首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the discovery of four new uranian irregular satellites in our deep, mR∼25.4, optical search around that planet. The orbital properties of these satellites are diverse. There is some grouping of inclinations and one of the satellites appears to be inside the Kozai resonant zone of Uranus. Further, we find that the differential size distribution of satellites is rather shallow compared to objects in the asteroid and Kuiper belts, going as ∼r−2.4. We also report a strong coupling between semi-major axis and orbital eccentricity. We comment on the apparent paradox between the inclination grouping, shallow size distribution, and orbital correlation as they relate to the likelihood of a collisional origin for the uranian irregulars. The currently observed irregulars appear to be consistent with a disruptive formation process and a collisional origin for Uranus' obliquity.  相似文献   

2.
K. Tsiganis  H. Varvoglis 《Icarus》2003,166(1):131-140
A population of 23 asteroids is currently observed in a very unstable region of the main belt, the 7/3 Kirkwood gap. The small size of these bodies—with the notable exception of (677) Aaltje (∼30 km)—as well as the computation of their dynamical lifetimes (3<TD<172 Myr) shows that they cannot be on their primordial orbits, but were recently injected in the resonance. The distribution of inclinations appears to be bimodal, the two peaks being close to 2° and 10°. We argue that the resonant population is constantly being replenished by the slow leakage of asteroids from both the Koronis (I∼2°) and Eos (I∼10°) families, due to the drift of their semi-major axes, caused by the Yarkovsky effect. Assuming previously reported values for the Yarkovsky mean drift rate, we calculate the flux of family members needed to sustain the currently observed population in steady state. The number densities with respect to semi-major axis of the observed members of both families are in very good agreement with our calculations. The fact that (677) Aaltje is currently observed in the resonance is most likely an exceptional event. This asteroid should not be genetically related to any of the above families. Its size and the eccentricity of its orbit suggest that the Yarkovsky effect should have been less efficient in transporting this body to the resonance than close encounters with Ceres.  相似文献   

3.
Matija ?uk  Brett J. Gladman 《Icarus》2006,183(2):362-372
The passage of Jupiter and Saturn through mutual 1:2 mean-motion resonance has recently been put forward as explanation for their relatively high eccentricities [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] and the origin of Jupiter's Trojans [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. Additional constraints on this event based on other small-body populations would be highly desirable. Since some outer satellite orbits are known to be strongly affected by the near-resonance of Jupiter and Saturn (“the Great Inequality”; ?uk, M., Burns, J.A., 2004b. Astron. J. 128, 2518-2541), the irregular satellites are natural candidates for such a connection. In order to explore this scenario, we have integrated 9200 test particles around both Jupiter and Saturn while they went through a resonance-crossing event similar to that described by Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]. The test particles were positioned on a grid in semimajor axes and inclinations, while their initial pericenters were put at just 0.01 AU from their parent planets. The goal of the experiment was to find out if short-lived bodies, spiraling into the planet due to gas drag (or alternatively on orbits crossing those of the regular satellites), could have their pericenters raised by the resonant perturbations. We found that about 3% of the particles had their pericenters raised above 0.03 AU (i.e. beyond Iapetus) at Saturn, but the same happened for only 0.1% of the particles at Jupiter. The distribution of surviving particles at Saturn has strong similarities to that of the known irregular satellites. If saturnian irregular satellites had their origin during the 1:2 resonance crossing, they present an excellent probe into the early Solar System's evolution. We also explore the applicability of this mechanism for Uranus, and find that only some of the uranian irregular satellites have orbits consistent with resonant pericenter lifting. In particular, the more distant and eccentric satellites like Sycorax could be stabilized by this process, while closer-in moons with lower eccentricity orbits like Caliban probably did not evolve by this process alone.  相似文献   

4.
We study the evolution of several distant satellite orbits. These are the orbits (including the improved ones)of the recently discovered Neptunian satellites S/2002 N1, N2, N3, N4; S/2003 N1 and the orbits of Jovian, Saturnian, and Uranian satellites with librational variations in the argument of the pericenter: S/2001 J10 (Euporie), S/2003 J20; S/2000 S5 (Kiviuq), S/2000 S6 (Ijiraq), and S/2003 U3. The study is performed using mainly an approximate numerical-analytical method. We determine the extreme eccentricities and inclinations as well as the periods of the variations in the arguments of pericenters and longitudes of the ascending nodes on time intervals ~105?106 yr. We compare our results with those obtained by numerically integrating the rigorous equations of satellite motion on time intervals of the order of the circulation periods of the longitudes of the ascending nodes (102?103 yr).  相似文献   

