首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Surface waves are the roughness element of the ocean surface. The parameterization of the drag coefficient of the ocean surface is simplified by referencing to wind speed at an elevation proportional to the characteristic wavelength. The dynamic roughness is analytically related to the drag coefficient. Under the assumption of fetch limited wave growth condition, various empirical functions of the dynamic roughness can be converted to equivalent expressions for comparison. For datasets covering a wide range of the dimensionless frequency (inverse wave age), it is important to account for the variable rate of wave development at different wave ages. As a result, the dependence of the Charnock parameter on wave age is nonmonotonic. Finally, the analysis presented here suggests that the significant wave steepness is a sensitive property of the ocean surface and a single variable normalization of the dynamic roughness using a wavelength or wave height parameter actually produces more robust functions than bi-variable normalizations using wave height and wave slope.  相似文献   

2.
Depending on the choice of reference wind speed, the quantitative and qualitative properties of the drag coefficient may vary. On the ocean surface, surface waves are the physical roughness at the air-sea interface, and they play an important role in controlling the air-sea exchange processes. The degree of dynamic influence of surface waves scales with wavelength. Drag coefficient computed with the reference wind speed at an elevation proportional to the wavelength (for example, U λ/2) is fundamentally different from the drag coefficient computed with the wind speed at fixed 10 m elevation (U 10). A comparison has been carried out to quantify the difference in wind stress computation using several different parameterization functions of the drag coefficient. The result indicates that the wind stress computed from U 10 input using a drag coefficient referenced to U λ/2 is more accurate than that computed with drag coefficient functions referenced to U 10.  相似文献   

3.
海面的曳力系数和空气动力学粗糙度长度是计算海气动量、感热和水汽通量交换必需的参数。基于在“黑格比”和“灿都”台风期间收集的涡动相关系统观测数据, 文章研究了10m风速和摩擦速度之间、10m风速和曳力系数之间、以及10m风速和动力粗糙度长度之间的参数化关系。结果表明: 曳力系数和摩擦速度及10m风速之间存在抛物线关系, 动力粗糙度长度与摩擦速度及10m风速之间存在自然指数关系; 临界摩擦速度为0.83m·s-1, 临界10m级风速为23.69m·s-1。  相似文献   

4.
本文采用美国国家浮标站(44008)2003年1~3月的资料,通过COARE算法(版本2.6b),比较了O02和TY01这两种海面空气动力粗糙度长度的参数化方案。通过对摩擦速度、拖曳系数、海面粗糙度及风应力等物理因子的计算得出:在粗糙的海面上,TY01和O02两种参数化方案的计算结果是比较一致的。在考虑浪的信息方面,TY01和O02都是很好的参数化方案.它们都可以适用于不同的风速条件,适用于各种尺度的海洋及湖泊。但是这两种方案在处理幼波时存在不连续的缺点。并且,对于风速较小的光滑海面,尽管它们计算的结果较一致,但是仍然存在偏差。据此,本文的结果对于理论分析和数值计算如何正确使用上述两种海面空气动力粗糙度参数化方案,可提供必要的参考价值。  相似文献   

5.
A new empirical formula for the aerodynamic roughness of water surface waves has been derived from laboratory experimental results using dimensional analysis. The formula has different forms according to wind speed: at moderate wind speeds the formula is a function of the friction velocity of wind, the surface tension, the water density, the kinematic viscosity of water and the acceleration of gravity; at strong winds the formula is expressed by the Charnock relation. The aerodynamic roughness does not depend on such wave state parameters as the spectral peak frequency or the steepness of waves, unlike almost all parameterizations that have been proposed to date. The drag coefficient at moderate winds depends on the surface tension of water and the water temperature through the temperature dependence of the kinematic viscosity of water.  相似文献   

