首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
The Antarctic Peninsula has been part of a magmatic arc since at least Jurassic times. The South Shetland Islands archipelago forms part of this arc, but it was separated from the Peninsula following the Pliocene opening of the Bransfield Strait. Dikes are widespread throughout the archipelago and are particularly accessible on the Hurd Peninsula of Livingston Island. The host rocks for the dikes are represented by the Miers Bluff Formation, which forms the overturned limb of a large-scale fold oriented 63/23 NW. The orientation of minor structures indicates a fold axis oriented NNE–SSW (24/0). Structural analysis of the dikes and their host rocks shows that the tectonic regime was similar to other parts of the archipelago and that only minor changes of the stress field occurred during dike emplacement.Based on crosscutting field relationships and geochemical data, six early Paleocene to late Eocene intrusive events can be distinguished on Hurd Peninsula. In contrast to calc-alkaline dikes from other parts of the South Shetland Islands, the majority of the Hurd Peninsula dikes are of tholeiitic affinity. Nd and Pb isotope data indicate a significant crustal component, particularly during initial magmatic activity.Plagioclase 40Ar/39Ar and whole rock K–Ar ages show that dike emplacement peaked during the Lutetian (48.3 ± 1.5, 47.4 ± 2.1, 44.5 ± 1.8 and 43.3 ± 1.7 Ma) on Hurd Peninsula and also further northeast on King George Island. Dike intrusion continued on Livingston Island at least until the Priabonian (37.2 ± 0.9 Ma). The type of magma sources (mantle, slab, crust and sediment) did not change, though their relative magmatic contributions varied with time.During Cretaceous and Early Paleogene times, the Antarctic Peninsula including the South Shetland Islands was situated southwest of Patagonia; final separation from South America occurred not before the Eocene. Thus, the geological evolution of Livingston Island is related as much to the development of Patagonia as of Antarctica, and needs to be considered within the history of southernmost South America.  相似文献   

2.
40Ar/39Ar geochronology of muscovite and biotite grains genetically related to gold and Be–Ta–Li pegmatites from the Seridó Belt (Borborema province, NE Brazil) yield well-defined, reliable plateau ages. This information, combined with data about paragenetic and field relationships, reveals Cambro-Ordovician mineralization ages (520 and 500–506 Ma) for the orogenic gold deposits in the Seridó Belt. Biotite ages of 525±2 Ma, which represent the mean weighted results of the incremental heating analysis of six biotite single crystals, record the time of pegmatite emplacement and reactivation of Brasiliano/Pan-African strike-slip shear zones. These results, along with previous structural evolution studies, suggest that shear zones formed during the Brasiliano/Pan-African event were reactivated in the Upper Cambrian–Lower Ordovician. Mineralization occurs late in the history of the orogen.  相似文献   

3.
An integrated geological study of the tectono-metamorphic evolution of the metamorphic complex of Beloretzk (MCB) which is part of the eastern Bashkirian mega-anticlinorium (BMA), SW Urals, Russia shows that the main lithological units are Neoproterozoic (Riphean and Vendian age) siliciclastic to carbonate successions. Granitic, syenitic and mafic intrusions together with subaerial equivalents comprise the Neo- and Mesoproterozoic magmatic rocks. The metamorphic grade ranges from diagenetic and very low grade in the western BMA to high-grade in the MCB. The N–S trending Zuratkul fault marks the change in metamorphic grade and structural evolution between the central and eastern BMA. Structural data, Pb/Pb-single zircon ages, 40Ar/39Ar cooling ages and the provenance signature of Riphean and Vendian siliciclastic rocks in the western BMA give evidence of Mesoproterozoic (Grenvillian) rifting, deformation and eclogite-facies metamorphism in the MCB and a Neoproterozoic (Cadomian) orogenic event in the SW Urals. Three pre-Ordovician deformation phases can be identified in the MCB. The first SSE-vergent, isoclinal folding phase (D1) is younger than the intrusion of mafic dykes (Pb/Pb-single zircon: 1350 Ma) and older than the eclogite-facies metamorphism. High P/low T eclogite-facies metamorphism is bracketed by D1 and the intrusion of the Achmerovo granite (Pb/Pb-single zircon: ≤970 Ma). An extensional, sinistral, top-down-to-NW directed shearing (D2) is correlated with the first exhumation of the MCB. E-vergent folding and thrusting (D3) occurred at retrograde greenschist-facies metamorphic conditions. The tremolite 40Ar/39Ar cooling age (718±5 Ma) of amphibolitic eclogite and muscovite 40Ar/39Ar cooling ages (about 550 Ma) of mica schists indicate that a maximum temperature of 500±50 °C was not reached during the Neoproterozoic orogeny. The style and timing of the Neoproterozoic orogeny show similarities to the Cadomian-aged Timan Range NW of the Polar Urals. Geochronological and thermochronological data together with the abrupt change in structural style and metamorphism east of the Zuratkul fault, suggest that the MCB is exotic with respect to the SE-margin of the East European Platform. Thus, the MCB is named the ‘Beloretzk Terrane’. Recognition of the ‘Beloretzk Terrane’ and the Neoproterozoic orogeny at the eastern margin of Baltica has important implications for Neoproterozoic plate reconstruction and suggests that the eastern margin of Baltica might have lain close to the Avalonian–Cadomian belt.  相似文献   

