首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm–cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011–2040, 2041–2070 and 2071–2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm−2 mm−1, 2.07 kg hm−2 mm−1 and 1.92 kg hm−2 mm−1 during 2011–2040, 2041–2070 and 2071–2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.  相似文献   

2.
Both coastal and global mean sea level rise by about 3.0 ± 0.5 mm/year from January 1993 to December 2004. Over shorter intervals the coastal sea level rises faster and over longer intervals slowly than the global mean, which trend is almost constant for each interval and is equal to 2.9 ± 0.5 mm/year in 1993–2008. The different trends are due to the higher interannual variability of coastal sea level, caused by the sea level regional variability, that is further averaged out when computing the global mean.Coastal sea level rise is well represented by a selected set of 267 stations of the Permanent Service for Mean Sea Level and by the corresponding co-located altimeter points. Its departure from coastal sea level computed from satellite altimetry in a 150 km distance from coast, dominated by a large rise in the Eastern Pacific, is due to the regional interannual variability.Regionally the trends of the coastal and open-ocean sea level variability are in good agreement and the main world basins have a positive averaged trend. The interannual variability is highly correlated with the El Nino Southern Oscillation (SO) and the North Atlantic Oscillation (NAO) climatic indices over both the altimeter period and the interval 1950–2001. Being the signal of large scale a small number of stations with good spatial coverage is needed. The reconstruction of the interannual variability using the spatial pattern from altimetry and the temporal patterns from tide gauges correlated to NAO and SOI restitutes about 50% of the observed interannual variability over 1993–2001.  相似文献   

3.
Surface roughness which partitions surface net radiation into energy fluxes is a key parameter for estimation of biosphere–atmosphere interactions and climate variability. An earth system model of intermediate complexity (EMIC), MPM-2, is used to derive the impact of surface roughness on climate from simulations of historical land cover change effects. The direct change in surface roughness leads to a global surface warming of 0.08 °C through altering the turbulence in the boundary layer. The regional temperature response to surface roughness associated deforestation is very strong at northern mid-latitudes with a most prominent warming of 0.72 °C around 50°N in the Eurasia continent during summer. They can be explained mainly as direct and indirect consequences of decreases in surface albedo and increases in precipitation in response to deforestation, although there are a few significant changes in precipitation. There is also a prominent warming of 0.25 °C around 40°N in the North American continent. This study indicates that land surface roughness plays a significant role which is comparable with the whole land conversion effect in climate change. Therefore, further investigation of roughness–climate relationship is needed to incorporate these aspects.  相似文献   

4.
A model study on the impact of climate change on snow cover and runoff has been conducted for the Swiss Canton of Graubünden. The model Alpine3D has been forced with the data from 35 Automatic Weather Stations in order to investigate snow and runoff dynamics for the current climate. The data set has then been modified to reflect climate change as predicted for the 2021–2050 and 2070–2095 periods from an ensemble of regional climate models.The predicted changes in snow cover will be moderate for 2021–2050 and become drastic in the second half of the century. Towards the end of the century the snow cover changes will roughly be equivalent to an elevation shift of 800 m. Seasonal snow water equivalents will decrease by one to two thirds and snow seasons will be shortened by five to nine weeks in 2095.Small, higher elevation catchments will show more winter runoff, earlier spring melt peaks and reduced summer runoff. Where glacierized areas exist, the transitional increase in glacier melt will initially offset losses from snow melt. Larger catchments, which reach lower elevations will show much smaller changes since they are already dominated by summer precipitation.  相似文献   

5.
Our understanding of the continental climate development in East Asia is mainly based on loess–paleosol sequences and summer monsoon precipitation reconstructions based on oxygen isotopes (δ18O) of stalagmites from several Chinese caves. Based on these records, it is thought that East Asian Summer Monsoon (EASM) precipitation generally follows Northern Hemisphere (NH) summer insolation. However, not much is known about the magnitude and timing of deglacial warming on the East Asian continent. In this study we reconstruct continental air temperatures for central China covering the last 34,000 yr, based on the distribution of fossil branched tetraether membrane lipids of soil bacteria in a loess–paleosol sequence from the Mangshan loess plateau. The results indicate that air temperature varied in phase with NH summer insolation, and that the onset of deglacial warming at ~ 19 kyr BP is parallel in timing with other continental records from e.g. Antarctica, southern Africa and South-America. The air temperature increased from ~ 15 °C at the onset of the warming to a maximum of ~ 27 °C in the early Holocene (~ 12 kyr BP), in agreement with the temperature increase inferred from e.g. pollen and phytolith data, and permafrost limits in central China.Comparison of the tetraether membrane lipid-derived temperature record with loess–paleosol proxy records and stalagmite δ18O records shows that the strengthening of EASM precipitation lagged that of deglacial warming by ca. 3 kyr. Moreover, intense soil formation in the loess deposits, caused by substantial increases in summer monsoon precipitation, only started around 12 kyr BP (ca. 7 kyr lag). Our results thus show that the intensification of EASM precipitation unambiguously lagged deglacial warming and NH summer insolation, and may contribute to a better understanding of the mechanisms controlling ice age terminations.  相似文献   

