首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study presents the results of numerical simulations of mass-transfer processes in the near-surface layer of the cometary nucleus and in the inner part of the cometary atmosphere, which is formed under the action of solar radiation. The gas-kinetic model of the inner part of the cometary atmosphere surrounding a spherical nucleus (Skorov et al., 2004) is extended to the case of a nonspherical nucleus with axial symmetry. After high-resolution images of comets 19P/Borrelly and Wild 2 have been obtained by Deep Space 1 and Stardust spacecraft, such an extension seems to be vital and important. The nucleus and the inner part of the coma are closely related to each other because of the permanent exchange of energy and mass; therefore, they are modeled consistently. As in the first part of our study, the boundary conditions at the inner boundary of the simulation domain, which are necessary for gas-kinetic simulations, were determined from the self-consistent model of heat and mass transfer in a porous cometary nucleus that was developed earlier by the authors. The model took into account the volumetric character of the radiation absorption in a porous sublimating medium, the kinetic regime of the transport of sublimation products in the pores, and the backward gas fluxes from the coma due to intermolecular collisions. We considered different models of the nucleus structure that determined the effective gas production. Using the direct simulation Monte Carlo method, we computed the two-dimensional gas flow from a heterogeneous nonspherical cometary nucleus. The simulations were performed using the SMILE software. The parallel computer implementation of the software made it possible to calculate the spatial structure of the gas flow for the entire circumnucleus zone.  相似文献   

2.
A Monte Carlo model designed to compute both the input and output radiation fields from spherical-shell cometary atmospheres has been developed. The code is an improved version of that by H. Salo (1988, Icarus76, 253-269); it includes the computation of the full Stokes vector and can compute both the input fluxes impinging on the nucleus surface and the output radiation. This will have specific applications for the near-nucleus photometry, polarimetry, and imaging data collection planned in the near future from space probes. After carrying out some validation tests of the code, we consider here the effects of including the full 4×4 scattering matrix in the calculations of the radiative flux impinging on cometary nuclei. As input to the code we used realistic phase matrices derived by fitting the observed behavior of the linear polarization as a function of phase angle. The observed single scattering linear polarization phase curves of comets are fairly well represented by a mixture of magnesium-rich olivine particles and small carbonaceous particles. The input matrix of the code is thus given by the phase matrix for olivine as obtained in the laboratory plus a variable scattering fraction phase matrix for absorbing carbonaceous particles. These fractions are 3.5% for Comet Halley and 6% for Comet Hale-Bopp, the comet with the highest percentage of all those observed.The errors in the total input flux impinging on the nucleus surface caused by neglecting polarization are found to be within 10% for the full range of solar zenith angles. Additional tests on the resulting linear polarization of the light emerging from cometary nuclei in near-nucleus observation conditions at a variety of coma optical thicknesses show that the polarization phase curves do not experience any significant changes for optical thicknesses τ?0.25 and Halley-like surface albedo, except near 90° phase angle.  相似文献   

3.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

4.
We formulate a completely three-dimensional nonstationary model of the thermal state and gas production rate of rotating spherical cometary nuclei moving in circular and elliptical orbits around the Sun. We perform a thermophysical analysis of the problem and formulate a system of similarity criteria. The possible thermal regimes of cometary nuclei are analyzed in the space of suggested similarity criteria. Only one criterion dependent on the nucleus spin period is shown to play a dominant role for rotating nuclei at a given heliocentric distance. This simplifies greatly a parametric study of the gas production rate of real cometary nuclei under conditions of uncertainty in their parameters. Based on the developed model, we numerically investigate the thermal state and gas production rate of rotating nuclei. The results of our calculations are in complete agreement with those of the similarity analysis for the problem. We perform a comparative analysis of the currently used simplified thermal models for cometary nuclei and determine the range of their applicability.  相似文献   

5.
A longstanding problem in thermophysical modeling of cometary nuclei has been to accurately formulate the boundary conditions at the nucleus/coma interface. A correct treatment of the problem, where the Knudsen layer gas just above the cometary surface (which is not in thermodynamic equilibrium) is modeled in parallel with the nucleus, is extremely time-consuming and has so far been avoided. Instead, simplifying assumptions regarding the coma properties are used, e.g., the surface gas density is assumed equal to zero or set to the local saturation value, and the coma backflux is neglected or given some realistic but approximate value. The resulting inaccuracy regarding the exchange of mass, energy, and momentum between the nucleus and the coma, may introduce significant errors in the calculated nucleus temperature profiles, gas production rates, and momentum transfer efficiencies. In this paper, we present a practical, accurate, and time-efficient tool which makes it possible to consider the nucleus and the innermost coma of a comet (the former assumed to consist of a porous mixture of crystalline water ice and dust) as a coupled, physically consistent system. The tool consists of interpolation tables for the surface gas density and pressure, the recondensing coma backflux, and the cooling energy flux due to diffusely scattered coma molecules. The tables cover a wide range of surface temperatures and sub-surface temperature profiles, and can be used to improve the boundary conditions used in thermophysical models. The interpolation tables have been obtained by calculating the transmission distribution functions of gas emerging from sublimating porous ice/dust mixtures with various temperature profiles, which then are used as source functions in a Direct Simulation Monte Carlo model of inelastic intermolecular collisions in the Knudsen layer.  相似文献   

