首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four Galilean satellites are thought to harbor one or even two global internal liquid layers beneath their surface layer. The iron core of Io and Ganymede is most likely (partially) liquid and also the core of Europa may be liquid. Furthermore, there are strong indications for the existence of a subsurface ocean in Europa, Ganymede, and Callisto. Here, we investigate whether libration observations can be used to prove the existence of these liquid layers and to constrain the thickness of the overlying solid layers. For Io, the presence of a small liquid core increases the libration of the mantle by a few percent with respect to an entirely solid Io and mantle libration observations could be used to determine the mantle thickness with a precision of several tens of kilometers given that the libration amplitude can be measured with a precision of 1 m. For Europa, Ganymede, and Callisto, the presence of a water ocean close to the surface increases by at least an order of magnitude the ice shell libration amplitude with respect to an entirely solid satellite. The shell libration depends essentially on the shell thickness and to a minor extent on the density difference between the ocean and the ice shell. The possible presence of a liquid core inside Europa and Ganymede has no noticeable influence on their shell libration. For a precision of several meters on the libration measurements, in agreement with the expected accuracy with the NASA/ESA EJSM orbiter mission to Europa and Ganymede, an error on the shell thickness of a few tens kilometers is expected. Therefore, libration measurements can be used to detect liquid layers such as Io’s core or water subsurface oceans in Europa, Ganymede, and Callisto and to constrain the thickness of the overlying solid surface layers.  相似文献   

2.
Hauke Hussmann  Tilman Spohn 《Icarus》2004,171(2):391-410
Coupled thermal-orbital evolution models of Europa and Io are presented. It is assumed that Io, Europa, and Ganymede evolve in the Laplace resonance and that tidal dissipation of orbital energy is an internal heat source for both Io and Europa. While dissipation in Io occurs in the mantle as in the mantle dissipation model of Segatz et al. (1988, Icarus 75, 187), two models for Europa are considered. In the first model dissipation occurs in the silicate mantle while in the second model dissipation occurs in the ice shell. In the latter model, ice shell melting and variations of the shell thickness above an ocean are explicitly included. The rheology of both the ice and the rock is cast in terms of a viscoelastic Maxwell rheology with viscosity and shear modulus depending on the average temperature of the dissipating layer. Heat transfer by convection is calculated using a parameterization for strongly temperature-dependent viscosity convection. Both models are consistent with the present orbital elements of Io, Europa, and Ganymede. It is shown that there may be phases of quasi-steady evolution with large or small dissipation rates (in comparison with radiogenic heating), phases with runaway heating or cooling and oscillatory phases during which the eccentricity and the tidal heating rate will oscillate. Europa's ice thickness varies between roughly 3 and 70 km (dissipation in the silicate layer) or 10 and 60 km (dissipation in the ice layer), suggesting that Europa's ocean existed for geological timescales. The variation in ice thickness, including both convective and purely conductive phases, may be reflected in the formation of different geological surface features on Europa. Both models suggest that at present Europa's ice thickness is several tens of km thick and is increasing, while the eccentricity decreases, implying that the satellites evolve out of resonance. Including lithospheric growth in the models makes it impossible to match the high heat flux constraint for Io. Other heat transfer processes than conduction through the lithosphere must be important for the present Io.  相似文献   

