首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landforming processes are highly active in the Arctic, and luminescence dating can be used to establish a chronological framework for these processes. For example, luminescence ages of raised littoral and marine deposits provide the age control for many reconstructions of Pleistocene events in the Arctic. Due to the nature of the depositional environment (e.g. short transport distance, turbid water, long polar night) these types of sediment may not be completely zeroed at the time of deposition. To test the significance of incomplete bleaching in this type of environment, surface sediments were sampled along a transect from the margin of a glacier out into a nearby bay on NW Svalbard. The water in the bay is very turbid (secchi depth 0.1 m), but there is significant reworking by waves along the shores.Quartz optically stimulated luminescence (OSL) and feldspar infrared stimulated luminescence (IRSL) were measured using sand-sized grains. For quartz OSL and feldspar IRSL (50 °C) the ice-proximal sample showed relatively high doses (∼12 Gy) while nearby beach sand and shallow-marine deposits, as well as ice-distal sandur sediments, had much lower doses: most OSL doses were consistent with zero, while IRSL (50 °C) ranged from 0.5 to 6.5 Gy. Post-IR IRSL (290 °C) doses were overall much higher (∼20–55 Gy), which partly is due to a significant (∼12 Gy) unbleachable residual, and partly due to slower bleaching rates than for the IRSL (50 °C) signal.In this Arctic environment it appears that bleaching is limited in the first ∼100 m of meltwater transport from the glacier margin, but for material transported at least 3 km bleaching of OSL and IRSL (50 °C) signals is more or less complete. Given the very limited light penetration through the seawater in the bay, any bleaching must have occurred during fluvial/subaerial transport to the bay or by wave-reworking on the beach. Apart from the ice-proximal glacifluvial sediments, residual apparent doses recorded by quartz OSL and feldspar IRSL (50 °C) are negligible for the luminescence dating of Pleistocene-aged deposits of ice-distal, littoral and shallow-marine origin.  相似文献   

2.
Sediments of river deltas provide valuable records of past coastal environments. Optically-stimulated luminescence (OSL) dating has become an alternative to radiocarbon dating for constraining the sediment chronology in large deltas that allow for sufficient sunlight bleaching of sediments during the fluvial transport. However, its applicability to smaller deltas with mountainous riverine systems has not been confirmed yet. To check this, we examine multiple signals from two Holocene sediment cores in the wave-dominated Thu Bon River delta in central Vietnam. Two cores were collected, respectively, 3.9 km and 1.2 km inland from the present shoreline and both show a >-25-m thick succession of coarsening-upward mud to sand deposits. Coarse grains (180–250 μm in diameter) of quartz and K-feldspar, and fine grains (4–11 μm in diameter) of quartz and polymineral were extracted from the upper and lower parts of the cores for multi-grain measurements of quartz OSL, and of feldspar infrared-stimulated luminescence (IRSL) at 50 °C (IR50) and post-IR IRSL at 175 °C (pIRIR175) to determine burial ages. In addition, facies analysis and radiocarbon dating were conducted. The landward core consists of transgressive to early regressive estuarine and prodelta facies, which is overlain by a sandy beach-shoreface facies. The seaward core consists of a relatively simple shallowing-upward succession from muddy prodelta facies to sandy beach-shoreface facies. All luminescence ages except for pIRIR175 of fine grains are mostly consistent with the radiocarbon ages. Instead, pIRIR175 ages of fine grains are significantly overestimated with variable offsets. OSL and IR50 of fine grains provide reasonable age estimates, as these grains were likely well bleached during the transport even along a short and steep mountainous river. Consistent age estimates of all signals from sand indicate that sand was well-bleached in the beach and shoreface owing to the frequent sediment reworking by waves and currents. These results support the hypothesis that luminescence dating is applicable to Holocene wave-dominated deltas and reiterate that comparing different luminescence signals is an effective way to check reliability of the age estimates in environments where the sunlight bleaching is not ensured.  相似文献   