6.
We examine the potential contamination of cometary nuclei through impacts from asteroidal origin meteoroids. The paper uses a simple model and has the goal of determining whether asteroidal contamination is potentially significant. We assume a meteoroid power law mass distribution with index values in the range from s=1.83 to s=2.09. We used maximum and minimum models which we believe will bracket the true meteoroid mass distribution. We identify those comets which are expected to be most significantly contaminated, and find values of up to 3.6 kg of asteroidal meteoroid impact per square meter of the cometary surface per orbital revolution. This is less than the expected mass loss per perihelion passage for most comets. Therefore any remnant effects of the contamination will depend on the penetration depth of the meteoroids in the cometary nucleus, and possibly on the distribution of active and inactive areas on cometary nuclei. We present a simple model which suggests that even small meteoroids will embed relatively deeply into a cometary nucleus.  相似文献   

7.
We present near infrared reflectance spectra from 0.8 to 2.5 μm of two asteroids with low Tisserand invariant, 1373 Cincinnati and 2906 Caltech. We compare our spectra with cometary nuclei and other asteroids in their class. Asteroids Cincinnati and Caltech have Tisserand invariant values of 2.72 and 2.97, respectively, values less than 3 are considered suggestive of cometary origin. The observed spectral slopes in the near-infrared are consistent with both the spectra of cometary nuclei and of primitive asteroids. However, both asteroids have features in the near-infrared that are not seen in cometary nuclei, but are present in other X-type asteroids. 1373 Cincinnati has a sharp slope change between 0.75 and 1.0 μm and 2906 Caltech has a broad and shallow absorption between 1.35 and 2.2 μm. Our attempts to model the visible and near-infrared spectrum of these two objects, with the components successfully used by Emery and Brown (2004, Icarus 164, 104–121) to fit Trojan asteroids, did not yield acceptable fits.Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract to the National Aeronautics and Space Administration.  相似文献   

8.
J. Lasue  R. Botet  E. Hadamcik 《Icarus》2011,213(1):369-381
A model for the aggregation of size distribution of cometesimals (Gaussian or power law) into cometary nuclei is developed. Upon disruption induced by collisions, sticking and evolution of the tensile strength and density of the cometesimals by sintering processes are taken into account. The resulting cometary nuclei present specific internal structures that have been quantified to allow the comparison with observational constraints and future in situ observations and cometary nucleus sounding with the CONSERT radar on-board the Rosetta mission. A parameter called the homogeneity exponent, μ, determines different aggregation regimes. Fractal aggregates are formed for μ < 0.4. Radial variations in tensile strength appear for 0.4 < μ < 0.6 and vanish for larger values of μ. The initial size distribution (following a Gaussian or power law) of aggregating cometesimals does not influence strongly these values but can change the extent of corresponding layers. If the layering observed on the surface of some cometary nuclei occurs often and originates from primordial structures, this constrains the velocity distribution of aggregating bodies to follow vm-0.25, while a differential size distribution following a power law with exponent between −2 and −3 should result for large bodies, in agreement with current estimations of the size distributions. Such a layered structure would lead to more cohesive, dense and less porous material located near the center of mass of the nucleus predicting an increase of bulk density of comet nuclei with their erosion state.  相似文献   

9.
Spectrophotometric observations of Comet Austin (1982g) in the bands of CN, C2, and C3 are presented, and fit to a Haser model for the cometary brightness distribution. The lifetimes of the parent and daughter molecules, as well as the velocity of the molecules leaving the cometary surface are determined from the model fit. The absolute production rate of molecules is also determined.  相似文献   