3.
O.L. Kuskov  V.A. Kronrod 《Icarus》2005,177(2):550-569
Models of the internal structure of completely differentiated Europa and partially differentiated Callisto have been constructed on the basis of Galileo gravity measurements, geochemical constraints on composition of ordinary and carbonaceous chondrites, and thermodynamic data on the equations of state of water, high-pressure ices, and meteoritic material. We assume thermal and mechanical equilibrium for the interiors of the satellites. A geophysically and geochemically permissible thickness of Europa's outer water-ice shell lies between 105 and 160 km (6.2-9.2% of total mass). Our results show that the bulk composition of the rock-iron core of Europa may be described by material approaching the L/LL-type chondrites in composition, but cannot be correlated either with the material of CI chondrites or H chondrites. For Europa's L/LL-chondritic models, core radii are estimated to be 470-640 km (5.3-12.5% of total mass). The allowed thickness of Europa's H2O layer ranges from 115±10 km for a differentiated L/LL-type chondritic mantle with a crust to 135±10 km for an undifferentiated mantle. We show that Callisto must only be partially differentiated into an outer ice-I layer, a water ocean, a rock-ice mantle, and a rock-iron core (mixture of anhydrous silicates and/or hydrous silicates + FeFeS alloy). We accept that the composition of the rock-iron material of Callisto is similar to the bulk composition of L/LL-type chondritic material containing up to 10-15% of iron and iron sulfide. Assuming conductive heat transfer through the ice-I crust [Ruiz, 2001. The stability against freezing of an internal liquid-water ocean on Gallisto. Nature, 412, 409-411], heat flows were estimated and the possibility of the existence of a water ocean in Callisto was evaluated. The liquid phase is stable (not freezing) beneath the ice crust, if the heat flow is between 3.3 and 3.7 mW m−2, which corresponds to the heat flow from radiogenic sources. The thickness of the ice-I crust is 135-150 km, and that of the underlying water layer, 120-180 km. The results of modeling support the hypothesis that Callisto may have an internal liquid-water ocean. The allowed total (maximum) thickness of the outer water-ice shell is up to 270-315 km. Rock-iron core radii, depending on the presence or absence of hydrous silicates, do not exceed 500-700 km, the thickness of an intermediate ice-rock mantle is not less than 1400 km, and its density is in the range of 1960-2500 kg m−3. The surface temperature of Callisto is expected to be 100-112 K. The total amount of H2O in Callisto is found to be 49-55 wt%. The correspondence between the density and moment of inertia values for bulk ice-free Io, rock-iron core of ice-poor Europa, and rock-iron cores of Ganymede and Callisto shows that their bulk compositions may be, in general, similar and may be described by the composition close to a material of the L/LL-type chondrites with the (Fetot/Si) weight ratios ranging from 0.9 to 1.3. Planetesimals composed of these types of ordinary chondrites could be considered as analogues of building material for the rock-iron cores of the Galilean satellites. Similarity of bulk composition of the rock-iron cores of the inner and outer satellites implies the absence of iron-silicon fractionation in the protojovian nebula.  相似文献   

4.
New near-infrared (0.65–2.5 μm) reflectance spectra of the Galilean satellites with 1.5% spectral resolution and ≈2% intensity precision are presented. These spectra more precisely define the water ice absorption features previously identified on Europa, Ganymede, and Callisto at 1.55 and 2.0 μm. In addition, previously unreported spectral features due to water ice are seen at 1.25, 1.06, 0.90, and 0.81 μm on Europa, and at 1.25, 1.04, and possibly 0.71 μm on Ganymede. Unreported absorption features in Callisto's spectrum occur at 1.2 μm, probably due to H2O, and a weak, broad band extending from 0.75 to 0.95 μm, due possibly to other minerals. The spectrum of Io has only weak absorption features at 1.15 μm and between 0.8 and 1.0 μm. No water absorptions are positively identified in the Io spectra, indicating an upper limit of areal water frost coverage of 2% (leading and trailing sides). It is found for Callisto, Ganymede, and Europa that the water ice absorption features are due to free water and not to water bound or absorbed onto minerals. The areal coverage of water frost is ≈ 100% on Europa (trailing side), ≈65% on Ganymede (leading side), and 20–30% on Callisto (leading side). An upper limit of ≈5% bound water (in addition to the 20–30% ice) may be present on Callisto, based on the strong 3-μm band seen by other investigators. A summary of spectra of the satellites from 0.325 to about 5 μm to aid in laboratory and interpretation studies is also presented.  相似文献   

5.
Audouin Dollfus 《Icarus》1975,25(3):416-431
New measurements of the amount of polarization of the Galilean satellites are given and, within the context of other data, are interpreted as follows. The polarization of Europa is consistent with a water-frost surface. Io has a surface of partly absorbing crystals thought to result from evaporates released from the mantle and damaged by radiation. Ganymede has alternating water-frost areas and darker terrain, possibly of a silicaceous nature. Callisto is explained as having a mantle of ice containing embedded blocks of rocks, which occurred when recent evaporation left the blocks piled at the surface in a chaotic manner. This event occurred after the vicinity of Jupiter had been cleared of small orbiting objects able to impact Callisto. Meteorites which continue to enter within the sphere of influence of Jupiter can collide with Callisto only on its leading hemisphere, which is thereby comminuted by impacts. The surface of the trailing hemisphere is not regolithic.  相似文献   