3.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

4.
Raised beach sand deposits along the southeastern coast of Norway were dated by optical (OSL) and infrared stimulated luminescence (IRSL) and the quartz and K-feldspar luminescence characteristics were described. Due to the poor quartz luminescence characteristics, only a limited number of samples were suitable for OSL dating. More promising are the K-feldspar extracts, with typical K-feldspar luminescence characteristics and no sign of fading. For equivalent dose (De) determination, sand-size quartz and feldspar extracts were used, applying a single aliquot regenerative (SAR) protocol. Both, OSL and IRSL De estimates show a wide distribution, unexpected for beach deposits. The calculated OSL and IRSL age estimates were generally in good agreement and the correctness of the ages was confirmed by independent age control. Because only a limited number of the quartz samples were suitable for OSL dating, IRSL dating of the K-feldspar represents an alternative to OSL quartz dating.  相似文献   

5.
An up to 15 m thick alluvial fan and aeolian sandsheet complex is exposed in the upper Senne area, on the southern slope of the Teutoburger Wald Mountains (NW Germany). The origin and age of these deposits have been controversially discussed for many years, ranging from Saalian glaciofluvial to periglacial Weichselian deposits. In order to provide a high-resolution chronological framework for the deposits, we conducted luminescence dating of 12 samples from two localities (Oerlinghausen and Augustdorf pits). Both coarse-grain potassium-rich feldspar and quartz minerals were used for luminescence dating. Feldspar was measured using an elevated temperature post-IR infrared stimulated luminescence (IRSL). Quartz was measured using optically stimulated luminescence (OSL) with a conventional single aliquot regenerative dose (SAR) protocol. Feldspar results tend to overestimate quartz ages for the lower part of the sections (alluvial plain and alluvial fan facies) but are consistent with quartz ages for the upper part of the sections (aeolian facies). Quartz ages from both central and minimum age models suggest deposition during the Late Pleistocene Pleniglacial to Late Glacial.  相似文献   

6.
Constraining the ages of fluvial terraces is essential to understanding fluvial responses to climate and sea-level changes and estimating uplift/incision. Luminescence dating of sand or silt grains from fluvial terrace deposits in Japan is difficult because sand layers are often absent from gravelly deposits, quartz grains are typically dominated by medium/slow components and/or contaminated by feldspars, and short transport distances and short residence times in riverbeds result in poor bleaching of luminescence signals. Luminescence dating of cobbles may overcome these difficulties, but few studies have applied this technique to fluvial terrace deposits. Here, we examine the utility of luminescence dating applied to three granodiorite cobbles from a late Pleistocene fluvial terrace deposit of the Ara River, Japan. We investigated variations of the infrared stimulated luminescence (IRSL) and post-IR IRSL signals with depth in each cobble. The IRSL and post-IR IRSL signals generally increase with depth, indicating that the cobbles were not completely bleached before deposition. Nonetheless, the IRSL ages of the cobble surfaces (19–17 ka) are consistent with the age of a tephra layer (16–15 ka) at the base of loess deposits overlying the terrace. In contrast, IRSL ages of sand-sized feldspar grains overestimate the depositional age because of incomplete bleaching, whereas silt-sized quartz grains greatly underestimate the depositional age, likely because of the thermal instability of the medium component. Our results demonstrate that luminescence dating of cobbles could provide a better understanding of fluvial systems in which luminescence dating of sand grains is difficult.  相似文献   

7.
We present a comparative study of quartz OSL, polymineral IRSL at low temperature (50 °C, IR50) and post-IR elevated temperature (290 °C) IRSL (pIRIR290) feldspar dating on nine samples from the Tokaj loess section in NE Hungary (SE Europe). Preheat plateau tests show a drop in quartz OSL De between 160 and 240 °C but above 240 °C a clear De plateau is present. Quartz OSL SAR is shown to be generally appropriate to these samples (recycling, recuperation) but a satisfactory dose recovery result was only obtained when a dose was added to a sample without any prior optical or thermal pre-treatment; this gave a dose recovery ratio of 1.04 ± 0.05 after subtracting the natural dose from the measured dose. The pIRIR290 SAR protocol also results in acceptable dose recovery results for the pIRIR290 signal (1.08 ± 0.01) when a large dose is added to the natural dose. Bleaching experiments suggest a detectable non-bleachable residual pIRIR290 dose of 10 ± 4 Gy. Agreement with quartz OSL ages is best achieved by correcting the IR50 ages for fading; however this is not necessary when using the pIRIR290 signal. With respect to Hungarian Late Quaternary geology our results indicate that the major part of the Tokaj loess has been deposited during MIS 3 (60–24 ka), with periods of soil formation occurring during the onset of MIS 3 (≥58 ka) and between about 35 and 25 ka. Our results also indicate episodic deposition of loess and varying, non-linear sedimentation rates during MIS 3. Proxy analyses in the literature are based on the traditional concept of continuous deposition; in the light of our new data the use of such simple assumptions must be reconsidered.  相似文献   