4.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

5.
The Neogene Yamadağ volcanics occupy a vast area between Sivas and Malatya in eastern Anatolia, Turkey. These volcanic rocks are characterized by pyroclastics comprising agglomerates, tuffs and some small outcrops of basaltic–andesitic–dacitic rocks, overlain upward by basaltic and dacitic rocks, and finally by basaltic lava flows in the Arapkir area, northern Malatya Province. The basaltic lava flows in the Arapkir area yield a 40Ar/39Ar age of 15.8 ± 0.2 Ma, whereas the dacitic lava flows give 40Ar/39Ar ages ranging from 17.6 through 14.7 ± 0.1 to 12.2 ± 0.2 Ma, corresponding to the Middle Miocene. These volcanic rocks have subalkaline basaltic, basaltic andesitic; alkaline basaltic trachyandesitic and dacitic chemical compositions. Some special textures, such as spongy-cellular, sieve and embayed textures; oscillatory zoning and glass inclusions in plagioclase phenocrysts; ghost amphiboles and fresh biotite flakes are attributable to disequilibrium crystallization related to magma mixing between coeval magmas. The main solidification processes consist of fractional crystallization and magma mixing which were operative during the soldification of these volcanic rocks. The dacitic rocks are enriched in LILE, LREE and Th, U type HFSE relative to the basaltic rocks. The basaltic rocks also show some marked differences in terms of trace-element and REE geochemistry; namely, the alkaline basaltic trachyandesites have pronounced higher HFSE, MREE and HREE contents relative to the subalkaline basalts. Trace and REE geochemical data reveal the existence of three distinct magma sources – one subalkaline basaltic trachyandesitic, one alkaline basaltic and one dacitic – in the genesis of the Yamadağ volcanics in the Arapkir region. The subalkaline basaltic and alkaline basaltic trachyandesitic magmas were derived from an E-MORB type enriched mantle source with a relatively high- and low-degree partial melting, respectively. The magmatic melt of dacitic rocks seem to be derived from an OIB-type enriched lithospheric mantle with a low proportion of partial melting. The enriched lithospheric mantle source reflect the metasomatism induced by earlier subduction-derived fluids. All these coeval magmas were generated in a post-collisional extensional geodynamic setting in Eastern Anatolia, Turkey.  相似文献   

6.
The western terranes exposed east of the Pan-African suture in western Hoggar (southwest Algeria), are reexamined in the light of new structural, petrologic and by the 40Ar/39Ar laser probe data on metamorphic micas and amphiboles. To the north, the Tassendjanet nappe includes the Paleoproterozoic basement, its Mesoproterozoic cover and mafic rocks representing the roots of a ca. 680 Ma arc overlain by Late Neoproterozoic andesites and volcanic greywackes. The nappe preserved at rather shallow crustal level in the east was emplaced southward (D1a) to southeastward (D2). In the south, two metamorphic suites are distinguished. The Tideridjaouine–Tileouine high-pressure metamorphic belt (T=550–600 °C, P=1.4–1.8 GPa) represents a slab of subducted continental material exposed along the western edge of the In Ouzzal granulite unit interpreted as a microcontinent. Differential exhumation of tectonic slices from the high-pressure belt occurred around 615–600 Ma through a system of west-directed recumbent folds (D1b). The Egatalis high grade belt in the west was intruded by syn-metamorphic gabbro–norite bodies. It includes unretrogressed low-pressure granulite facies rocks (T around 750–800 °C, P0.45 GPa) cooled at a rate of 15°/m.y. between 600 and 580 Ma, and followed by the emplacement of several late-kinematic granitic plutons. Final exhumation of the low-pressure, high-temperature metamorphic rocks, that are not found as pebbles in the molasse, took place in the Late Cambrian. The early and relatively fast cooling of the high-pressure and high-temperature metamorphic rocks of the southern part of the Tassendjanet terrane is at variance with the slow cooling of central Hoggar where repeated magmatic activity as young as Late Cambrian occurred [Lithos 45 (1998) 245].  相似文献   