6.
Radar observations of the Galilean satellites, made in late 1976 using the 12.6-cm radar system of the Arecibo Observatory, have yielded mean geometric albedos of 0.04 ± , 0.69 ± 0.17, 0.37 ± 0.09, and 0.15 ± 0.04, for Io, Europa, Ganymede, and Callisto, respectively. The albedo for Io is about 40% smaller than that obtained approximately a year earlier, while the albedos for the outer three satellites average about 70% larger than the values previously reported for late 1975, raising the possibility of temporal variation. Very little dependence on orbital phase is noted; however, some regional scattering inhomogeneities are seen on the outer three satellites. For Europa, Ganymede, and Callisto, the ratios of the echo received in one mode of circular polarization to that received in the other were: 1.61 ± 0.20 1.48 ± 0.27, and 1.24 ± 0.19, respectively, with the dominant component having the same sence of circularity as that transmitted. This behavior has not previously been encountered in radar studies of solar system objects, whereas the corresponding observations with linear polarization are “normal.” Radii determined from the 1976 radar data for Europa and Ganymede are: 1530 ± 30 and 2670 ± 50 km, in fair agreement with the results from the 1975 radar observations and the best recent optical determinations. Doppler shifts of the radar echoes, useful for the improvement of the orbits of Jupiter and some of the Galilean satellites, are given for 12 nights in 1976 and 10 nights in 1975.  相似文献   

7.
Models of the internal structure of Callisto were constructed and the extent of its differentiation was determined based on geophysical information from the Galileo spacecraft (the mass, the radius, the mean density, and the moment of inertia), geochemical data (the chemical composition of meteorites), and the equations of state of water, ices, and meteoritic material. The thickness and the phase state of the water-ice shell were defined as well as the ice concentrations in the rock-ice mantle and the bulk concentration of H2O. The constraints on the density distribution in the mantle and the size of the rock-iron core were derived. We considered models of the internal structure of Callisto in which the presence of a continuous ice shell was assumed (models without ocean) and models with an internal ocean. We demonstrated that it is possible to apply three-layer models with an icy shell up to 320 km in thickness and a rock-iron core in different combinations with a rock-ice mantle. These models do not reject a two-layer structure of Callisto (an ice lithosphere plus a rock-ice mantle or a rock-ice mantle plus a rock-iron core) and a one-layer model of the satellite composed only of a rock-ice mantle with an ice concentration that is variable in depth. Taking into account the chemically bound water, the bulk content of H2O in the satellite is found to be 49–55 wt %. For the model with an internal ocean, the geophysically allowed thickness of the water-ice shell of Callisto was estimated to be 270–315 km with thicknesses of the icy crust and the underlying water layer of 135–150 and 120–180 km, respectively. The results of reconstruction of the composition and structure of the regular satellites of Jupiter allow us to conclude that they were possibly formed from material whose composition was close to ordinary L/LL chondrites at relatively low temperatures, lower than the temperature of evaporation of iron and Fe-Mg silicates.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 321–341.Original Russian Text Copyright © 2005 by Kuskov, Kronrod.  相似文献   

8.
We present results of polarimetric observations of the Galilean satellites Io, Europa, Ganymede, and Callisto at phase angles ranging from 0.19° to 2.22°. The observations in the UBVR filters were performed using a one-channel photoelectric polarimeter attached to 70-cm telescope of the Chuguev Observation Station (Ukraine) on November 19-December 7, 2000. We have observed the polarization opposition effect for Io, Europa, and Ganymede to be a sharp secondary spike of negative polarization with an amplitude of about −0.4% centered at phase angles of 0.2°-0.7° and superimposed on the regular negative polarization branch. Although these minima for Io, Europa, and Ganymede show many similarities, they also exhibit a number of distinctions. The polarization opposition effect appears to be wavelength-dependent, at least for Europa and Ganymede. No polarization opposition effect was found for Callisto. The results obtained are discussed within the framework of different mechanisms of light scattering.  相似文献   