5.
Data on three recently discovered satellites of Uranus are used to determine basic evolutional parameters of their orbits: the extreme eccentricities and inclinations, as well as the circulation periods of the pericenter arguments and of the longitudes of the ascending nodes. The evolution is mainly investigated by analytically solving Hill’s double-averaged problem for the Uranus-Sun-satellite system, in which Uranus’s orbital eccentricity e U and inclination i U to the ecliptic are assumed to be zero. For the real model of Uranus’s evolving orbit with e U≠0 and i U≠0, we refine the evolutional parameters of the satellite orbits by numerically integrating the averaged system. Having analyzed the configuration and dynamics of the orbits of Uranus’s five outer satellites, we have revealed the possibility of their mutual crossings and obtained approximate temporal estimates.  相似文献   

6.
We present the first dynamical solution of the triple asteroid system (45) Eugenia and its two moons Petit–Prince (diameter ∼ 7 km) and S/2004 (45) 1 (diameter ∼ 5 km). The two moons orbit at 1165 and 610 km from the primary, describing an almost-circular orbit (e ∼ 6 × 10−3 and e ∼ 7 × 10−2 respectively). The system is quite different from the other known triple systems in the main belt since the inclinations of the moon orbits are sizeable (9° and 18° with respect to the equator of the primary respectively). No resonances, neither secular nor due to Lidov–Kozai mechanism, were detected in our dynamical solution, suggesting that these inclinations are not due to excitation modes between the primary and the moons. A 10-year evolution study shows that the orbits are slightly affected by perturbations from the Sun, and to a lesser extent by mutual interactions between the moons. The estimated J2 of the primary is three times lower than the theoretical one, calculated assuming the shape of the primary and an homogeneous interior, possibly suggesting the importance of other gravitational harmonics.  相似文献   

7.
H. Scholl  F. Marzari 《Icarus》2005,175(2):397-408
In this paper we explore the dynamical stability of the Mars Trojan region applying mainly Laskar's Frequency Map Analysis. This method yields the chaotic diffusion rate of orbits and allows to determine the most stable regions. It also gives the frequencies which are responsible for the instability of orbits. The most stable regions are found for inclinations between about 15° and 30°. For inclinations smaller than 15°, we confirm, by applying a synthetic secular theory, that the secular resonances ν3, ν4, ν13, ν14 rapidly excite asteroid orbits within a few Myrs, or even faster. The asteroids are removed from the Trojan region after a close encounter with Mars. For large inclinations, the secular resonance ν5 clears a small region around 30° while the Kozai resonance rapidly removes bodies for inclinations larger than 35°. The dynamical lifetimes of the three L5 Trojans, (5261) Eureka, 1998 VF31, 2001 DH47, and the only L4 Trojan 1999 UJ7 are determined by numerically integrating clouds of corresponding clones over the age of the Solar System. All four Trojans reside in the most stable region with smallest diffusion coefficients. Their dynamical half-lifetime is of the order of the age of the Solar System. The Yarkovsky force has little effect on the known Trojans but for bodies smaller than about 1-5 m the drag is strong enough to destabilize Trojans on a timescale shorter than 4.5 Gyr.  相似文献   

8.
In a previous paper, we developed a technique for estimating the inner eccentricity in coplanar hierarchical triple systems on initially circular orbits, with comparable masses and with well-separated components, based on an expansion of the rate of change of the Runge-Lenz vector. Now, the same technique is extended to non-coplanar orbits. However, it can only be applied to systems with I 0 < 39.23° or I 0 > 140.77°, where I is the inclination of the two orbits, because of complications arising from the so-called ‘Kozai effect’. The theoretical model is tested against results from numerical integrations of the full equations of motion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We present three improved and five new mutual orbits of transneptunian binary systems (58534) Logos-Zoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK183, (149780) Altjira, 2001 QY297, 2003 QW111, and 2003 QY90 based on Hubble Space Telescope and Keck II laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1600 to 37,000 km, eccentricities ranging from 0 to 0.8, and system masses ranging from 2 × 1017 to 2 × 1022 kg. Based on the relative brightnesses of primaries and secondaries, most of these systems consist of near equal-sized pairs, although a few of the most massive systems are more lopsided. The observed distribution of orbital properties suggests that the most loosely-bound transneptunian binary systems are only found on dynamically cold heliocentric orbits. Of the 22 known binary mutual orbits, orientation ambiguities are now resolved for 9, of which 7 are prograde and 2 are retrograde, consistent with a random distribution of orbital orientations, but not with models predicting a strong preference for retrograde orbits. To the extent that other perturbations are not dominant, the binary systems undergo Kozai oscillations of their eccentricities and inclinations with periods of the order of tens of thousands to millions of years, some with strikingly high amplitudes.  相似文献   

