首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

2.
Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of ~100 000 clump red giants within ~800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as “standard candles.” This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode(M H ) = ?1.49 m ± 0.04 m , mode(M Ks ) = ?1.63 m ± 0.03 m , mode(M W1) = ?1.67 m ± 0.05 m mode(M W2) = ?1.67 m ± 0.05 m , mode(M W3) = ?1.66 m ± 0.02 m , mode(M W4) = ?1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.  相似文献   

3.
We have searched for the stars that either encountered in the past or will encounter in the future with the Solar system closer than 2 pc. For this purpose, we took more than 216 000 stars with the measured proper motions and trigonometric parallaxes from the Gaia DR1 catalogue and their radial velocities from the RAVE5 catalogue. We have found several stars for which encounters closer than 1 pc are possible. The star GJ 710, for which the minimum distance is d m = 0.063 ± 0.044 pc at time t m = 1385 ± 52 thousand years, is the record-holder among them. Two more stars, TYC 8088-631-1 and TYC 6528-980-1, whose encounter parameters, however, are estimated with large errors, are of interest.  相似文献   

4.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

5.
We have analyzed the space velocities of stars with the proper motions and trigonometric parallaxes from the Gaia TGAS catalogue in combination with the line-of-sight velocities from the RAVE5 catalogue. In the V, \(\sqrt {{U^2} + 2{V^2}} \) velocity plane we have identified three clumps, BB17-1, BB17-2, and BB17-3, in the region of large velocities (V<?150 km s?1). The stars of the BB17-1 and BB17-2 clumps are associated with the kinematic groups VelHel-6 and VelHel-7 detected previously by Helmi et al. We give the greatest attention to the BB17-3 clump. The latter is shown to be most closely linked with the debris of the globular cluster ω Cen. In the BB17-3 clump we have identified 28 stars with a low velocity dispersion with respect to the center of their distribution. All these stars have very close individual age estimates: log t ≈ 10. The distribution of metallicity indices in this sample is typical for the stars of the globular cluster ω Cen. In our opinion, the BB17-3 clump can be described as a homogeneous stream in the debris of the cluster ω Cen.  相似文献   

6.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

7.
Based on a sample of RR Lyrae variable stars including more than 9000 objects with proper motions and distances, we have investigated the kinematics of the Galactic halo from the two-dimensional velocity field. We have used both the proper motions deduced independently by us from the positional data taken from all-sky catalogues in a time interval up to 65 years and the proper motions taken from the Gaia DR2 catalogue. In addition, we have also studied the halo kinematics from the three-dimensional velocity field of ~850 RR Lyrae variables with distances, proper motions, and line-of-sight velocities. The kinematic parameters describing the velocity field have been estimated by the maximum-likelihood method; their change with Galactocentric distance has been investigated. The radial velocity dispersion in spherical coordinates σr ≈ 160?170 km s?1 exceeds its values from previous papers approximately by 20 km s?1, while the anisotropy parameter β ≈ 0.68?0.72 agrees satisfactorily with previous studies. When estimating the rotation velocity of the population of RR Lyrae stars, we identified the inner and outer halos with weak prograde and retrograde rotations, respectively.  相似文献   

8.
We investigate the variation of the fraction of galaxies with suppressed star formation (MK < ?21 . m 5) and early-type galaxies (fracE) of the “red sequence” along the projected radius in six galaxy clusters:Coma (A1656), A1139, and A1314 in the Leo supercluster region (z ≈ 0.037) and A2040, A2052, A2107 in the Hercules supercluster region (z ≈ 0.036). According to SDSS (DR10) data, fracE is the highest in the central regions of galaxy clusters and it is, on the average, equal to 0.62 ± 0.03, whereas in the 2–3R/R200c interval and beyond the Rsp ≈ 0.95 ± 0.04 R200m radius that we inferred from the observed profile fracE is minimal and equal to 0.25 ± 0.02. This value coincides with the estimate fracE = 0.24 ± 0.01 that we inferred for field galaxies located between the Hercules and Leo superclusters at the same redshifts. We show that the fraction of galaxies with suppressed star formation decreases continuously with cluster radius from 0.87 ± 0.02 in central regions down to 0.43 ± 0.03 in the 2–3 R/R200c interval and beyond Rsp, but remains, on the average, higher than 26% than the corresponding fraction for field objects. This decrease is especially conspicuous in the galaxy mass interval log M* [M] = 9.5–10. We found that galaxies with ongoing star formation have average clustercentric distances 1.5–2.5 R/R200c and that their radial-velocity dispersions are higher than those of galaxies with suppressed star formation.  相似文献   