10.
We present the analysis of the photometric and spectroscopic data obtained for comet C/2010 X1 (Elenin) when it was at a distance of 2.92 AU from the Sun. The observations were made at the prime focus of the 6-m BTA telescope with the SCORPIO focal reducer. The magnitude of the comet, measured in the R c -band with an 9?? aperture radius amounted to 16?8 ± 0?1. The computed dust production rate was estimated to be about 6 kg/s. The cometary coma manifested the emissions in the (0?C0) band of the CN molecule violet system, and a number of emission band heads of the C3 molecule. The gas production rate of the molecules is determined using the Haser model and amounts to 1.41 × 1024 and 4.20 × 1023 molecules per second for CN and C3, respectively. The ratio of gas production rates log[Q(C3)/Q(CN)] is equal to ?0.85, which is close to the mean value, determined for a significant number of comets. A normalized gradient of the cometary dust reflectivity, calculated for the 4430?C6840 ? spectral range amounts to 14.3 ± 1.2%.  相似文献   

11.
This paper deals with obtaining the maximum size of cometary grains ejected from nuclei of different shapes. Two mechanisms in terms of grain ejection from comets are taken into consideration. The first one is dragging of particles by outflowing gas molecules released by gentle sublimation from the comets. The second one is related with gas jets from the cavities in a nucleus by cometary jet‐like phenomena. We focused on ellipsoidal shapes of cometary nuclei but with different flattening. Calculations have been carried out for a large range of cometary parameters. It has been shown that for fixed mass of the nucleus the maximum size of grains is an increasing function of the nucleus flattening. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Akiva Bar-Nun  Diana Laufer 《Icarus》2003,161(1):157-163
In a unique machine, the first of its kind, large (200 cm2 × 10 cm) samples of gas-laden amorphous ice were prepared at 80 K and 10−5 Torr. The sample consisted of a fluffy agglomerate of 200-μm ice grains, similar to what is presumed to be the structure of comet nuclei. The sample was heated from above by IR radiation. The properties studied were gas content in the ice and its emanation from the ice upon warming and bearing on the gas/water vapor ratio observed in cometary comae vs this ratio in cometary nuclei and the effect of internal trapped gas on the thermal conductivity of the ice and the density and mechanical properties of pure ice vs gas-laden ice. These findings might have significance for the interpretation of comet observations, the forthcoming ESA’s Rosetta space mission to Comet 46P/Wirtanen in 2012, and to other comet missions.  相似文献   

13.
Earlier, a study has been made of the transport mechanism of volatile molecules such as N2 and CO through cometary nuclei as they are heated by radioactive elements. Coupled equations of heat and gas transport in the presence of gas sublimation and recondensation, as well as a heat source, were numerically solved. And it was shown that supervolatiles such as N2 and CO are transported through the pores of the nucleus, and consequently the volatile molecules become more abundant near the surface than deep inside the nucleus. Here, the process is investigated for a wider range of paramaters such as porosity and nuclear radius. It is shown that provided the central temperature attains the sublimation point of the super-volatiles, they are transported toward the surface regardless of the values of the parameters.  相似文献   

14.
《Icarus》1987,72(3):535-554
An analytical model has been developed to simulate the chemical differentiation of a homogeneous, initially unmantled cometary nucleus composed of water ice, putative unclathrated CO2 ice, and silicate dust in specified proportions. Selective sublimation of any free CO2 ice present in a new comet should produce a surface layer of water ice and dust overlying the undifferentiated core. This surface layer modifies the temperature of buried CO2 ice and restricts the outflow of gaseous CO2. On each orbit, water sublimation closer to perihelion temporarily reduces the thickness of the water ice and dust layer and liberates dust. Most of the dust is blown off the nucleus, but a small amount of residual dust remains on the surface (cf. H. L. F. Houpis, W. H. Ip, and D. A. Mendis, 1986, Astrophys. J., in press). Our model includes the effects of nucleus rotation, arbitrary orientation of the rotation axis, latitude, heat conduction into the interior of the nucleus, restriction of CO2 gas outflow by the water ice and dust layer, and the use of thermal conductivities for both amorphous and crystalline water ice as appropriate, featuresthat were not included in the Houpis et al. model. The model also accounts for the erosion of the water ice surface, which Houpis et al. appear to have accounted for and which is an important effect. Specifically, we investigate the effects of varying the permeability of the surface water ice layer, the mass fraction of CO2, the orbit and the latitude, using the orbital parameters of Comets Halley and Tempel 2. It is found that CO2 gas production should exceed H2O gas production beyond ∼3 AU, and at 1 AU CO2 gas production should be between 20 to 25% of H2O gas production. The depth of CO2 ice and the variation in the depth of CO2 ice throughout an orbit are affected significantly by the perihelion of the orbit. The effects due to water ice permeability are significant but much less than expected on the basis of flow area. Latitude and CO2 concentration produce relatively small effects. Under all conditions considered here, CO2 ice should always be found within ∼1 m from the surface of comet nuclei if it is present as a free species to begin with. This result is probably generally valid for unmantled portions of most comets and qualitatively simulates the behavior of an abundant, highly volatile component in an H2O/silicate matrix. Comparison of these and similar results with observations could yield information regarding the permeability and chemical composition of cometary material and suggest sampling strategies to minimize fractionation effects. The method is applicable to other nonwater ices.  相似文献   