8.
Dating agricultural artefacts such as field walls and clearance cairns using radiocarbon can be challenging, especially since the association with datable material may be poor. Rock surface burial dating using luminescence offers an alternative. Here we report on the luminescence dating of a medieval circular stone-walled enclosure at Sønnebøe, northern Scania, Sweden, using both buried rocks and sediments. Luminescence burial profiles from IRSL signals measured at 50 °C (IR50) indicated significant prior light exposure in 7 of the 8 samples tested (5 granite, 2 felsic gneiss), in some cases multiple exposure burial cycles were indicated. These rock surfaces had apparently been exposed for sufficient time to allow accurate IRSL ages for the most recent burial event. In contrasts, no useful post-IR IRSL profiles were obtained indicating that this signal was not sufficiently reset to allow accurate determination of the burial dose on any of these rocks. IR50 fading corrections (typically ∼50%) were derived by comparing field saturation with that induced in the laboratory. Quartz extracted from sediments surrounding the rocks gave an average measured to given dose ratio of 1.03 ± 0.01 (n = 90), and these sediment samples were then dated using multigrain aliquots; the corresponding feldspar dose recovery ratio obtained using rock samples was 0.98 ± 0.05 (n = 28). A total of 15 ages were derived; 8 quartz OSL ages from the disturbed coarse grained sediments surrounding the structure, and 7 fading corrected IR50 ages from the surfaces of rocks (2–3 mm chips, ∼1 mm thick) used in the construction of the structure itself. The exposure events preserved by the ring enclosure stones unequivocally show wall building taking place at the site between 800 and 300 years ago.  相似文献   

9.
Although the OSL signal sourced from quartz is expected to be more stable and bleached more rapidly than the IRSL signal sourced from feldspar in a general sense, the former is much less investigated than the latter for rock surface related luminescence dating. It is mainly due to the difficulty in isolating quartz-dominated OSL signals from rock slices, and the low sensitivity and non-fast component dominated OSL signals for quartz in most of rocks. In merit of the sub-conduction band transition of trapped electrons of feldspar under both green light stimulation and IR stimulation at elevated temperature (Jain and Ankjӕrgaard, 2011), it is expected that the contribution of feldspars to the green light stimulated luminescence could be substantially reduced by a prior IR stimulation at elevated temperature. Meanwhile, more fast-component dominated quartz OSL signal (if there is any) could be obtained by green light stimulation (Bailey et al., 2011). Therefore, in this study, we investigated the feasibility of using the post-IR pulsed green stimulation, which is performed at 25 °C (PGLSL25) following two IR stimulations (IR50IR225), to isolate the quartz-dominated OSL signals from rock slices of granite cobbles for burial dating. The decay characteristics of stimulation curve, characteristic saturation dose and thermal stability of the pIR50IR225 PGLSL25 signal suggest that this signal is quartz-dominated, but still not fast-component dominated. We tentatively validated the equivalent dose (De) measurement protocol by dose recovery experiment. The luminescence-depth profiles show that the bleaching depths of pIR50IR225 PGLSL25 signals are slightly smaller than or close to that of the IR50 signals, while they are much shallower for the pIR50IR225 signals. The pIR50IR225 PGLSL25 procedure enables multiple De values determined from luminescence signals, with different bleachabilities and stabilities, from both feldspars and quartz in one measurement, which is of potential for buried age dating of cobbles.  相似文献   