9.
The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.  相似文献   

10.
We present spectrophotometry in the 27–41 μm spectral region for icy satellites of Saturn (Tethys, Dione, Rhea, Iapetus, and Hyperion) and Jupiter (Europa, Ganymede, and Callisto). The 3.6-μm reflectance peak characteristic of fine-grained water ice is observed prominently on the satellites of Saturn, faintly on the leading side of Europa, and not all on Ganymede, Callisto, or the dark side of Iapetus. The spectral reflectances of these icy satellites may be affected by their equilibrium surface temperatures and magnetospheric effects.  相似文献   

11.
K. Nagel 《Icarus》2004,169(2):402-412
The recently measured dimensionless moment of inertia (MoI) factor for Callisto of 0.3549±0.0042 (Anderson et al., 2001, Icarus, 153, 157-161) poses a problem: its value cannot be explained by a model in which Callisto is completely differentiated into an ice shell above a rock shell and an iron core such as its neighboring satellite Ganymede nor can it be explained by a model of a homogeneous, undifferentiated ice-rock satellite. We show that Callisto may be incompletely differentiated into an outer ice-rock shell in which the volumetric rock concentration is close to the primordial one at the surface and decreases approximately linearly with depth, an ice mantle mostly depleted of rock, and an about 1800 km rock-ice core in which the rock concentration is close to the close-packing limit. The ice-rock shell thickness depends on uncertain rheology parameters and the heat flow and can be roughly 50 to 150 km thick. We show that if Callisto accreted from a mix of metal bearing rock and ice and if the average size of the rocks was of the order of meters to tens of meters, then Callisto may have experienced a gradual, but still incomplete unmixing of the two components. An ocean in Callisto at a depth of 100-200 km is difficult to obtain if the ice is pure H2O and if the ice-rock lithosphere is 100 km or more thick; a water ocean is more plausible for ice contaminated by ammonia, methane or salts; or for pure H2O at a depth of 400-600 km.  相似文献   

12.
We have obtained reflectivity spectra of the trailing and leading sides of all four Galilean satellites with circular variable filter wheel spectrometers operating in the 0.7- to 5.5-μm spectral interval. These observations were obtained at an altitude of 41,000 ft from the Kuiper Airborne Observatory. Features seen in these data include a 2.9-μm band present in the spectra of both sides of Callisto; the well-known 1.5-μm and 2.0-μm combination bands and the previously more poorly defined 3.1-μm fundamental of water ice observed in the spectra of both sides of Europa and Ganymede; and features centered at 1.35 ± 0.1, 2.55 ± 0.1, and 4.05 ± 0.05 μm noted in the spectra of both sides of Io. In an effort to interpret these data, we have compared them with laboratory spectra as well as synthetic spectra constructed with a simple multiple-scattering theory. We attribute the 2.9-μm feature of Callisto's spectra primarily to bound water, with the product of fractional abundance of bound water and mean grain radius in micrometers equaling approximately 3.5 × 10?1 for both sides of the satellite. The fractional amounts of water ice cover on the trailing side of Ganymede, its leading side, and the leading side of Europa were found to be 50 ± 15, 65 ± 15, and 85% or greater, respectively. The bare ground areas on Ganymede have reflectivity properties in the 0.7- to 2.5-μm spectral region comparable to those of Callisto's surface and also have significant quantities of bound water, as does Callisto. Interpretation of the spectrum for the trailing side of Europa is complicated by magnetospheric particle bombardment which causes a perceptible broadening of strong bands, but the ice cover on this side is probably comparable to that on the leading side. These irradiation effects may be responsible for much of the difference in the visual geometric albedos of the two sides of Europa. Minor, but significant, amounts of ferrous-bearing material (either ferrous salts or alkali feldspars but not olivines or pyroxenes) account for the 1.35-μm feature of Io. The two longer wavelength bands are most likely attributable to nitrate salts. Ferrous salts and nitrates can jointly also account for much of the spectral variation in Io's visible reflectivity, thereby eliminating the need to postulate large quantities of sulfur. The absence of noticeable features near 3-μm wavelength in Io's spectra leads to upper bounds of 10% on the fractional cover of water and ammonia ice and 10?3 on the relative abundance of bound water and hydroxylated material on Io. The two sides of Io have similar compositions. We suggest that the systematic increase in fractional water ice cover from Callisto to Ganymede to Europa is bought about by variations in efficiencies of recoating the satellite's surface by interior water brought to the surface, and by the deposition of extrinsic dust. The most important component of the latter is debris, derived from the outer irregular satellites of Jupiter, which impacts the Galilean satellites at relatively low velocities. Europa has the largest water ice cover because its crust is thinnest and thus the frequency of water recoating is the greatest, and because it is farthest from the sources of low-velocity dust. While models which depict Io's surface as consisting primarily of very fine-grained ice are no longer viable, we are unable to definitively distinguish between the salt assemblage and alkali feldspar models. The salt model can better account for Io's reflectivity spectrum from 0.3 to 5 μm, but the absence of appreciable quantities of bound water and hydroxylated material may not be readily understood within the context of that model.  相似文献   