9.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

10.
The Tycho-2 proper motions and five-band Tycho-2 and 2MASS photometry for approximately 2.5 million common stars have been used to select OB stars and to determine the extinction and photometric distance for each of them. We have selected 37 485 stars and calculated their reddenings based on their positions in the two-color V T -H, J-Ks diagrams relative to the zero-age main sequence and the theoretical reddening line for B5 stars. Tests confirm that the selected stars belong to the spectral types O-B with a small admixture of later types. We calculate the extinction coefficient R and its variations with Galactic longitude based on the positions of the selected stars in the two-color B T -V T , V T -Ks diagram. The interstellar extinction for each star is calculated as the product of the reddening found and the coefficient R. The extinction and its variations with Galactic longitude agree well with the extinction based on the model by Arenou et al. (1992). Calibration of the relation between the absolute magnitude and reduced proper motion V T − + 5 + 5 log μ for Hipparcos stars has allowed us to calculate the absolute magnitudes and photometric distances for the selected stars. The distances found agree with those derived from the Hipparcos parallaxes within 500 pc. The distribution of the stars and the extinction variations with distance found show that the selected stars form an almost complete sample of stars with spectral types earlier than B5 within about 750 pc of the Sun. The sample includes many noticeably reddened stars in the first and second Galactic quadrants that are absent from the Hipparcos and Tycho Spectral Types Catalogues. This slightly changes the pattern of the distribution of OB stars compared to the classical pattern based on Hipparcos. Original Russian Text ? G.A. Goncharov, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 1, pp. 10–20.  相似文献   

11.
Results of astrometric and BVRI photometric observations of the active asteroid (596) Scheila are presented. The observations were carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan on June 16?17 and from July 30 to August 1, 2017. The coordinates of the object and its orbit were determined; and the apparent brightness in four filters, the absolute brightness in the V and R filters, and the color indices were obtained. The light curves suggest that no substantial changes in the asteroid’s brightness occurred during the observations. The absolute brightness of the asteroid in the V and R filters was (9.1 ± 0.05)m and (8.8 ± 0.03)m, respectively. The mean value of the asteroid diameter was (119 ± 2) km. The mean values of the color indices (B?V = (0.72 ± 0.05)m, V?R = (0.29 ± 0.03)m, and R?I = (0.31 ± 0.03)m) agree well with the values for asteroids of the P- and D-types and its averages. The rotation period of the asteroid estimated from photometric observations was 16.1 ± 0.2 h. The analysis of the data has shown that the asteroid continues to exhibit the same values of absolute brightness and other characteristics as those before the collision with a small body in December 2010, though the latter resulted in the outburst event and cometary activity of the asteroid. Most likely, the collision of asteroid (596) Scheila with a small body did not lead to catastrophic changes in the surface of the asteroid or to its compete break-up.  相似文献   

12.
A study of cluster characteristics and internal kinematical structure of the middle-aged Pleiades open star cluster is presented. The individual star apexes and various cluster kinematical parameters including the velocity ellipsoid parameters are determined using both Hipparcos and Gaia data. Modern astrometric parameters were taken from the Gaia Data Release 1 (DR1) in combination with the Radial Velocity Experiment Fifth Data Release (DR5). The necessary set of parameters including parallaxes, proper motions and radial velocities are used for \(n=17\) stars from Gaia DR1+RAVE DR5 and for \(n=19\) stars from the Hipparcos catalog using SIMBAD data base. Single stars are used to improve accuracy by eliminating orbital movements. RAVE DR5 measurements were taken only for the stars with the radial velocity errors not exceeding \(2~\mbox{km}/\mbox{s}\). For the Pleiades stars taken from Gaia, we found mean heliocentric distance as \(136.8 \pm 6.4\) pc, and the apex position is calculated as: \(A_{CP}=92^{\circ }.52\pm 1^{\circ }.72\), \(D_{CP}=-42^{\circ }.28\pm 2^{\circ }.56\) by the convergent point method and \(A_{0}=95^{\circ }.59\pm 2^{\circ }.30\) and \(D_{0}=-50^{\circ }.90\pm 2^{\circ }.04\) using AD-diagram method (\(n=17\) in both cases). The results are compared with those obtained historically before the Gaia mission era.  相似文献   