10.
A comparative study using quartz optically stimulated luminescence (OSL) and feldspar post-infrared infrared stimulated luminescence (post-IR IRSL) was undertaken on Quaternary fluvial sediments from an unnamed tributary of the Moopetsi River in South Africa. The aim is to assess whether the post-IR IRSL signal can be used to date incompletely bleached sediments. Several post-IR IRSL signals using varying stimulation and preheat temperatures were investigated; of these the post-IR IRSL225 signal was deemed most appropriate for dating because it bleached most rapidly. The feldspar post-IR IRSL225 equivalent dose (De) values from this site are consistently larger than those from quartz OSL, probably due to differences in the bleaching characteristics of the two signals. Additionally, the post-IR IRSL225 De values within a sample showed less variation in precision than the quartz De data, possibly due to greater averaging between grains in the feldspar small aliquots. The agreement between ages based on the OSL and post-IR IRSL225 signals was better for younger samples (<20 ka) than for older ones (>50 ka); the cause of this variation is unclear.  相似文献   

11.
The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated (LM)-OSL analysis revealed the dominance of a slow component. When compared with independent age control provided by two marker tephras, the quartz OSL ages grossly underestimate the depositional age. In contrast, potassium (K)-rich feldspar is a suitable dosimeter when measured using post-IR infrared stimulated luminescence (IRSL) at 225 °C (pIRIR225). Scanning electron microscope (SEM) analyses on the feldspar extracts revealed that the grains are amorphous with small crystalline inclusions; using standard internal dose rate parameters, this would result in a too large dose rate. Dose rates were calculated using the observed grain size of 40 ± 20 μm with an assumed K concentration of 12.5 ± 0.5%. The fading corrected pIRIR225 ages agree well with independent age control, and the sediments of the Katanishi Formation were deposited between 82 ± 6 and 170 ± 16 ka. This study demonstrates that pIRIR dating of feldspar is a powerful chronological tool for the dating of sediments of volcanic origin.  相似文献   

12.
Luminescence dating has long been used for chronological constraints on marine sediments due to the ubiquitous dating materials (quartz and feldspar grains) and its applicability over a relatively long time range. However, one of the main difficulties in luminescence dating on marine sediments is partial bleaching, which causes age overestimations. Especially, partial bleaching is typically difficult to be detected in the fine grain fraction (FG) of marine sediments. The recently developed feldspar post-IR IRSL (pIRIR) protocol can detect non-fading signals and thus avoid feldspar signal instability. In the current study, fine grains were extracted from a gravity core in the northern Sea of Japan, and the aim is to test the feasibility of using different luminescence signals with various bleaching rates to explore the bleaching conditions of fine grain fraction in marine sediments. The results suggest that the quartz OSL signal and polymineral pIRIR signals at stimulation temperatures of 150 °C and 225 °C (pIRIR150 and pIRIR225) of FG were well bleached prior to deposition. The OSL ages were used to establish a chronology for this sedimentary core and the resulting age-depth relationship is self-consistent and comparable with radiocarbon dates. We conclude that different luminescence signals with various bleaching rates can be used to test the bleaching conditions of fine grain fraction in marine sediments; and the luminescence dating can be applied to marine sediments with great potential.  相似文献   

13.
Reliable chronology is critical for reconstructing estuarine delta process. In this study, detailed chronological framework has been performed on a core HPQK01 (52 m in depth) from the central Pearl River delta (PRD) of China. Both quartz OSL and feldspar post-IR IRSL (pIRIR) methods for late Pleistocene sediments, as well as radiocarbon dating for Holocene sediments, were applied to date the core. Results show that quartz OSL ages range from 125 ± 18 ka to 58 ± 6 ka, and that all of them were minimum ages due to the OSL signal saturation. Feldspar pIR200IR290 protocol shows some overestimation in dose recovery test, with the recovered to the given ratio of 1.2, while a ratio of around 1 was obtained for feldspar pIR50IR250 signals. Robust ages have been obtained from feldspar fading corrected pIR50IR250 dating with ages ranging from 150 ± 17 ka to 98 ± 12 ka. AMS 14C results suggest that subtidal-intertidal zone was deposited during the middle Holocene from 8.21 ± 0.19 cal ka BP to 4.99 ± 0.25 cal ka BP. The sedimentology of core HPQK01 record two marine transgressive-regressive cycles. Based on the dating results, the lower fluvial sediment unit (T2) could be correlated to marine isotope stage (MIS) 6, and the lower marine unit (M2) was deposited during MIS 5. A sedimentary hiatus occurred with age range of from MIS 4 to MIS 2. Since middle Holocene, another marine stratum (M1) has been accumulated. Overall, our findings suggest that feldspar pIRIR dating method has the potential to establish the Quaternary chronostratigraphic framework of the PRD for samples with ages within 150 ka.  相似文献   