13.
Astrometric satellite positions are derived from timings of their eclipses in the shadow of Jupiter. The 548 data points span 20 years and are accurate to about 0.006 arcsec for Io and Europa and about 0.015 arcsec or better for Ganymede and Callisto. The precision of the data set and its nearly continuous distribution in time allows measurement of regular oscillations with an accuracy of 0.001 arcsec. This level of sensitivity permits detailed evaluation of modern ephemerides and reveals anomalies at the 1.3 year period of the resonant perturbations between Io, Europa and Ganymede. The E5 ephemeris shows large errors at that period for all three satellites as well as other significant anomalies. The L1 ephemeris fits the observations much more closely than E5 but discrepancies for the resonant satellites are still apparent and the measured positions of Io are drifting away from the predictions. The JUP230 ephemeris fits the observations more accurately than L1 although there is still a measurable discordance between the predictions and observations for Europa at the resonance period.  相似文献   

14.
Roger N. Clark 《Icarus》1980,44(2):388-409
The reflectance spectra of Ganymede, Europa, Callisto, and Saturn's rings are analyzed using recent laboratory reflectance studies of water frost, water ice, and water and mineral mixtures. It is found that the spectra of the icy Galilean satellites are characteristic of water ice (e.g., ice blocks or possibly very large ice crystals ? 1 cm) or frost on ice rather than pure water frost, and that the decrease in reflectance at visible wavelengths is caused by other mineral grains in the surface. The spectra of Saturn's rings are more characteristic of water frost with some other mineral grains mixed in the frost but not on the surface. The impurities on all these objects are not in spectrally isolated patches but appear to be intimately mixed with the water. The impurity grains appear to have reflectance spectra typical of minerals containing Fe3+. Some carbonaceous chondrite meteorite spectra show the necessary spectral shape. Ganymede is found to have more water ice on the surface than previously thought (~90 wt%), as is Callisto (30–90 wt%). The surface of Europa has a vast frozen water surface with only a few percent impurities. Saturn's rings also have only a few percent impurities. The amount of bound water or bound OH for these objects is 5 ± 5 wt% averaged over the entire surface. Thus with the small amount of nonicy material present on these objects, no hydrated minerals can be ruled out. A new absorption feature is identified in Ganymede, Callisto, and probably Europa at 1.5 μm which is also seen in the spectra of Io but not in Saturn's rings. This feature has not been seen in laboratory studies and its cause is unknown.  相似文献   

15.
Several approaches have been used to estimate the ice shell thickness on Callisto, Ganymede, and Europa. Here we develop a method for placing a strict lower bound on the thickness of the strong part of the shell (lithosphere) using measurements of topography. The minimal assumptions are that the strength of faults in the brittle lithosphere is controlled by lithostatic pressure according to Byerlee's law and the shell has relatively uniform density and thickness. Under these conditions, the topography of the ice provides a direct measure of the bending moment in the lithosphere. This topographic bending moment must be less than the saturation bending moment of the yield strength envelope derived from Byerlee's law. The model predicts that the topographic amplitude spectrum decreases as the square of the topographic wavelength. This explains why Europa is rugged at shorter wavelengths (∼10 km) but extremely smooth, and perhaps conforming to an equipotential surface, at longer wavelengths (>100 km). Previously compiled data on impact crater depth and diameter [Schenk, P.M., 2002. Nature 417, 419-421] on Europa show good agreement with the spectral decrease predicted by the model and require a lithosphere thicker than 2.5 km. A more realistic model, including a ductile lower lithosphere, requires a thickness greater than 3.5 km. Future measurements of topography in the 10-100 km wavelength band will provide tight constraints on lithospheric strength.  相似文献   