6.
An experimental study, conducted in the large wave flume of CIEM in Barcelona, is presented to evaluate the effects of Posidonia oceanica meadows on the wave height damping and on the wave induced velocities. The experiments were performed for irregular waves from intermediate to shallow waters with the dispersion parameter h/λ ranging from 0.09 to 0.29. Various configurations of the artificial P. oceanica meadow were tested for two stem density patterns (360 and 180 stems/m2) and for plant's height ranging from 1/3 to 1/2 of the water depth.The results for wave height attenuation are in good agreement with the analytical expressions found in literature, based on the assumption that the energy loss over the vegetated field is due to the drag forces. Based on this hypothesis, an empirical relationship for the drag coefficient related to the Reynolds number, Re, is proposed. The Reynolds number, calculated using the artificial P. oceanica leaf width as the length scale and the maximum orbital velocity over the meadow edge as the characteristic velocity scale, ranges from 1000 to 3500 and the drag coefficient Cd ranges from 0.75 to 2.0.The calculated wave heights, using the analytical expression from literature and the proposed relationship for the estimation of Cd, are in satisfactory agreement with those measured. Wave orbital velocities are shown to be significantly attenuated inside the meadow and just above the flume bed as indicated by the calculation of an attenuation parameter. Near the meadow edge, energy transfer is found in spectral wave velocities from the longer to the shorter wave period components. From the analysis it is shown that the submerged vegetation attenuates mostly longer waves.  相似文献   

7.
风浪对海-气界面动量通量估计的影响   总被引:1,自引:0,他引:1  
利用实验室和有代表性的外海观测数据综合分析表明,海面粗糙度对波龄的依赖性与是否将实验室和外海数据一起考虑有关,而风应力拖曳系数与此无关,且随波龄增大而减小.利用Toba-3/2指数律和风浪成长关系的分析表明,风应力拖曳系数为常数或随波龄的增大而增大,与上述结果定性上相矛盾,说明风浪对风应力拖曳系数影响问题需要进一步研究.  相似文献   

8.
本文通过波浪水槽试验研究了大糙率礁面影响下波浪沿礁的演化和爬高规律,测试了一系列规则波工况并对比了光滑礁面和粗糙礁面的情况。结果分析表明:二次谐波是礁坪上透射波的重要组成成分,粗糙礁面使主频波和二次谐波减小,对更高阶波的影响不显著;相对礁坪水深是描述礁坪上波浪透射的关键参数,礁面从光滑变为粗糙时海岸附近透射系数显著减小,能量衰减系数平均增大了8%,但礁前反射系数与礁面糙率之间无明显关系;礁后岸滩爬高随着透射波高的增大而增长,最后拟合了本文试验条件下珊瑚礁大糙率礁面预测规则波爬高的关系式。  相似文献   

9.
Local equilibrium of winds and wind-waves is discussed as a basis for research of the drag coefficient of the water surface as well as for the spectral growth of wind-waves. This hypothesis assumes, in a narrow sense, that statistical properties are determined from four physical quantities, which represent winds and wind-waves: the friction velocityu *, the gravitational accelerationg, the powerE of the surface displacement, and the peak frequency p of a wind-wave spectrum. Then one has only one nondimensionalcontrol parameter, which may be either the wave age or wave nonlinearity (slope) of dominant waves. In a wide-sense, one can take into account viscosity and surface tension in terms of one more additional parameter by virtue of the virtual invariance of those material constants; that parameter describes the scale ratio between dominant waves and the short waves for which viscosity or surface tension is important. A unified expression for the roughness height according to this hypothesis turns out to include Charnock's and Toba's formulas as special cases. On the basis of a preliminary analysis of the experimental data, a new empirical formula is proposed.  相似文献   

10.
A quasi-linear model for determining the aerodynamic drag coefficient of the sea surface and the growth rate of surface waves under a hurricane wind is proposed. The model explains the reduction (stabilization) in the drag coefficient during hurricane winds. This model is based on the solution of the Reynolds equations in curvilinear coordinates with the use of the approximation of the eddy viscosity, which takes into account the presence of the viscous sublayer. The profile of the mean wind velocity is found with consideration for nonlinear wave stresses (wave momentum flux), whereas wave disturbances induced in air by waves on the water surface are determined in the context of linear equations. The model is verified by comparing the calculation results with experimental data for a wide range of wind velocities. The growth rate and drag coefficient for hurricane winds are calculated both with and without consideration for the shortwave portion of the windwave spectrum. On the basis of calculations with the quasi-linear model, a simple parametrization is proposed for the drag coefficient and the growth rate of surface waves during hurricane winds. This model is convenient for use in models of forecasting winds and waves.  相似文献   