14.
A thick Middle and Late Pleistocene loess-palaeosol sequence is exposed at the Stari Slankamen section in the Vojvodina region situated in the south-eastern part of the Pannonian basin, Serbia. The profile exposes an about 45 m thick series of loess intercalated by at least eight pedocomplexes. Ten samples were dated by luminescence methods using a modified single aliquot regenerative dose (SAR) protocol for polymineral fine grains and for quartz extracts from the upper part of the Stari Slankamen loess sequence. The infrared stimulated luminescence (IRSL) and post-IR optically stimulated luminescence (OSL) signals from all polymineral samples showed anomalous fading, suggesting that the post-IR OSL signal is still dominated by feldspar OSL. The ages ranging from 4.6 to 193 ka were obtained after fading correction. These ages indicate that the loess unit V-L1L1, the weakly developed soil complex V-L1S1 and the loess unit V-L1L2 were deposited during marine isotope stage (MIS) 2, 3, and 4, respectively, and also indicate that the loess unit V-L2 is of the penultimate glacial age.  相似文献   

15.
Infrared-stimulated luminescence (IRSL) dating of feldspars has the potential to date deposits beyond the age range of quartz optical (OSL) dating. Successful application of feldspar IRSL dating is, however, often precluded due to anomalous-fading, the tunnelling of electrons from one defect site to another. In this paper we test procedures proposed for anomalous-fading correction by comparing feldspar IRSL and quartz OSL dating results on a suite of samples from continental deposits from the southeastern Netherlands. We find that even after anomalous-fading correction IRSL ages underestimate the burial age of the deposits and argue that this may be a consequence of a dependency of anomalous fading rate on the dose rate and on the absorbed dose.  相似文献   

16.
The Late Quaternary hydroclimatic evolution of lake systems in Mongolia remains unclear. Here we present a record of lake level variations at Orog Nuur in the Valley of Gobi Lakes in southern Mongolia, since the last interglaciation, based on paleo-shoreline dating using quartz optically stimulated luminescence (OSL) and K-feldspar post-infrared infrared stimulated luminescence (pIRIR) signals. Due to feldspar contamination that could not be eliminated, the OSL signals of quartz single-aliquots (SA), except for two Holocene samples, were unsuitable for dating and a double SA regenerative-dose (SAR) protocol was used for the quartz fraction of these two samples. The pIR50IR170 and pIR200IR290 signals of K-feldspar SA were used to date Holocene samples and old samples (>100 ka), respectively, with the SAR protocol. To determine the bleaching condition of the pIR200IR290 signals, the first pIRIR dating of K-feldspar single-grains of lake shoreline sediments in Mongolia was performed. The equivalent doses of K-feldspar grains show normal distributions, suggesting that the pIR200IR290 signals are well-bleached. Overall, the results, combined with those of previous studies, show that a mega-lake developed at 56 m above the modern lake level (a.m.l.) during MIS 5e (124.2 ± 6.8114.7 ± 8.0 ka). Holocene high-stands occurred in the last deglaciationearly Holocene (11.1 ± 1.0 ka) at 23 m a.m.l. and in the mid-Holocene (6.7 ± 0.83.3 ± 0.4 ka) at 2014 m a.m.l. The dimensions of the paleo-lakes were recovered, and a hydrological index indicates that the effective moisture during MIS 5e and the mid-Holocene was 10.7 times and 3.65.0 times larger than today, respectively. Finally, the possible mechanisms behind the lake level history are discussed based on correlation with independent paleoclimatic records.  相似文献   