13.
We analyze the structure of the cluster of galaxies Abell 1775 (α = 13 h 42 m , δ = +26°22′, cz ≈ 21000 km/s), which exhibits a bimodal distribution of radial velocities of the containing galaxies. The difference of the subcluster radial velocities is ΔV ≈ 2900 km/s. We use the results of our photometric observations made with the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the spectroscopic and photometric data from the SDSS DR6 catalog to determine independent distances to the subclusters via three different methods: the Kormendy relation, photometric plane, and fundamental plane. We find that the A1775 cluster consists of two independent clusters, A1775A (cz = 19664 km/s) and A1775B (cz = 22576 km/s), each located at its own Hubble distance and having small peculiar velocities. Given the velocity dispersions of 324 km/s and 581 km/s and the dynamic masses within the R 200 radius equal to 0.6 × 1014 and 3.3 × 1014 M , the A1775A and A1775B clusters have the K-band luminosity-to-mass ratios of 29 and 61, respectively. A radio galaxy with an extended tail belongs to the A1775B cluster.  相似文献   

14.
Parallaxes with an accuracy better than 10% and proper motions from the Gaia DR1 TGAS catalogue, radial velocities from the Pulkovo Compilation of Radial Velocities (PCRV), accurate Tycho-2 photometry, theoretical PARSEC, MIST, YaPSI, BaSTI isochrones, and the most accurate reddening and interstellar extinction estimates have been used to analyze the kinematics of 9543 thin-disk B-F stars as a function of their dereddened color. The stars under consideration are located on the Hertzsprung–Russell diagram relative to the isochrones with an accuracy of a few hundredths of a magnitude, i.e., at the level of uncertainty in the parallax, photometry, reddening, extinction, and the isochrones themselves. This has allowed us to choose the most plausible reddening and extinction estimates and to conclude that the reddening and extinction were significantly underestimated in some kinematic studies of other authors. Owing to the higher accuracy of TGAS parallaxes than that of Hipparcos ones, the median accuracy of the velocity components U, V, W in this study has improved to 1.7 km s?1, although outside the range ?0.1 m < (B T ? V T )0 < 0.5 m the kinematic characteristics are noticeably biased due to the incompleteness of the sample. We have confirmed the variations in the mean velocity of stars relative to the Sun and the stellar velocity dispersion as a function of their dereddened color known from the Hipparcos data. Given the age estimates for the stars under consideration from the TRILEGAL model and the Geneva–Copenhagen survey, these variations may be considered as variations as a function of the stellar age. A comparison of our results with the results of other studies of the stellar kinematics near the Sun has shown that selection and reddening underestimation explain almost completely the discrepancies between the results. The dispersions and mean velocities from the results of reliable studies fit into a ±2 km s?1 corridor, while the ratios σ V /σ U and σ W /σ U fit into ±0.05. Based on all reliable studies in the range ?0.1 m < (B T ? V T )0 < 0.5m, i.e., for an age from 0.23 to 2.4 Gyr, we have found: W = 7.15 km s?1, \({\sigma _U} = 16.0{e^{1.29({B_T} - {V_T})o}}\), \({\sigma _V} = 10.9{e^{1.11({B_T} - {V_T})o}}\), \({\sigma _W} = 6.8{e^{1.46({B_T} - {V_T})o}}\), the stellar velocity dispersions in km s?1 are proportional to the age in Gyr raised to the power β U = 0.33, β V = 0.285, and β W = 0.37.  相似文献   

15.
We present the results of our long-term photometric and spectroscopic observations at the Russian–Turkish RTT-150 telescope for the optical counterpart to one of the best-known sources, representatives of the class of fast X-ray transients, IGR J17544-2619. Based on our optical data, we have determined for the first time the orbital and physical parameters of the binary system by the methods of Doppler spectroscopy.We have calculated theoretical spectra of the optical counterpart by applying non- LTE corrections for selected lines and obtained the parameters of the stellar atmosphere (T eff = 33 000 K, log g = 3.85, R = 9.5 R , and M = 23 M ). The latter suggest that the optical star is not a supergiant as has been thought previously.  相似文献   

16.
In 2013–2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON ~ 11.1 e?, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters (FWHM = 250 Å) uniformly covering the 4000–9000 Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000–7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to RAB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.  相似文献   

17.
We present the results of spectroscopic and photometric studies of a new polar CRTS CSS130604 J 215427+155714, conducted at the telescopes of the SAO RAS. Analysis of the photometric series of observations allowed to clarify the orbital period of the system, P o = 0. d 0672879 (±0.0000003). We build radial velocity curves and trace the intensity variations in the Hβ and Hγ hydrogen lines and He II λ 4686 ?A ionized heliumline. Based on the Hβ and He II lines we build Doppler maps. It is shown that the line formation region is localized near the Lagrange point. The following parameter estimates of the system are obtained:M 1 = 0.83 ± 0.10M , M 2 = 0.15 ± 0.01M , q = M 2/M 1 = 0.18 ± 0.03, i = 53? ± 5?. Based on the results of spectral, photometric and previously published polarimetric observations the possible geometric model of the system is discussed.  相似文献   