6.
《水文科学杂志》2013,58(3):596-605
Abstract

The potential effect of climatic change on the flow of the Upper Changjiang (or Yangtze River) above the Three Gorges, China, was simulated with the SLURP hydrological model, using ERA40 data from 1961–1990 to simulate the baseline streamflow, and employing scenario temperature and precipitation changes depicted by two global climate models: the Hadley Centre and the Canadian climate model (CCCma) for both the B2 scenario (moderate emission of greenhouse gases) and the A2 scenario (more intense emission), for the 2021–2050 and 2071–2100 time horizons. In general, temperature and precipitation changes are more pronounced for the latter than for the former period. Winter low flows will not change but summer high flow may be augmented by increased precipitation. By mid-century, temperature increase will reduce streamflow according to CCCma, but not so under the Hadley Centre scenario. By the end of the century, precipitation will be great enough to overcome the influence of warming to raise discharge from most parts of the basin. The Min and the Jinsha rivers warrant much attention, the former because of its large flow contribution and the latter because of its sensitivity to climate forcing.  相似文献   

7.
Twelve years of horizontal wind data from the Scott Base MF radar and the Halley SuperDARN radar recorded between January 1996 and December 2007 are analysed to study the interannual variability of the migrating (S=2) and non-migrating (S=1) components of the semidiurnal tide around 78°S in the Antarctic upper mesosphere. Significant quasi-biennial modulation of the summer time S=1 component is observed. During early summer the amplitude of the component is up to 4 ms?1 stronger during the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO) measured at 30 hPa. No statistically significant effect is seen in amplitude of the migrating component of the tide, or in the phase (time of maximum) of either component. These results are discussed in the light of previous observations of the interannual variability of the semidiurnal tide.  相似文献   

8.
A major reduction in summer temperatures during a Middle Pleistocene glacial cycle caused the most extensive glaciation recorded in the Mediterranean region. Glaciers in the mountains of Greece formed during marine isotope stage (MIS) 12 (474 000–427 000 years BP) under climatic conditions characterised by mean summer temperatures at least 11 °C cooler than today and annual precipitation of ≤ 2300 mm at the equilibrium line altitude (1741 m a.s.l.). This represents the coldest mean summer temperatures recorded in Greece during at least the last 430 000 years. Later Pleistocene glaciations (MIS 6 and 5d-2) were characterised by warmer summer temperatures and higher annual precipitation.  相似文献   

9.
《Journal of Hydrology》2006,316(1-4):71-83
Estimates of recharge to bedrock aquifers from infiltration of precipitation can be difficult to obtain, especially in areas with large spatial and temporal variability in precipitation. In the Black Hills area of western South Dakota and eastern Wyoming, streamflow yield is highly influenced by annual precipitation, with yield efficiency (annual yield divided by annual precipitation) increasing with increasing annual precipitation. Spatial variability in annual yield characteristics for Black Hills streams is predictably influenced by precipitation patterns. Relations between precipitation and yield efficiency were used to estimate annual recharge from long-term records of annual precipitation. A series of geographic information system algorithms was used to derive annual estimates for 1000- by 1000-m grid cells. These algorithms were composited to derive estimates of annual recharge rates to the Madison and Minnelusa aquifers in the Black Hills area of western South Dakota and eastern Wyoming during water years 1931–1998 and an estimate of average recharge for water years 1950–1998. This approach provides a systematic method of obtaining consistent and reproducible estimates of recharge from infiltration of precipitation. Resulting estimates of average annual recharge (water years 1950–1998) ranged from 1 cm in the southern Black Hills to 22 cm in the northwestern Black Hills. Recharge rates to these aquifers from infiltration of precipitation on outcrops was estimated to range from 0.9 m3/s in 1936 to 18.8 m3/s in 1995.  相似文献   