17.
The present study aimed to test reliability of luminescence and electron spin resonance (ESR) methods to date tephra. We investigated on three Japanese marker tephras, Ikeda-ko (6.4 ka), Aira-Tn (30 ka) and Aira-Iwato (45–50 ka). A systematic studies were performed using different minerals (quartz and feldspar), different grain fractions (75–250 and 250–500 μm), different luminescence and ESR signals, like optically stimulated luminescence (OSL) of quartz, infrared stimulated luminescence (IRSL) of feldspar, including recently developed least faded post infrared IRSL (pIR-IRSL), and ESR signals from paramagnetic centers Al and Ti–Li of quartz. Ages obtained using pIR-IRSL signal of plagioclase with preheat of 320 °C, 60 s and stimulation at 300 °C are consistent with the reference ages. High dose detection range (up to ∼600 Gy) and accurate age estimation enable pIR-IRSL of feldspar a promising methodology to date quaternary tephra. ESR ages from quartz are grossly correlated with the reference ages but large deviation and large associated errors are observed, possibly due to either low signal to noise ratio or heterogenous dose response of different aliquot in multiple aliquot additive dose (MAAD) approach.  相似文献   

18.
In this study we test, for the first time, the potential of an elevated temperature post-IR IR (pIRIR290) SAR protocol for the dating of young heated artefacts. Seven heated stones and seven potshards were collected from three different archaeological sites in Denmark: one site from the early Pre-Roman Iron Age 200 BC to AD 100, and two from the Viking period between AD 800 and 1200.We first derive quartz OSL ages for these samples, to support the archaeological age control. The luminescence characteristics of the pIRIR290 signal are then investigated; in particular the dose recovery ratios are shown to be close to unity. The performance of the feldspar pIRIR290 protocol is then examined by comparing the pIRIR290 ages with those based on the quartz OSL signal; the average ratio of pIRIR290 to OSL ages is 1.14 ± 0.05 (n = 14) and there is some suggestion that the possible overestimation of the feldspar ages compared to quartz is only of significance for the heated stone samples. Nevertheless, there is no indication of incomplete heating of the stones; the ratios of De derived from the IR50 and pIRIR290 signals are independent of sample type, and consistent with complete resetting by heating. Comparison with the archaeological age control is not able to identify whether quartz or feldspar provides the most reliable dating signal.  相似文献   

19.
Recent developments have opened up the possibilities of using potassium feldspar for dating Pleistocene sediments; a stable (less-fading) part of the infrared stimulated luminescence (IRSL) signal can be selected by largely depleting the unstable part of the IR signal, using a combination of thermal and IR stimulation: post IR-IRSL dating (pIR-IRSL).This study aims to test the validity of pIR-IRSL dating on feldspars. We obtained pIR-IRSL ages on a large suite of samples from several locations in the Netherlands area, covering a wide range of depositional environments and ages. Age control was provided by quartz optically stimulated luminescence (OSL) ages on the same samples; these ages were shown to accord with geological age constraints. Comparison with IRSL ages enabled us to evaluate the improvement that pIR-IRSL dating provides over conventional IRSL methods.The majority of feldspar ages obtained with pIR-IRSL showed good agreement with both the quartz OSL ages and the geological age constraints. Our study demonstrates that pIR-IRSL dating is more robust than conventional IRSL and should be the method of choice in feldspar luminescence dating of Pleistocene sediments.  相似文献   

20.
Luminescence dating has been applied to scoria and lahar deposits from Somma–Vesuvius, Italy. Samples include scoria from the AD472 and 512 (or 536) eruptions and lahar deposits. In order to find a stable luminescence signal which is less affected by anomalous fading, infrared stimulated luminescence (IRSL) signals at elevated temperatures after bleaching with IR at 50 °C (termed post-IR IRSL; pIRIR) were tested at different preheat and elevated stimulation temperatures. The fading rates of both IRSL and pIRIR signals reduced dramatically with increasing preheat and pIRIR stimulation temperatures. A pIRIR signal measured at 290 °C after a preheat at 320 °C (60 s) and an IR stimulation at 50 °C (100 s) was selected to calculate the equivalent dose (De). The gamma spectrometry results indicate that the U-series nuclides are not in equilibrium and there is a large 226Ra excess. The dose rates and ages were calculated by assuming a 226Ra excess (over its parent 230Th) at deposition, and that this unsupported excess then decayed to the present level. The resulting luminescence ages of the two scoria samples agreed with the expected ages, and the ages of the lahar deposits indicate that they are associated with the AD1631 eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号