18.
ASTRONIRCAM is a cryogenic-cooled slit camera-spectrograph for the spectral range 1–2.5 μm installed at the Nasmyth focus of the 2.5-meter telescope of the Caucasian observatory of the Sternberg Astronomical Institute of Lomonosov Moscow State University. The instrument is equipped with a HAWAII-2RG 2048×2048 HgCdTe array. Grisms are used as dispersive elements. In the photometric mode ASTRONIRCAM allows for extended astronomical object imaging in a 4.′6 × 4.′6 field of view with a 0.269 arcsec/pixel scale in standard photometric bands J, H, K, and K s as well as in the narrow-band filters centered on the lines CH4, [Fe II], H2 v=1-0 S(1), Br γ , and CO. In the spectroscopic mode, ASTRONIRCAM takes spectra of extended or point-like sources with a spectral resolution of R = λλ ≤ 1200. The general design, optical system, detector electronics and readout, amplification and digitization schemes are considered. The GAIN conversion factor measurement results are described as well as its dependence on the accumulated signal (nonlinearity).The full transmission of the atmosphere-to-detector train ranges from 40 to 50% in the wide-band photometry mode. The ASTRONIRCAMsensitivity at the 2.5-m telescope is characterized by the limiting J = 20, K = 19 stellar magnitudes measured with a 10% precision and 15 minute integration for 1″ atmospheric seeing conditions. References to the first results based on ASTRONIRCAM observations are given.  相似文献   

19.
The influence of various factors on the statistical properties of the Galactic center distance (R0) estimate obtained by solving the general problem of determining the geometric parameters of a Galactic spiral arm from its segment with the inclusion of the distance to the spiral pole, i.e., R0, in the set of parameters has been studied by the Monte Carlo method. Our numerical simulations have been performed for the model segments representing the Perseus and Scutum arms based on masers in high-mass star forming regions. We show that the uncertainty in the present-day parallax measurements for these objects systematically decreases (!) with increasing heliocentric distance, while the relative uncertainty in the parallaxes is, on average, approximately constant. This lucky circumstance increases significantly (by a factor of 1.4–1.7) the accuracy of estimating R0 from the arm segment traced by masers. Our numerical experiments provide evidence for the consistency of the R0 estimate from the spiral-segment geometry. The significant biases of the estimate detected only for the Scutum arm are caused mainly by the random parallax errors, the small angular extent of the segment, and the small number of objects representing it. The dispersion of the R0 estimate depends most strongly on the angular extent of the segment and the parallax uncertainty if the latter, on average, does not depend on the distance. The remaining parameters, except for the pitch angle, exert an equally significant, but weaker influence on the statistical accuracy of the estimate. When the data on 3–8 segments are processed simultaneously, the predicted standard error of the final estimate is σR0 ? 0.5?0.3 kpc, respectively. The accuracy can be improved by increasing the extent of the identified segments and the number of objects belonging to them. The method of determining R0 from spiral segments has turned out to be operable for a wide set of possible parameters even when using an L-estimator (median). This makes the development of a more complex method based on an M-estimator, which allows one to properly take into account the measuring and natural dispersions of objects relative to the arm center line and, thus, to avoid the biases of the parameter estimates, meaningful.  相似文献   

20.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars with helium abundance anomalies which are the members of the Orion stellar association OB1. The stars under study were classified as magnetic by other authors earlier. The present paper contains the results of the extensive study of the stars. Magnetic field measurements allowed us to conclude that HD36540 has a weak field and the longitudinal component B e does not exceed 500 G. The longitudinal field of HD36668 varies with the period P = 2. d 11884 and the amplitude from ?2 to +2 kG. The magnetic field of HD36916 has mainly negative polarity and varies within the range from 0 to ?1 kG with the period P = 1.d 565238. HD37058 is a magnetic star, the longitudinal field of which varies from ?1.2 to +0.8 kG with the period P = 14. d 659. The B e field variability pattern for the stars HD36916 and HD37058 is of a simple harmonic type. The longitudinal field of HD36668 is best described with two combined harmonic functions (“a doublewave”). The variability period of HD36540 is still undetermined. For all the stars from this paper, we measured radial velocities V r, axial rotation rates v e sin i, and determined basic parameters of atmospheres (effective temperatures T eff and gravity acceleration log g). We also estimated masses M, luminosities L, and radii R of the stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号