10.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

11.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

12.
Estimating past elevation not only provides evidence for vertical movements of the Earth's lithosphere, but also increases our understanding of interactions between tectonics, relief and climate in geological history. Development of biomarker hydrogen isotope-based paleoaltimetry techniques that can be applied to a wide range of sample types is therefore of continuing importance. Here we present leaf wax-derived n-alkane δD (δDwax) values along three soil altitudinal transects, at different latitudes, in the Wuyi, Shennongjia and Tianshan Mountains in China, to investigate δDwax gradients and the apparent fractionation between leaf wax and precipitation (εwax-p).We find that soil δDwax track altitudinal variations of precipitation δD along the three transects that span variable environment conditions and vertical vegetation spectra. An empirical δDwax-altitude relation is therefore established in which the average δDwax lapse rate of ? 2.27 ± 0.38‰/100 m is suitable for predicting relative paleoelevation change (relative uplift). The application of this empirical gradient is restricted to phases in the mountain uplift stage when the atmospheric circulation had not distinctly changed and to when the climate was not arid. An empirical δDwax–latitude–altitude formula is also calculated: δDwax = 3.483LAT ? 0.0227ALT ? 261.5, which gives the preliminary spatial distribution pattern of δDwax in modern China.Mean value of εwax-p in the extreme humid Wuyi Mountains is quite negative (? 154‰), compared to the humid Shennongjia (? 129‰) and the arid (but with abundant summer precipitation) Tianshan Mountains (? 130‰), which suggests aridity or water availability in the growing season is the primary factor controlling soil/sediment εwax-p. Along the Tianshan transects, values of εwax-p are speculated to be constant with altitude; while along the Wuyi and Shennongjia transects, εwax-p are also constant at the low-mid altitudes, but become slightly more negative at high altitudes which could be attributed to overestimates of precipitation δD or the vegetation shift to grass/conifer.Additionally, a reversal of altitude effect in the vertical variation of δDwax was found in the alpine zone of the Tianshan Mountains, which might be caused by atmospheric circulation change with altitude. This implies that the paleo-circulation pattern and its changes should also be evaluated when stable isotope-based paleoaltimetry is applied.  相似文献   

13.
The coastal zones are facing the prospect of changing storm surge statistics due to anthropogenic climate change. In the present study, we examine these prospects for the North Sea based on numerical modelling. The main tool is the barotropic tide-surge model TRIMGEO (Tidal Residual and Intertidal Mudflat Model) to derive storm surge climate and extremes from atmospheric conditions. The analysis is carried out by using an ensemble of four 30-year atmospheric regional simulations under present-day and possible future-enhanced greenhouse gas conditions. The atmospheric regional simulations were prepared within the EU project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). The research strategy of PRUDENCE is to compare simulations of different regional models driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100 were prepared by the Hadley Center based on the IPCC A2 SRES scenario. The results suggest that under future climatic conditions, storm surge extremes may increase along the North Sea coast towards the end of this century. Based on a comparison between the results of the different ensemble members as well as on the variability estimated from a high-resolution storm surge reconstruction of the recent decades it is found that this increase is significantly different from zero at the 95% confidence level for most of the North Sea coast. An exception represents the East coast of the UK which is not affected by this increase of storm surge extremes.  相似文献   

14.
In order to assess the annual mass balance of the Mandrone glacier in the Central Alps an energy-balance model was applied, supported by snowpack, meteorological and glaciological observations, together with satellite measurements of snow covered areas and albedo. The Physically based Distributed Snow Land and Ice Model (PDSLIM), a distributed multi-layer model for temperate glaciers, which was previously tested on both basin and point scales, was applied.Verification was performed with a network of ablation stakes over two summer periods. Satellite images processed within the Global Land Ice Measurements from Space (GLIMS) project were used to estimate the ice albedo and to verify the position of the simulated transient snowline on specific dates. The energy balance was estimated for the Mandrone and Presena glaciers in the Central Italian Alps. Their modeled balances (−1439 and −1503 mm w.e. year−1, respectively), estimated over a 15 year period, are in good agreement with those obtained with the glaciological method for the Caresèr glacier, a WGMS (World Glacier Monitoring Service) reference located in the nearby Ortles-Cevedale group.Projections according to the regional climate model COSMO-CLM (standing for COnsortium for Small-scale MOdeling model in CLimate Mode) indicate that the Mandrone glacier might not survive the current century and might be halved in size by 2050.  相似文献   

15.
16.
《Continental Shelf Research》2007,27(10-11):1584-1599
Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.  相似文献   