11.
Results of measurements of the atmospheric turbulence in the layer between 1.5 and 21 m above sea level and the drag coefficient of the sea surface as the wind blows from a 4-km-long mountainous slope with a mean inclination of 11° are presented. The measurements of wind-speed profiles and its fluctuations at several levels, waves, and the main meteorological parameters were carried out in autumn 2005 and 2008 from a stationary platform located in the Black Sea at a distance of approximately 1 km from the southern coast of Crimea. It is shown that during weak synoptic wind a low-level wind jet develops at night over the sea with a maximum velocity up to 5–6 m/s at a level of approximately 6 m over the sea induced by the katabatic wind over the coastal slope. According to the approximate estimates, the horizontal scale of the low-level jet can reach a few tens of kilometers. This flow is characterized by the dissipation rate of the turbulence energy independent of height and low-frequency velocity fluctuations related to the gravity waves and advection of turbulence from the coast. It is shown that the lower part of the boundary layer (up to a height of 3 m) is adjusted to the sea-surface roughness. The dependencies of the drag coefficient on the wind speed or wave age are steadier than in the data for the open sea. However, the age of the waves is not a universal parameter at long and short fetches.  相似文献   

12.
In this study, a three-dimensional numerical model is used to study the wave interaction with a vertical rectangular pile. The model employs the large eddy simulation (LES) method to model the effect of small-scale turbulence. The velocity and vorticity fields around the pile are presented and discussed. The drag and inertial coefficients are calculated based on the numerical computation. The calculated coefficients are found to be in a reasonable range compared with the experimental data. Additional analyses are performed to assess the relative importance of drag and initial effects, which could be quantified by the force-related Keulegan and Carpenter (KC) number: KCf=UT/(4πL). Here U is the maximum fluid particle velocity, T the wave period and L the length of structure aligned with the wave propagation direction. For small KCf, the effective drag coefficient is proportional to 1/KCf, provided the wavelength is much longer than the structural length. When wavelength is comparable to the structure dimension, the effective drag coefficient would be reduced significantly due the cancellation of forces, which has been demonstrated by numerical results.  相似文献   

13.
A coupled wave–tide–surge model has been established in this study in order to investigate the effect of tides, storm surges, and wind waves interactions during a winter monsoon on November 1983 in the Yellow Sea. The coupled model is based on the synchronous dynamic coupling of a third-generation wave model, WAM-Cycle 4, and the two-dimensional tide–surge model. The surface stress generated by interactions between wind and waves is calculated using the WAM-Cycle 4 directly based on an analytical approximation of the results obtained from the quasi-linear theory of wave generation. The changes of bottom friction factor generated by waves and current interactions are calculated by using simplified bottom boundary layer model. The model simulations showed that bottom velocity and effective bottom drag coefficient induced by combination of wave and current were increased in shallow waters of up to 50 m in the Yellow Sea during the wintertime strong storm conditions.  相似文献   

14.
The present article presents a nonlinear analysis for determining the three-dimensional unsteady potential-flow characteristics about a wing subject to wing-in-ground effect (WIG) operating above progressive water waves. By means of the time-domain Green's function for the three-dimensional dipole moving above the free surface satisfying the dynamic and kinematic boundary conditions on the mean free surface, the influence of the free surface on the vortex ring is considered. Then, the nonlinear unsteady lifting surface theory is developed to study the lifting problem for a three-dimensional wing operating above progressive water waves. Furthermore, the roll-up shed from the wing in the presence of a free surface and water waves is taken into account. With the computed results, the non-dimensional force coefficients (including the lift coefficient, induced drag coefficient and lift-to-drag ratio) are presented with the variation of different geometry and water wave parameters. The data reported in the literature are presented to validate the present approach.  相似文献   

15.
A coupled wave–tide–surge model has been developed in this study in order to investigate the effect of the interactions among tides, storm surges, and wind waves. The coupled model is based on the synchronous dynamic coupling of a third-generation wave model, WAM cycle 4, and the two-dimensional tide–surge model. The surface stress, which is generated by interactions between wind and wave, is calculated by using the WAM model directly based on an analytical approximation of the results using the quasi-linear theory of wave generation. The changes in bottom friction are created by the interactions between waves and currents and calculated by using simplified bottom boundary layer model. In consequence, the combined wave–current-induced bottom velocity and effective bottom drag coefficient were increased in the shallow waters during the strong storm conditions.  相似文献   