7.
A combined paleomagnetic and geochronological study is reported of Paleogene basalt lavas and an intercalated red bed succession, comprising a minimum of 14 basalt flows and 10 red bed horizons in the Tuoyun Basin of the southwest Tian Shan Range, China. Two basalt matrix samples yield 40Ar / 39Ar isochron ages of 58.5 ± 1.3 Ma (2σ, MSWD = 0.9) and 60.4 ± 1.3 Ma (2σ, MSWD = 1.7). These compare well with a previously published K–Ar dilution age of 61.7 ± 2.3 Ma for comparable Paleogene basalts and confirm that the younger pulse of magmatism in this basin is represented by both intrusive and extrusive activity. Demagnetization and component analysis identify a stable characteristic remanence (ChRM) with predominantly reversed polarity following removal of secondary remanence by peak demagnetization steps below 250–350 °C or 5 mT. Rock magnetic analysis identifies pseudo-single domain magnetite or titanomagnetite as carriers. The stable ChRM passes a fold test; it was probably acquired at the time of lava emplacement. Results from the bulk of the collection imply that paleomagnetic data from the upper and lower ( 115 Ma) basalt series in the Tuoyun Basin are not distinguishable at the 95% significance level and indicate that this tectonic domain remained essentially stationary with respect to the Earth's spin axis for 50 Ma prior to onset of the India/Asia collision in early Eocene times. It is therefore probable that no paleomagnetically detectable crustal shortening occurred in the southwest Tian Shan prior to collision. Paleomagnetic data sets from the Tuoyun Basin also show that little or no paleolatitude difference is present between the Tian Shan and the reference latitude of Eurasia at 60 Ma. This supports previous evidence suggesting that central Asian blocks in the vicinity of the Tian Shan are unlikely to have experienced appreciable northward convergence relative to Eurasia since onset of the India/Asia collision and initiation of the Himalaya.  相似文献   

8.
The Dulong-Song Chay tectonic dome lies on the border of China (SE Yunnan Province) and northern Vietnam, and consists of two tectonic and lithologic units: a core complex and a cover sequence, separated by an extensional detachment fault. These two units are overlain unconformably by Late Triassic strata. The core complex is composed of gneiss, schist and amphibolite. SHRIMP zircon U–Pb dating results for the orthogneiss yield an age of 799±10 Ma, which is considered to be the crystallization age of its igneous protolith formed in an arc-related environment. A granitic intrusion within the core complex occurred with an age of 436–402 Ma, which probably formed during partial closure of Paleotethys. Within the core complex, metamorphic grades change sharply from upper greenschist-low amphibolite facies in the core to low greenschist facies in the cover sequence. There are two arrays of foliation within the core complex, detachment fault and the cover sequence: S1 and S2. The pervasive S1 is the axial plane of intrafolial S0 folds. D1 deformation related to this foliation is characterized by extensional structures. The strata were structurally thinned or selectively removed along the detachment faults, indicating exhumation of the Dulong-Song Chay tectonic dome. The major extension occurred at 237 Ma, determined by SHRIMP zircon U–Pb and 39Ar/40Ar isotopic dating techniques. Regionally, simultaneous tectonic extension was associated with pre-Indosinian collision between the South China and Indochina Blocks. The S2 foliation appears as the axial plane of NW-striking S1 buckling folds formed during a compressional regime of D2. D2 is associated with collision between the South China and Indochina Blocks along the Jinshajiang-Ailao Shan suture zone, and represents the Indosinian deformation. The Dulong granites intruded the Dulong-Song Chay dome at 144±2, 140±2 and 116±10 Ma based on 39Ar/40Ar measurement on muscovite and biotite. The dome was later overprinted by a conjugate strike-slip fault and related thrust fault, which formed a vortex structure, contemporaneously with late Cenozoic sinistral movement on the Ailao Shan-Red River fault.  相似文献   