17.
A study on variability of the equatorial ionosphere was carried out at fixed heights below the F2 peak for two different levels of solar activity. The study covered height range of 100 km up to the peak of F2 layer using a real height step increase of 10 km. The variability index used is the percentage ratio of standard deviation over the average value for the month. Daytime minimum variability of between 3% and 10% was observed at height range of about 150–210 km during low solar activity and between 2% and 7% at height range of 160–220 km during high solar activity. The nighttime maximum of between 70% and 187% was observed at height range of about 210–250 km during low solar activity and between 42% and 127% at height range of 210–250 km during high solar activity. The height range at which daytime minimum was observed falls within the F1 height of the ionosphere. The result obtained is consistent with previous works carried out in the low latitude locations for American sector.  相似文献   

18.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
《Continental Shelf Research》2006,26(17-18):2050-2072
A 5-yr data set of near-bed current and suspended-sediment concentration measured within 2 m of the seabed in 60-m water depth has been analyzed to evaluate the interannual variability of physical processes and sediment transport events on the Eel River continental shelf, northern California. This data set encompasses a wide range of shelf conditions with winter events characterized as: Major Flood (1996/97), strong El Niño (1997/98), strong La Niña (1998/99), and Major Storm (1999/00). Data were collected at a site located 25 km north of the Eel River mouth, on the landward edge of the mid-shelf mud deposit. During the winter months sediment resuspension is forced primarily by near-bed oscillatory flows, and sediment transport occurs both as suspended load and as gravity-driven (fluid-mud) flows. Winter conditions that caused periods of increased sediment transport existed on average for 142 d yr−1 over the total record, ranging between 89 d in the Major Flood year (1996/97) and 171 d in the La Niña year (1998/99). Hourly averaged values of significant wave height varied between 0.5 and 10.7 m and hourly averaged values of near-bed orbital velocities ranged between 0 and 125 cm s−1. During the five winters, sediment threshold conditions were exceeded an average of 35% of the time, ranging from 19% in the Major Flood year (1996/97) to 52% in the La Niña year (1998/99). Mean concentration of suspended sediment, measured at 30 cmab, ranged from values close to 0–8 g l−1. Among winters, major sediment flux events exhibited different patterns due to varying combinations of physical processes including river floods, waves, and shelf circulation. Within winters, the major period of sediment flux varied from a 3-d fluid mud event (Major Flood winter) to a 50-d period of persistent southerlies (El Niño winter) and a winter of continuous storm cycles (La Niña winter). Winter-averaged suspended-sediment concentration appeared to vary in response to river discharge, while total sediment flux responded to storm intensity. The net sediment flux appeared to depend on timing of river discharge and shelf conditions. On the Eel River shelf, the mid-shelf mud deposit apparently is not emplaced by deposition from the river plume, but by secondary processes from the inner shelf including off-shelf transport of sediment suspensions and gravity-driven fluid-mud flows. Thus, these inner-shelf processes redistribute sediment supplied by the Eel River (a point source) making the inner shelf a line source of sediment that forms and nourishes the mid-shelf deposit. Large-scale shelf circulation patterns and interannual variability of the physical forcing are also important in determining the locus of the mid-shelf deposit, and both are influenced by climate variations. Post-depositional alteration of the deposit also depends on the subsequent shelf conditions following major floods.  相似文献   

20.
The northern Tehran fault (NTF) is a principal active fault of the Alborz mountain belt in the northern Iran. The fault is located north of the highly populated Metropolitan Area of Tehran. Historical records and paleoseismological studies have shown that the NTF poses a high seismic risk for the Tehran region and the surrounding cities (e.g. Karaj). A series of ground-motion simulations are carried out using a hybrid kinematic-stochastic model to calculate broadband (0.1–20 Hz) ground-motion time histories for deterministic earthquake scenarios (M7.2) on the NTF. We will describe the source characteristics of the target event to develop a list of scenario earthquakes that are probably similar to a large earthquake on the NTF. The effect of varying different rupture parameters such as rupture velocity and rise time on the resulting broadband strong motions has been investigated to evaluate the range of uncertainty in seismic scenarios. The most significant parameters in terms of ground-shaking level are the rise time and the value of the rupture velocity. For the worst-case scenario, the maximum expected horizontal acceleration, and velocity at rock sites in Tehran range between 128 and 1315 cm/s/s and 11–191 cm/s, respectively. For the lowest scenario, the corresponding values range between 102 and 776 cm/s/s and 12 to 81 cm/s. Nonlinear soil effects may change these results but are not accounted for in this study. The largest variability of ground motion is observed in neighborhood of asperity and also in the direction of rupture propagation. The calculated standard deviation of all ground-motion scenarios is less than 30% of the mean. The capability of the simulation method to synthesize expected ground motions and the appropriateness of the key parameters used in the simulations are confirmed by comparing the synthetic peak ground motions (PGA, PGV and response spectra) with empirical ground-motion prediction equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号