15.
A new quasi three-dimensional code is presented and used to explore the thermal evolution of non-spherical-shape cometary nuclei. Calculations are done for spherical nuclei with different obliquities, spherical nuclei with crater-like depressions and spheroid-shape nuclei. The results obtained for both the gas and dust fluxes agree with previous simulations. Local dust crust formation can occur when the comet is located far from the Sun (around 3.5 AU), creating active and inactive areas on the surface. For a given set of parameters, the H2O production rate is comparable to the one observed for comets. A pre-post-perihelion asymmetry exists for H2O, CO2 and CO production rates. It is shown that crater-like depressions can be erased within the lifetime of a comet and that spheroid-shape nuclei have a higher production rate than equal area spherical nuclei.  相似文献   

16.
The disk-resolved flyby images of the nucleus of Comet 81P/Wild 2 collected by Stardust are used to perform a detailed study of the photometric properties of this cometary nucleus. A disk-integrated phase function from phase angle 11° to about 100° is measured and modeled. A phase slope of 0.0513 ± 0.0002 mag/deg is found, with a V-band absolute magnitude of 16.29 ± 0.02. Hapke’s photometric model yields a single-scattering albedo of 0.034, an asymmetry factor of phase function −0.53, a geometric albedo 0.059, and a V-band absolute magnitude of 16.03 ± 0.07. Disk-resolved photometric modeling from both the Hapke model and the Minnaert model results in 11% model RMS, indicating small photometric variations. The roughness parameter is modeled to be 27 ± 5° from limb-darkening profile. The modeled single-scattering albedo and asymmetry factor of the phase function are 0.038 ± 0.004 and −0.52 ± 0.04, respectively, consistent with those from disk-integrated phase function. The bulk photometric properties of the nucleus of Wild 2 are comparable with those of other cometary nuclei. The photometric variations on the surface of the nucleus of Wild 2 are at a level of or smaller than 15%, much smaller than those on the nucleus of Comet 19P/Borrelly and comparable or smaller than those on the nucleus of Comet 9P/Tempel 1. The similar photometric parameters of the nuclei of Wild 2, Tempel 1, and the non-source areas of fan jets on Borrelly may reflect the typical photometric properties of the weakly active surfaces on cometary nuclei.  相似文献   

17.
We consider the hypothesis that the layering observed on the surface of Comet 9P/Tempel 1 from the Deep Impact spacecraft and identified on other comet nuclei imaged by spacecraft (i.e., 19P/Borrelly and 81P/Wild 2) is ubiquitous on Jupiter family cometary nuclei and is an essential element of their internal structure. The observational characteristics of the layers on 9P/Tempel 1 are detailed and considered in the context of current theories of the accumulation and dynamical evolution of cometary nuclei. The works of Donn [Donn, B.D., 1990. Astron. Astrophys. 235, 441-446], Sirono and Greenberg [Sirono, S.-I., Greenberg, J.M., 2000. Icarus 145, 230-238] and the experiments of Wurm et al. [Wurm, G., Paraskov, G., Krauss, O., 2005. Icarus 178, 253-263] on the collision physics of porous aggregate bodies are used as basis for a conceptual model of the formation of layers. Our hypothesis is found to have implications for the place of origin of the JFCs and their subsequent dynamical history. Models of fragmentation and rubble pile building in the Kuiper belt in a period of collisional activity (e.g., [Kenyon, S.J., Luu, J.X., 1998. Astron. J. 115, 2136-2160; 1999a. Astron. J. 118, 1101-1119; 1999b. Astrophys. J. 526, 465-470; Farinella, P., Davis, D.R., Stern, S.A., 2000. In: Mannings, V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of Arizona Press, Tucson, pp. 1255-1282; Durda, D.D., Stern, S.J., 2000. Icarus 145, 220-229]) following the formation of Neptune appear to be in conflict with the observed properties of the layers and irreconcilable with the hypothesis. Long-term residence in the scattered disk [Duncan, M.J., Levison, H.F., 1997. Science 276, 1670-1672; Duncan, M., Levison, H., Dones, L., 2004. In: Festou, M., Keller, H.U., Weaver, H.A. (Eds.), Comets II. Univ. of Arizona Press, Tucson, pp. 193-204] and/or a change in fragmentation outcome modeling may explain the long-term persistence of primordial layers. In any event, the existence of layers places constraints on the environment seen by the population of objects from which the Jupiter family comets originated. If correct, our hypothesis implies that the nuclei of Jupiter family comets are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for the possible effects of compositional phase changes, is largely as it was when they were formed. We propose a new model for the interiors of Jupiter family cometary nuclei, called the talps or “layered pile” model, in which the interior consists of a core overlain by a pile of randomly stacked layers. We discuss how several cometary characteristics—layers, surface texture, indications of flow, compositional inhomogeneity, low bulk density low strength, propensity to split, etc., might be explained in terms of this model. Finally, we make some observational predictions and suggest goals for future space observations of these objects.  相似文献   