9.
Porphyry-type Cu (Mo, Au) deposits have been discovered along the Gangdese magmatic arc in the southern Tibetan Plateau. Extensive field investigations and systematic studies of geochemistry, S–Pb isotopic tracing, together with Re–Os and 40Ar/39Ar isotopic dating indicate that the mineralisation of the copper belt is genetically related to emplacement of late orogenic granitic porphyries during the post-collisional crustal relaxation period of the Late Himalayan epoch. These porphyries are petrochemically K-enriched and belong to shoshonitic to high-K calc-alkaline series. They display enrichment of large ion lithophile elements (LILE) Rb, K, U, Th, Sr, Pb and depletion of high field strength elements (HFSE) Nb, Ta, Ti and the heavy rare earth elements (HREE) and Y without Eu anomalies. These characteristics demonstrate that subduction played a dominant role in their petrogenesis and residual garnet was left in the magma sources. Pb isotope data show a linear correlation in the plumbotectonic framework diagram ranging from orogenic Pb in the eastern segment of the copper belt to mantle Pb in the western segment. These constitute a mixing line of the Indian Oceanic MORB with Indian Oceanic sediments and suggest that the porphyry magmas were dominantly derived from partial melting of subducted oceanic crusts mixed with a minor quantity of sediments and mantle wedge components.The Gangdese porphyry copper polymetallic belt has alteration characteristics and zonation typical of porphyry-type copper deposits which include potassic alteration (K-feldspathisation and biotitisation), silicification, sericitisation, and propylitisation. Mineralisation mainly occurs in strongly altered granitic cataclasite at the exo-contact with veinlet-disseminated textures. The porphyries themselves are weakly mineralised with disseminated pyrite and chalcopyrite. The copper deposits contain simple ore mineral associations consisting of chalcopyrite, pyrite, bornite, molybdenite, sphalerite and oxidised minerals of malachite, covellite and molybdite. During supergene oxidation, primary ores underwent secondary enrichment to form economic orebodies with Cu grade ranging from 1% to 5%.Ore sulphides of the copper belt display S and Pb isotopic compositions identical to the ore-bearing porphyries. Their δ34S values vary between − 3.8‰ and + 2.4‰ and are typical of mantle sulphur. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios vary in the ranges: 18.106 to 18.752, 15.501 to 15.638, and 37.394 to 39.058, respectively, and yielded radiogenetic lead-enriched signatures. Twelve molybdenite samples from the copper belt yielded isochron ages of 14.76 ± 0.22 Ma and 13.99 ± 0.16 Ma for the Nanmu and Chongjiang deposits and model ages of 13.5 to 13.6 Ma for the Lakang'e deposit. Meanwhile, 40Ar/39Ar isotopic dating of two biotite phenocrysts from the Chongjiang and Lakang'e deposits give plateau ages of 13.5 ± 1.0 Ma and 13.42 ±0.10 Ma, respectively. During the geodynamic evolution of the Gangdese collision-orogenic belt, intrusion of the ore-bearing porphyries took place just before the rapid uplift and E–W extension of the southern Plateau. And the ore-forming process may have occurred simultaneously with the uplift and extension (14 ± 0.1 Ma).  相似文献   

10.
Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences.Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99–102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3–1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region.40Ar/39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting 200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0.01 Ma. The age of Olmoti activity overlaps with ages reported for Ngorongoro Caldera, implying contemporaneous activity of multiple NVH volcanic centers during part of the eruption interval.Olmoti is considered the source for the bulk of interbedded volcanics and volcaniclastic deposits that comprise much of the upper Bed I section of nearby Olduvai Gorge, and part of the Laetoli sequence, both known for their well preserved fossils and archaeological remains. Age and chemical data reported here are compatible with those derived from tephra and lava interbedded in Bed I at Olduvai Gorge and from the Olpiro Beds at Laetoli.  相似文献   