16.
关皓  周林  王汉杰  景丽 《海洋学报》2008,30(4):30-38
利用LINUX操作系统下的进程通讯(IPC)技术将中尺度大气模式MM5(V3)与第三代海浪模式WW3进行双向耦合,建立考虑大气-海浪相互作用的风浪耦合模式,在耦合模式中引入3种海表粗糙度参数化方案,通过对一次热带气旋过程的模拟,研究大气-海浪相互作用对热带气旋系统的影响及耦合模式对海表粗糙度参数化方案的敏感性。结果表明:LINUX系统下的进程通讯技术可以方便有效地实现大气和海浪模式的双向耦合,模式运行稳定;耦合模式能够较好的模拟热带气旋的发展和演变过程及其影响下海浪场的分布和演变,模拟结果对海表粗糙度参数化方案较敏感;海浪的反馈作用同时影响了海气间的动力和热力作用过程,不同的海表粗糙度参数化方案下,海浪对两种作用过程不同的影响程度决定了其对气旋系统强度的影响。  相似文献   

17.
根据 1 994年 9月 1 8— 30日南沙群岛海域渚碧礁的近海面大气湍流观测实验资料 ,分别计算了该海域光滑海面和粗糙海面上的空气动力粗糙度 (z0 )、中性曳力系数 (CDN)。利用Brutsaert的假定 ,推导了一组求取标量粗糙度 (zT,zQ)、整体输送系数 (感热交换系数CHN、水汽交换系数CEN)的公式。在此基础上分别计算和分析了该海域近海面光滑海面和粗糙海面上z0 ,zT,zQ,CDN,CHN,CEN 及它们关于水平风速u分量的分布 ,并得到了一些有意义的结论。  相似文献   

18.
The present study numerically investigates the characteristics of three-dimensional turbulent flow in a wavy channel. For the purpose of a careful observation of the effect of the wave amplitude on the turbulent flow, numerical simulations are performed at a various range of the wave amplitude to wavelength ratio (0.01?α/λ?0.05), where the wavelength is fixed with the same value of the mean channel height (H). The immersed boundary method is used to handle the wavy surface in a rectangular grid system, using the finite volume method. The Reynolds number (Re=UbH/ν) based on the bulk velocity (Ub) is fixed at 6760. The present computational results for a wavy surface are well compared with those of references. When α/λ=0.02, the small recirculating flow occurs near the trough at the instant, but the mean reverse flow is not observed. In the mean flow field, the reverse flow appears from α/λ=0.03 among the wave amplitude considered in this study. The domain of the mean reverse flow defined by the locations of separation and reattachment depends strongly on the wave amplitude. The pressure drag coefficient augments with increasing the wave amplitude. The friction drag coefficient shows the increase and decrease behavior according to the wave amplitude. The quantitative information about the flow variables such as the distribution of pressure and shear stress on the wavy surface is highlighted.  相似文献   

19.
将一个三维湍能封闭模型应用于开阔海区的风暴潮,通过数值计算探讨了Taylor底摩擦二次率的拖曳系数随空间的分布及拖曳系数与水深、海底粗糙度、风向和风速等因素的关系。本文对底摩擦二次率的可靠性做了评价。  相似文献   

20.
Zhang  Jing-jing  Chen  Ke  You  Yun-xiang  Han  Pan-pan 《中国海洋工程》2022,36(3):464-473

An investigation into the prediction method for internal solitary waves (ISWs) loads on the columns and caissons of the semi-submersible platform found on three kinds of internal solitary wave theories and the modified Morison Equation is described. The characteristics of loads exerted on the semi-submersible platform model caused by the ISWs have been observed experimentally, and the inertial and drag coefficients in Morison Equation are determined by analyzing the forces of experiments. From the results, it is of interest to find that Reynolds number, KC number and layer thickness ratio have a considerable influence on the coefficients. The direction of incoming waves, however, is almost devoid of effects on the coefficients. The drag coefficient of columns varies as an exponential function of Reynolds number, and inertia coefficient of columns is a power function related to KC number. Meanwhile, the drag coefficient of caissons is approximately constant in terms of regression analysis of experimental data. The results from different experimental conditions reveal that the inertia coefficient of caissons appears to be exponential correlated with upper layer depths.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号