10.
The most puzzling property of the extrasolar planets discovered by recent radial velocity surveys is their high orbital eccentricities, which are very difficult to explain within our current theoretical paradigm for planet formation. Current data reveal that at least 25% of these planets, including some with particularly high eccentricities, are orbiting a component of a binary star system. The presence of a distant companion can cause significant secular perturbations in the orbit of a planet. At high relative inclinations, large-amplitude, periodic eccentricity perturbations can occur. These are known as “Kozai cycles” and their amplitude is purely dependent on the relative orbital inclination. Assuming that every planet host star also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, we determine the resulting eccentricity distribution of planets and compare it to observations? We find that perturbations from a binary companion always appear to produce an excess of planets with both very high (?0.6) and very low (e ? 0.1) eccentricities. The paucity of near-circular orbits in the observed sample implies that at least one additional mechanism must be increasing eccentricities. On the other hand, the overproduction of very high eccentricities observed in our models could be combined with plausible circularization mechanisms (e.g., friction from residual gas) to create more planets with intermediate eccentricities (e? 0.1–0.6).  相似文献   

11.
Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.  相似文献   

12.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   

13.
We consider a model that describes the evolution of distant satellite orbits and that refines the solution of the doubly averaged Hill problem. Generally speaking, such a refinement was performed previously by J. Kovalevsky and A.A. Orlov in terms of Zeipel’s method by constructing a solution of the third order with respect to the small parameter m, the ratio of the mean motions of the planet and the satellite. The analytical solution suggested here differs from the solutions obtained by these authors and is closest in form to the general solution of the doubly averaged problem (∼m 2). We have performed a qualitative analysis of the evolutionary equations and conditions for the intersection of satellite orbits with the surface of a spherical planet with a finite radius. Using the suggested solution, we have obtained improved analytical time dependences of the elements of evolving orbits for a number of distant satellites of giant planets compared to the solution of the doubly averaged Hill problem and, thus, achieved their better agreement with the results of our numerical integration of the rigorous equations of perturbed motion for satellites.  相似文献   

14.
A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects.The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth.Tides also tend to reduce the planet’s obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a “Cassini state”, where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ∼90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism.This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet’s surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or night disappear at β=90°. The insolation regime passes through several more transitions as β continues to increase toward 180°, but the surface distribution of insolation remains non-uniform in both latitude and longitude.Thus obliquity, like eccentricity, can protect certain areas of the planet from the worst extremes of temperature and solar radiation, and can improve the planet’s habitability. These results also have implications for the direct detectability of extrasolar planets, and for the interpretation of their thermal emissions.  相似文献   

15.
Rodney S Gomes 《Icarus》2003,161(2):404-418
I simulate the orbital evolution of the four major planets and a massive primordial planetesimal disk composed of 104 objects, which perturb the planets but not themselves. As Neptune migrates by energy and angular momentum exchange with the planetesimals, a large number of primordial Neptune-scattered objects are formed. These objects may experience secular, Kozai, and mean motion resonances that induce temporary decrease of their eccentricities. Because planets are migrating, some planetesimals can escape those resonances while in a low-eccentricity incursion, thus avoiding the return path to Neptune close encounter dynamics. In the end, this mechanism produces stable orbits with high inclination and moderate eccentricities. The population so formed together with the objects coming from the classical resonance sweeping process, originates a bimodal distribution for the Kuiper Belt orbits. The inclinations obtained by the simulations can attain values above 30° and their distribution resembles a debiased distribution for the high-inclination population coming from the real classical Kuiper Belt.  相似文献   