11.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   

12.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

13.
A. H. N. Rice  W. Frank 《Tectonophysics》2003,374(3-4):219-236
The relative significance of early (Finnmarkian) and late (Scandian) Caledonian deformation in N. Norway is uncertain. Early studies suggested pervasive Finnmarkian deformation whilst later results indicated a restricted Finnmarkian domain. The present work suggests it was more widespread than accepted and that inter Finnmarkian–Scandian deformation occurred. 40Ar/39Ar dating of 2–6 and 6–11 μm pelitic fractions from the lower to mid-greenschist facies Tanahorn Nappe (five samples; base Middle Allochthon) and the epizone Løkvikfjellet and Barents Sea Groups (three samples; North Varanger Region) in the north Scandinavian Caledonides show slightly discordant spectra. Most spectra from the Tanahorn Nappe preserve possible evidence of an early Caledonian event in the high temperature steps, with recoil/excess Ar effects in the low temperature steps; no pre-Caledonian relict component has been recorded. The results indicate Finnmarkian deformation continued to 460 Ma, with Scandian reactivation at 425–415 Ma. From the North Varanger Region, a strongly crenulated sample yielded plateau ages (444–442 Ma); means of combined young steps from weakly to uncrenulated samples gave 470–450 Ma, suggesting penetrative strike-slip deformation occurred in the late Finnmarkian to inter-Finnmarkian–Scandian period. No Scandian ages were recorded in the North Varanger Region. Reassessment of published data from the Laksefjord Nappe and Gaissa Thrust Belt suggests they were affected by Finnmarkian deformation.  相似文献   

14.
New structural field data at various scale and 40Ar–39Ar geochronological results, from the basement rocks in the Truong Son belt and Kontum Massif of Vietnam, confirm that ductile deformation and high-temperature metamorphism were caused by the Early Triassic event of the Indosinian Orogeny in the range of 250–240 Ma. A compilation of isotopic data obtained in other countries along the Sibumasu–Indochina boundary broadly indicates same interval of ages. This tectonothermal event is interpreted as the result of a synchronous oblique collision of Indochina with both Sibumasu and South China, inducing dextral and sinistral shearing along E–W to NW–SE and N–S fault zones, respectively. The collision along Song Ma follows the northwards subduction of Indochina beneath South China and the subsequent development of the Song Da zone which in turn was affected by the Late Triassic Indosinian phase of shortening. Within the Indochina plate, internal collisions occurred coevally in the Early Triassic, as along the Poko suture, at the western border of the Kontum Massif.  相似文献   

15.
New mid Miocene to present plate tectonic reconstructions of the southern Central American Volcanic Arc (CAVA) reveal that the inception of Cocos Ridge subduction began no earlier than 3 Ma, and possibly as late as 2 Ma. The Cocos Ridge has been displaced from the Malpelo Ridge to the southeast since 9 Ma along the Panama Fracture Zone (PFZ) system. Ambiguous PFZ and Coiba Fracture Zone (CFZ) interaction since 9 Ma precludes conclusively establishing the age of initial Cocos Ridge subduction. Detailed reconstructions based on magnetic anomalies offshore reveal several other variations in subduction parameters beneath southern Central America that preceded subduction of the Cocos Ridge, including southeastward migration of the Nazca–Cocos–Caribbean triple junction along the Middle America Trench (MAT) from 12 Ma to present, and subduction of ≤2 km high scarps both parallel and perpendicular to the trench from 6 to 1 Ma.The timing of changes in subduction processes has commonly been determined by (and correlated with) geologic changes in the upper plate. However, reliable 40Ar/39Ar dating of these events has become available only recently [Abstr. Programs-Geol. Soc. Am. (2002)]. These new dates better constrain the magmatic and structural history of southern Costa Rica. Observations from this data set include: a gap in the volcanic record from 11 to 6 Ma, which coincides temporally with emplacement of most plutons in southern Costa Rica, normal arc volcanism ceased after 3.5 Ma in southern Costa Rica, and Pliocene (mostly 1.5 Ma) adakite volcanism was widely distributed from central Panama to southern Costa Rica (though volumetrically insignificant).This new data reveals that many geologic phenomena, commonly attributed to subduction and underplating of the buoyant Cocos Ridge, in fact precede inception of Cocos Ridge subduction and seem to correlate more favorably in time with earlier tectonic events. Adakite volcanic activity corresponds in space and time with the subduction of a large scarp associated with a tectonic boundary off southern Panama. Regional unconformities and an 11–6 Ma gap in arc volcanism match temporally with oblique subduction of the Nazca plate beneath central and southern Costa Rica. Cessation of volcanic activity, low-temperature cooling of plutons in the Cordillera de Talamanca (CT), and rapid increases in sedimentation in the fore-arc and back-arc basins coincide with passage of the Nazca–Cocos–Caribbean triple junction and initiation of subduction of “rough” crust associated with Cocos–Nazca rifting 3.5 Ma, closely followed by initial subduction of the Cocos Ridge 2–3 Ma. None of the aforementioned geologic events occurred at a time that would allow for underplating by the Cocos Ridge. Rather they are probably related to complex interactions with subduction of complicated plates offshore. All of the aforementioned events indicate that the southern Central American subduction system has been in flux since at least 12 Ma.  相似文献   