16.
Interplanetary dust grains entering the Jovian plasmasphere become charged, and those in a certain size range get magneto-gravitationally trapped in the corotating plasmasphere. The trajectories of such dust grains intersect the orbits of one or more of the Galilean satellites. Orbital calculations of micron sized dust grains show that they impact the outermost satellite Callisto predominantly on its leading face, while they impact the inner three — Io, Europa and Ganymede — predominantly on the trailing face. These results are offered as an explanation of the observed brightness asymmetry between the leading and trailing faces of the outer three Galilean satellites. The albedo of Io is likely to be determined by its volcanism.  相似文献   

17.
Mark J. Lupo 《Icarus》1982,52(1):40-53
Using improved data for the masses and radii of the satellites of Jupiter and Saturn, models accounting for self-compression effects are presented for the interiors of Europa, Ganymede, Callisto, Rhea, and Titan. For the differentiated models, two different possible scenarios for heat transport are treated, as well as two different compositions for the silicate component. Undifferentiated models are also treated. In each case, the models of Ganymede, Callisto, and Titan show noticeable similarities. It is found that estimates of the ice-rock ratio are dependent upon the assumptions made about the heat transport mechanisms, the rock composition, and on the distribution of rock and ice in the satellite's interior.  相似文献   

18.
Two types of trial three-layer models have been constructed for the satellites Io and Europa. In the models of the first type (Io1 and E1), the cores are assumed to consist of eutectic Fe-FeS melt with the densities ρ 1 = 5.15 g cm?3 (Io1) and 5.2 g cm?3 (E1). In the models of the second type (Io3 and E3), the cores consist of FeS with an admixture of nickel and have the density ρ 1 = 4.6 g cm?3. The approach used here differs from that used previously both in chosen model chemical composition of these satellites and in boundary conditions imposed on the models. The most important question to be answered by modeling the internal structure of the Galilean satellites is that of the condensate composition at the formation epoch of Jupiter’s system. Jupiter’s core and the Galilean satellites were formed from the condensate. Ganymede and Callisto were formed fairly far from Jupiter in zones with temperatures below the water condensation temperature, water was entirely incorporated into their bodies, and their modeling showed the mass ratio of the icy (I) component to the rock (R) component in them to be I/R ~ 1. The R composition must be clarified by modeling Io and Europa. The models of the second type (Io3 and E3), in which the satellite cores consist of FeS, yield 25.2 (Io3) and 22.8 (E3) for the core masses (in weight %). In discussing the R composition, we note that, theoretically, the material of which the FeS+Ni core can consist in the R accounts for ~25.4% of the satellite mass. In this case, such an important parameter as the mantle silicate iron saturation is Fe# = 0.265. The Io3 and E3 models agree well with this theoretical prediction. The models of the first and second types differ markedly in core radius; thus, in principle, the R composition in the formation zone of Jupiter’s system can be clarified by geophysical studies. Another problem studied here is that of the error made in modeling Io and Europa using the Radau-Darvin formula when passing from the Love number k 2 to the nondimensional polar moment of inertia $\bar C$ . For Io, the Radau-Darvin formula underestimates the true value of $\bar C$ by one and a half units in the third decimal digit. For Europa, this effect is approximately a factor of 3 smaller, which roughly corresponds to a ratio of the small parameters for the satellites under consideration α Io/α Europa ~ 3.4. In modeling the internal structure of the satellites, the core radius depends strongly on both the mean moment of inertia I* and k 2. Therefore, the above discrepancy in $\bar C$ for Io is appreciable.  相似文献   

