mars degassing are given.  相似文献   

16.
As part of a large‐scale survey of meteorite bulk and grain densities, porosities, and magnetic susceptibilities, we measured these properties for 174 stones from 106 achondritic meteorites. These include four lunar meteorites, 15 stones from 10 shergottites, nakhlites, and chassignites (SNCs), 96 stones from 56 howardites, eucrites, and diogenites (HEDs), 17 stones from nine aubrites, two angrites, and 16 stones from 10 ureilites, four stones of three acapulcoites, as well as four stones of three lodranites, and 15 stones from eight primitive achondrites. Those meteorites derived from basalts and crustal material of differentiated parent bodies have lower densities and magnetic susceptibilities, on an average, than the more primitive achondrites, which have a higher percentage metal. A notable exception is the one chassignite in the study (Chassigny), which has a high grain density of 3.73 ± 0.04 g cm?3. Ureilites have magnetic susceptibilities consistent with primitive achondrites, but lower grain densities. Porosities do not vary considerably between most of the groups, with most stones 5–14% porous, although on an average, ureilites and brachinites have lower porosities, with most stones less than 7% porous. For primitive achondrites, the higher metal content causes finds to exhibit weathering effects similar to what is observed in ordinary chondrites, with a reduction in grain density, magnetic susceptibility, and porosity as compared with unweathered falls. For lunites, SNCs, and HEDs, no such effect is observed. We also observe that grain density and magnetic susceptibility used in conjunction distinguish shergottites, nakhlites, and chassignites from each other. Shergottites and nakhlites have low grain densities (averaging 3.31 and 3.41 g cm?3, respectively) whereas Chassigny is 3.7 g cm?3. In magnetic susceptibility, shergottities and chassignites are similar (averaging 2.85 and 2.98 in log units of 10?9 m3 kg?1, respectively) with nakhlites averaging higher at 3.42.  相似文献   

17.
An exact solution of Einstein's equations for a static isentropic perfect fluid sphere is examined in detail. The analysis yields a strong indication that the model isstable with respect to infinitesimal radial pulsations. This means that the temperature is decreasing outwards. We prove that the adiabatic speed of sound is everywhere less than the speed of light if and only if the radius of the sphere is larger than 1.61 times its Schwarzschild radius. We further show that the strong energy condition is fulfilled everywhere if and only if the radius is larger than 1.76 times the Schwarzschild radius. The necessary and sufficient condition for the speed of sound to be decreasing outwards is given, and we find that this criterion is fulfilled if the fluid is causal. Taking the values of the pressure and the density to be somewhere given by the maximum values from Baymet al.'s equation of state, i.e., 0=5.1×1014 g cm–3 andp 0=7.4×1033 dyne cm–2, we find the maximum mass of the fluid sphere to be 2.5 solar masses.Dedicated to the memory of the late George Cunliffe McVittie (1904–1988).  相似文献   

18.
On November 20, 2008, the Buzzard Coulee H4 chondrite fell to Earth outside of Lloydminster, Alberta, Canada. Eighteen fresh samples obtained by the National Meteorite Collection of Canada, ranging from 8.80 to 109.14 g, were investigated in this study. Physical properties of the samples were first obtained using a suite of nondestructive techniques. The bulk density (Archimedean bead method: 3.48 ± 0.04 g cm?3; 3‐D laser imaging: 3.46 ± 0.03 g cm?3; micro‐computed tomography: 3.44 ± 0.03 g cm?3), porosity (6.2 ± 0.1%), bulk magnetic susceptibility (log χ: 5.364 ± 0.056 × 10?9 m3 kg?1 at 825 Hz; 5.329 ± 0.052 × 10?9 m3 kg?1 at 19,000 Hz), and other derived magnetic properties (frequency dependence: 8.7 ± 6.2%; degree of anisotropy A%: 22.0 ± 2.0%; ellipsoid shape B%: ?18.7 ± 8.7%) are typical of H chondrites. The coefficient of variation associated with the properties measured directly was low (0.10–1.15%), indicating that the samples are homogenous at the interfragment scale. The study then proceeded with detailed analyses at the intrafragment scale. Visual inspection of micro‐computed tomographic images allowed the identification of an anomalous large clast with low metal content in a fragment. Another fragment exhibited macroscopic shock veins that warranted further examination. These fragments were cut and polished thin sections prepared for petrological analysis by optical and scanning electron microscopy. Based on mineralogical and textural similarities with several chondrules, the large clast was interpreted to be a macrochondrule. In a larger context, this study proposes a protocol for the systematic investigation of extraterrestrial material that can be exported to other new meteorite falls and finds, and specimens from sample return mission.  相似文献   

19.
The surprisingly low S/Si ratio of Asteroid 433 Eros measured by the NEAR Shoemaker spacecraft probably reflects a surface depletion rather than a bulk property of the asteroid. The sulfur X-ray signal originates at a depth <10 μm in the regolith. The most efficient process for vaporizing minerals at the heliocentric distance of Eros are sputtering by solar wind ions and hypervelocity impacts. These are the same processes that account for the changes in optical properties of asteroids attributed to “space weathering” of lunar surface materials, although the relative importance of sputtering and impacts need not be the same for the Moon and asteroids. Troilite, FeS, which is the most important sulfide mineral in meteorites, and presumably on S-type asteroids like Eros, can be vaporized by much less energy than other major minerals, and will therefore be preferentially lost. Within 106 years either process can remove sulfide from the top 10-100 μm of regolith. Sulfur will be lost into space and some sulfur will migrate to deeper regolith layers. We also consider other possible mechanisms of surficial sulfur depletion, such as mineral segregation in the regolith and perhaps even incipient melting. Although we consider solar wind sputtering the most likely cause of the sulfur depletion on Eros, we cannot entirely rule out other processes as causes of the sulfur deficiency. Laboratory simulations of the relevant processes can address some of the open questions. Simulations will have to be carried out in such a way that potential sulfur loss processes as well as resurfacing can be studied simultaneously, requiring a large and complex environmental chamber.  相似文献   

20.
We carried out new observations of the binary asteroid 22 Kalliope (S2/2001) with the Shane 3-m telescope of the Lick observatory in October and November 2001. With a FWHM (full width at half maximum) of 0″.2, Kalliope (apparent size of about 0″.15) was not resolved but it was possible to separate the secondary from its primary whose apparent separation was of the order of 0″.7 with a magnitude difference of 3.22±0.20. As each set of observations spanned a few days of time, they are well distributed along the secondary's orbit, enabling us to accurately estimate its orbit.The satellite orbits 22 Kalliope in a prograde manner with respect to Kalliope's rotational spin (which is in a retrograde sense relative to its orbit around the Sun), on a highly inclined (i=19.8±2.0 with respect to the equator of 22 Kalliope) and moderately eccentric orbit (e=0.07±0.02) with an orbital period of 3.58±0.08 days. The semi-major axis is 1020±40 km. Using Kalliope's diameter as determined from IRAS data, the asteroid's bulk density is about 2.03±0.16 g cm−3, suggestive of a highly porous body with a porosity of 70% considering that the grain density of its meteoritic analog is of ∼7.4 g cm−3. This suggests a rubble pile, rather than solid, body. The measured nodal precession rate of the secondary's orbit seems to be much higher than expected from Kalliope's oblateness, assuming a homogeneous body (constant density). This suggests that Kalliope may be 60% more elongated or 35% larger than presently believed or/and that its internal structure is highly inhomogeneous with a denser outer shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号