16.
The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan–Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at  32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at  27–29 Ma by the biotite 40Ar/39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but  10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28–36 Ma). During 28–17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.  相似文献   

17.
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex.  相似文献   

18.
M.A. Cosca  R. Caby  F. Bussy   《Tectonophysics》2005,402(1-4):93
In situ UV-laser ablation 40Ar/39Ar geochronological and geochemical data, together with rock and mineral compositional data, have been determined from pseudotachylyte and surrounding mylonitic gneiss associated with the UHP whiteschists of the Dora Maira Massif, Italy. Several generations of fresh pseudotachylyte occur as irregular veins up to a few cm thick both parallel and at high angles to the foliation. Whole rock XRF data collected from representative lithologies of mylonitic gneiss are uniformly consistent with a mildly alkalic granitic protolith. Minimal compositional variation is observed between the pseudotachylyte and its surrounding mylonitic gneiss. The pseudotachylyte contains newly crystallized grains of biotite and K-feldspar in a matrix of glass with partially fused grains of quartz, zircon, apatite, and titanite. Electron microprobe analyses of the glass show significant compositional variation that is probably strongly influenced by micrometer-scale changes in mineralogy. UV-laser ablation ICP-MS traverses across the mylonitic gneiss–pseudotachylyte contact are consistent with cataclastic communition of REE carriers such as epidote, monazite, allanite, zircon, and apatite before melting as an efficient mechanism of REE homogenization in the pseudotachylyte. The 40Ar/39Ar data from one band of pseudotachylyte indicate formation at 20.1 ± 0.5 Ma, when the mylonitic gneisses were already in a near surface position. The variable effects of top-to-the-west shear deformation within outcrops of the coesite-bearing unit are reflected in localized zones of protomylonite, cataclasite, ultracataclasite, and pseudotachylyte. Preservation of several generations of pseudotachylyte suggests that seismic events may have played a significant role in triggering late unroofing of the UHP rocks. It is speculated that deeper crustal seismic events potentially played a role in the unroofing of the UHP rocks at earlier stages in their exhumation history.  相似文献   

19.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   

20.
Syn-collisional transform faulting of the Tan-Lu fault zone,East China   总被引:21,自引:0,他引:21  
Origin of the continental-scale Tan-Lu fault zone (TLFZ), East China, remains controversial. About 550 km sinistral offset of the Dabie orogenic belt (DOB) and Sulu orogenic belt (SOB) is shown along the NE-NNE-striking TLFZ. Syn-collisional, sinistral ductile shear belts in the TLFZ have been identified. Thirteen phengite bulk separates from the mylonites were dated by the 40Ar/39Ar method. They gave cooling ages of the 198–181 Ma for the shear belts along the eastern margin of the DOB and 221–210 Ma from the western margin of the SOB. Distribution of the foreland basin deposits suggests that sinistral offset of the DOB and SOB by the TLFZ took place prior to deposition of the Upper Triassic strata. The marginal structures around the DOB and SOB support syn-collisional faulting, and indicate anticlockwise rotation of the DOB during the displacement. The folding and thrust faulting related to crustal subduction, coeval with the Tan-Lu faulting, is older than the foreland basin deposition related to the orogenic exhumation. Several lines of evidence demonstrate that the TLFZ was developed as a syn-collisional transform fault during latest Middle to earliest Late Triassic time when the DOB and SOB experienced crustal subduction of the South China Block (SCB). Eastward increase of the crustal subduction rates is believed to be responsible for the sinistral transform faulting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号