19.
New models for the interiors of Io, Ganymede, and Callisto are proposed. The model of Io consists of a thin, high-rigidity outer layer separated from a solid interior by a thin, molten or partially molten shell. The modulus of rigidity of the outer layer must be at least 100 times larger than that of the underlying partially molten shell. These layers have thicknesses of order 100 km or less. The near-surface partially molten layer was most likely produced early in Io's history as a consequence of accretional heating; enhanced tidal heating in the outer rigid layer has kept the underlying region partially molten to the present day. The model of Ganymede consists of an ice outer layer, a shell of undifferentiated, primordial ice-silicate mixture, and a rock core. Accretional heating is responsible for melting the ice in the outer layers of Ganymede's initially homogeneous ice-silicate interior. Most of the rock in this outer layer accumulates in a shell on top of Ganymede's early cold and rigid central region; the water in the outer layer quickly refreezes. Heating of the undifferentiated region by the decay of radioactive elements in the silicate fraction would gradually warm it and reduce its viscosity. The rock layer would become gravitationally unstable and sink through the undifferentiated materials to form a rock core. Callisto's heavily cratered surface strongly suggests that relatively little, if any, ice-rock differentiation has occured in its interior.  相似文献   

20.
Oceans in the icy Galilean satellites of Jupiter?   总被引:1,自引:0,他引:1  
Tilman Spohn  Gerald Schubert 《Icarus》2003,161(2):456-467
Equilibrium models of heat transfer by heat conduction and thermal convection show that the three satellites of Jupiter—Europa, Ganymede, and Callisto—may have internal oceans underneath ice shells tens of kilometers to more than a hundred kilometers thick. A wide range of rheology and heat transfer parameter values and present-day heat production rates have been considered. The rheology was cast in terms of a reference viscosity ν0 calculated at the melting temperature and the rate of change A of viscosity with inverse homologous temperature. The temperature dependence of the thermal conductivity k of ice I has been taken into account by calculating the average conductivity along the temperature profile. Heating rates are based on a chondritic radiogenic heating rate of 4.5 pW kg−1 but have been varied around this value over a wide range. The phase diagrams of H2O (ice I) and H2O + 5 wt% NH3 ice have been considered. The ice I models are worst-case scenarios for the existence of a subsurface liquid water ocean because ice I has the highest possible melting temperature and the highest thermal conductivity of candidate ices and the assumption of equilibrium ignores the contribution to ice shell heating from deep interior cooling. In the context of ice I models, we find that Europa is the satellite most likely to have a subsurface liquid ocean. Even with radiogenic heating alone the ocean is tens of kilometers thick in the nominal model. If tidal heating is invoked, the ocean will be much thicker and the ice shell will be a few tens of kilometers thick. Ganymede and Callisto have frozen their oceans in the nominal ice I models, but since these models represent the worst-case scenario, it is conceivable that these satellites also have oceans at the present time. The most important factor working against the existence of subsurface oceans is contamination of the outer ice shell by rock. Rock increases the density and the pressure gradient and shifts the triple point of ice I to shallower depths where the temperature is likely to be lower then the triple point temperature. According to present knowledge of ice phase diagrams, ammonia produces one of the largest reductions of the melting temperature. If we assume a bulk concentration of 5 wt% ammonia we find that all the satellites have substantial oceans. For a model of Europa heated only by radiogenic decay, the ice shell will be a few tens of kilometers thinner than in the ice I case. The underlying rock mantle will limit the depth of the ocean to 80-100 km. For Ganymede and Callisto, the ice I shell on top of the H2O-NH3 ocean will be around 60- to 80-km thick and the oceans may be 200- to 350-km deep. Previous models have suggested that efficient convection in the ice will freeze any existing ocean. The present conclusions are different mainly because they are based on a parameterization of convective heat transport in fluids with strongly temperature dependent viscosity rather than a parameterization derived from constant-viscosity convection models. The present parameterization introduces a conductive stagnant lid at the expense of the thickness of the convecting sublayer, if the latter exists at all. The stagnant lid causes the temperature in the sublayer to be warmer than in a comparable constant-viscosity convecting layer. We have further modified the parameterization to account for the strong increase in homologous temperature, and therefore decrease in viscosity, with depth along an adiabat. This modification causes even thicker stagnant lids and further elevated temperatures in the well-mixed sublayer. It is the stagnant lid and the comparatively large temperature in the sublayer that frustrates ocean freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号