16.
The orbital dynamics of the single known planet in the binary star system HD 196885 has been considered. The Lyapunov characteristic exponents and Lyapunov time of the planetary system have been calculated for possible values of the planetary orbit parameters. It has been shown that the dynamics of the planetary system HD 196885 is regular with the Lyapunov time of more than 5 × 104 years (the orbital period of the planet is approximately 3.7 years), if the motion occurs at a distance from the separatrix of the Lidov–Kozai resonance. The values of the planet’s orbital inclination to the plane of the sky and longitude of the ascending node lie either within ranges 30° < i p < 90° and 30° < Ωp < 90°, or 90° < i p < 180° and 180° < Ωp < 300°.  相似文献   

17.
We present the results of our systematic study of the long-period orbital evolution of all of the outer Saturnian, Uranian, and Neptunian satellites known to date. The plots of the orbital elements against time give a clear idea of the pattern of the orbital evolution of each satellite. The tabular data allow us to estimate the basic parameters of the evolving orbits, including the ranges of variation in the semimajor axes, eccentricities, and ecliptical inclinations as well as the variation periods and mean motions of the arguments of pericenters and the longitudes of the nodes. We compare the results obtained by numerically integrating the rigorous equations of the perturbed motion of the satellites with the analytical and numerical-analytical results. The satellite orbits with a librational pattern of variation in the arguments of pericenters are set apart.  相似文献   

18.
One of the possible early states of the Earth-Moon system was a system of several large satellites around the Earth. The dynamical evolution of coplanar three-body systems is studied; a planet (Earth) and two massive satellites (proto-moons) with geocentric orbits of slightly different radii. Such configurations may arise in multiple satellite systems receding from a planet due to tidal friction. The numerical integration of the equations of motion shows that initially circular Keplerian orbits are soon transformed into disturbed elliptic orbits which are intersecting. The life-time of such a coplanar system between two probable physical collisions of satellites is roughly from one day to one year for satellite systems with radii less than 20R⊕, and may reach 100 yr for three-dimensional systems. This time-scale is short in comparison with the duration of the removal of satellites due to tides raised on the planet, which is estimated as 106–108 yr for the same orbital dimensions. Therefore, the life-time of a system of several proto-moons is mainly determined by their tidal interactions with the Earth. For conditions which we have considered, the most probable result of the evolution was coalescence of satellites as the consequence of the collisions.  相似文献   

19.
The area of stable motion for fictitious Trojan asteroids around Uranus’ equilateral equilibrium points is investigated with respect to the inclination of the asteroid’s orbit to determine the size of the regions and their shape. For this task we used the results of extensive numerical integrations of orbits for a grid of initial conditions around the points L 4 and L 5, and analyzed the stability of the individual orbits. Our basic dynamical model was the Outer Solar System (Jupiter, Saturn, Uranus and Neptune). We integrated the equations of motion of fictitious Trojans in the vicinity of the stable equilibrium points for selected orbits up to the age of the Solar system of 5 × 109 years. One experiment has been undertaken for cuts through the Lagrange points for fixed values of the inclinations, while the semimajor axes were varied. The extension of the stable region with respect to the initial semimajor axis lies between 19.05 ≤ a ≤ 19.3 AU but depends on the initial inclination. In another run the inclination of the asteroids’ orbit was varied in the range 0° < i < 60° and the semimajor axes were fixed. It turned out that only four ‘windows’ of stable orbits survive: these are the orbits for the initial inclinations 0° < i < 7°, 9° < i < 13°, 31° < i < 36° and 38° < i < 50°. We postulate the existence of at least some Trojans around the Uranus Lagrange points for the stability window at small and also high inclinations.  相似文献   

20.
A new analytical solution of the system of differential equations describing secular perturbations and long-period solar perturbations of mean orbits of outer satellites of giant planets was obtained. As distinct from other solutions, the solution constructed using von Zeipel’s method approximately takes into account, in the secular part of the perturbing function, the totality of fourth order with respect to the small parameter m of the ratio of the mean motions of the primary planet and the satellite. This enables us to describe more accurately the evolution of satellite orbits with large apocentric distances, which in the course of evolution may exceed the halved radius of the Hill sphere of the planet with respect to the Sun. Among these are the orbits of the two outermost Neptunian satellites N10 (Psamathe) and N13 (Neso). For these satellites, the parameter m amounts to 0.152 and 0.165, respectively. Different from a purely analytical solution, the proposed solution requires preliminary calculations for each satellite. More precisely, in doing so, we need to construct some simple functions to approximate more complex ones. This is why we use the phrase “constructive analytical.” To illustrate the solution, we compare it with the results of the numerical integration of the strict motion equations of the satellites N10 and N13 over time intervals 5–15 thousand years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号