18.
The nucleus bulk density of Comet 19P/Borrelly has been estimated by modeling the sublimation-induced non-gravitational force acting upon the orbital motion, thereby reproducing the empirical perihelion advance (i.e., the shortening of the orbital period). The nucleus has been modeled as a prolate ellipsoid, covered by various surface activity maps which reproduce the observed water production rate. The theoretical water production rate of active areas has been obtained by applying a sophisticated thermophysical model. This model takes into account net sublimation of ice and thermal reradiation from the surface, solid state conductivity, sub-surface sublimation and recondensation, mass and heat transport by diffusing gas, layer absorption of solar energy, a full treatment of local time-dependent illumination conditions, and a detailed consideration of nucleus/coma interaction mechanisms. The outgassing properties of the modeled nucleus are physically consistent with the gas kinetic structure of the innermost coma since the molecular backflux and surface gas density required in the thermophysical model (as functions of the nucleus surface temperature and the sub-surface temperature profile) have been obtained from Direct Simulation Monte Carlo modeling of inelastic intermolecular collisions in the cometary Knudsen layer. The calculation of local normal forces acting on the nucleus due to outgassing has been made within the same framework—recoil and/or impact momentum transfer to the nucleus caused by sublimating molecules and by recondensing and/or scattered coma molecules is therefore evaluated in accordance with local nucleus/coma conditions. According to this model, the density is found to be 100-300 kg, depending on the applied spin axis orientation and surface activity map. This range can be narrowed down to 180-300 kg by also requiring that the empirical changes (per orbital revolution) of the argument of perihelion and the longitude of the ascending node are reproduced.  相似文献   

19.
The discovery of C/1995 O1 (Hale-Bopp) at 7 AU from the Sun provided the first opportunity to follow the activity of a bright comet over a large range of heliocentric distances rh. Production rates of a number of parent molecules and daughter species have been monitored both pre- and postperihelion. CO was found to be the major driver of the activity far from the Sun, surpassed by water within 3 AU whose production rate reached 1031 s−1 at perihelion. Gas production curves obtained for various species show several behaviours with rh. Gas production curves contain important information concerning the physical state of cometary ices, the structure of the nucleus and all the processes taking place inside the nucleus leading to outgassing. They are relevant to the study of several other phenomena such as the sublimation from icy grains, dust mantling or seasonal effects. For some species, such as H2CO or HNC, they permit to constrain their origin in the coma. We discuss models of subsurface gas production in distant comets and predictions of how such a source may vary as the comet moves along its orbit, approaching perihelion and receding again. Features in the observed gas production curves of comet Hale-Bopp are generally interpretable in terms of either subsurface production (typical example: CO at large rh) or free sublimation (typical example: H2O). Possible implications for the vertical stratification of the cometary ices are reviewed, and preference is found for a model with crystallization of amorphous ice close to the nuclear surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The radial distribution of some molecules (CO, H2CO, HNC, …) observed in the coma of some comets cannot be explained only by a direct sublimation from the nucleus, or by the photolysis of a detected parent compound. Such molecules present a so-called extended source in comae. We show in this paper that extended sources can be explained by refractory organic material slowly releasing gas from grains ejected from the cometary nucleus, due to solar UV photons or heat. The degradation products are produced throughout the coma and therefore are presenting an extended distribution. To model this multiphase chemistry we derive new equations, which are applied to Comet 1P/Halley for the case of the production of formaldehyde from polyoxymethylene (POM), the polymer of formaldehyde (-CH2-O-)n. We show that the presence of a few percent of POM on cometary grains (a nominal value of ∼4% in mass of grains is derived from our calculations) is in good agreement with the observed distribution, which so far were not interpreted by the presence of any gaseous parent molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号