首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
The western Fiordland Orthogneiss (WFO) is an extensive composite metagabbroic to dioritic arc batholith that was emplaced at c. 20–25 km crustal depth into Palaeozoic and Mesozoic gneiss during collision and accretion of the arc with the Mesozoic Pacific Gondwana margin. Sensitive high‐resolution ion microprobe U–Pb zircon data from central and northern Fiordland indicate that WFO plutons were emplaced throughout the early Cretaceous (123.6 ± 3.0, 121.8 ± 1.7, 120.0 ± 2.6 and 115.6 ± 2.4 Ma). Emplacement of the WFO synchronous with regional deformation and collisional‐style orogenesis is illustrated by (i) coeval ages of a post‐D1 dyke (123.6 ± 3.0 Ma) and its host pluton (121.8 ± 1.7 Ma) at Mt Daniel and (ii) coeval ages of pluton emplacement and metamorphism/deformation of proximal paragneiss in George and Doubtful Sounds. The coincidence emplacement and metamorphic ages indicate that the WFO was regionally significant as a heat source for amphibolite to granulite facies metamorphism. The age spectra of detrital zircon populations were characterized for four paragneiss samples. A paragneiss from Doubtful Sound shows a similar age spectrum to other central Fiordland and Westland paragneiss and SE Australian Ordovician sedimentary rocks, with age peaks at 600–500 and 1100–900 Ma, a smaller peak at c. 1400 Ma, and a minor Archean component. Similarly, one sample of the George Sound paragneiss has a significant Palaeozoic to Archean age spectrum, however zircon populations from the George Sound paragneiss are dominated by Permo‐Triassic components and thus are markedly different from any of those previously studied in Fiordland.  相似文献   

2.
The Arthur River Complex is a suite of gabbroic to dioritic orthogneisses in northern Fiordland, New Zealand. The Arthur River Complex separates rocks of the Median Tectonic Zone, a Mesozoic island arc complex, from Palaeozoic rocks of the palaeo‐Pacific Gondwana margin, and is itself intruded by the Western Fiordland Orthogneiss. New SHRIMP U/Pb single zircon data are presented for magmatic, metamorphic and deformation events in the Arthur River Complex and adjacent rocks from northern Fiordland. The Arthur River Complex orthogneisses and dykes are dominated by magmatic zircon dated at 136–129 Ma. A dioritic orthogneiss that occurs along the eastern margin of the Complex is dated at 154.4 ± 3.6 Ma and predates adjacent plutons of the Median Tectonic Zone. Rims on zircon cores from this sample record a thermal event at c. 120 Ma, attributed to the emplacement of the Western Fiordland Orthogneiss. Migmatitic Palaeozoic orthogneiss from the Arthur River Complex (346 ± 6 Ma) is interpreted as deformed wall rock. Very fine rims (5–20 µm) also indicate a metamorphic age of c. 120–110 Ma. A post‐tectonic pegmatite (81.8 ± 1.8 Ma) may be related to phases of crustal extension associated with the opening of the Tasman Sea. The Arthur River Complex is interpreted as a batholith, emplaced at mid‐crustal levels and then buried to deep crustal levels due to convergence of the Median Tectonic Zone arc and the continental margin.  相似文献   

3.
U-Pb isotopic analyses of zircons from a distinctive suite of previously undated granulite facies metaplutonic rocks, here termed the Western Fiordland Orthogneiss (WFO), in Fiordland, southwest New Zealand, indicate synkinematic magmatic emplacement between 120 and 130 Ma ago. These rocks were previously interpreted as possibly being of Precambrian age. Initial Pb and Sr ratios are consistent with arc/subduction related magmagenesis with little or no involvement of ancient continental crust. Subsequent high pressure (>12 kb) metamorphism of the WFO may reflect a major collision event involving crustal thickening by overthrusting of a >15 km thick sequence. Metamorphism ceased 116 Ma ago based on206Pb/238U ages of zircon from a retrogressed granulite. U-Pb isotopic analysis of apatite, along with previously published Rb/Sr mineral ages, indicate that final uplift and cooling to <300–400° C was largely completed by 90 Ma. The average uplift rate during this period is inferred to have been in excess of 1 mm/yr.Unmetamorphosed gabbronorites of the Darran Complex in eastern Fiordland, inferred by some investigators to be the granulite protolith, yield concordant U/Pb zircon ages of 137±1 Ma. U-Pb ages of apatite, and previously published K/Ar mineral ages indicate that these rocks experienced a rapid and simple cooling history lasting only a few million years. The high-grade WFO and unmetamorphosed Darran Complex are now separated by a profound structural break. However, the ages and similarities in initial Pb and Sr isotopic ratios suggest that both suites are products of the same Early Cretaceous cycle of subduction-related magmatism. The timing of Early Cretaceous magmatism and metamorphism, collision and resultant crustal thickening, and subsequent great uplift and erosion in Fiordland has important implications for terrane accretion and the evolution of relative plate motions along the New Zealand segment of the Gondwana margin.  相似文献   

4.
The George Sound Paragneiss (GSP) represents a rare Permo-Triassic unit in Fiordland that occurs as a km-scale pillar to gabbroic and dioritic gneiss of c . 120 Ma Western Fiordland Orthogneiss (WFO). It is distinguished from Palaeozoic paragneiss common in western Fiordland (Deep Cove Gneiss) by SHRIMP and laser-ablation U–Pb ages as young as c . 190 Ma and 176Hf/177Lu >0.2828 for detrital zircon grains. The Mesozoic age of the GSP circumvents common ambiguity in the interpretation of Cretaceous v. Palaeozoic metamorphic assemblages in the Deep Cove Gneiss. A shallowly dipping S1 foliation is preserved in the GSP distal to the WFO, cut by 100 m scale migmatite contact zones. All units preserve a steeply dipping S2 foliation. S1 staurolite and sillimanite inclusions in the cores of metapelitic garnet grains distal to the WFO preserve evidence for prograde conditions of T  <   650 °C and P <  8 kbar. Contact aureole and S2 assemblages include Mg-rich, Ca-poor cores to garnet grains in metapelitic schist that reflect WFO emplacement at ≈760 °C and ≈6.5 kbar. S2 kyanite-bearing matrix assemblages and Ca-enriched garnet rims reflect ≈650 °C and ≈11 kbar. Poorly oriented muscovite–biotite intergrowths and rare paragonite reflect post-S2 high- P retrogression and cooling. Pseudosection modelling in NCKFMASH defines a high- P anti-clockwise P–T history for the GSP involving: (i) mid- P amphibolite facies conditions; preceding (ii) thermal metamorphism adjacent to the WFO; followed by (iii) burial to high- P and (iv) high- P cooling induced by tectonic juxtaposition of cooler country rock.  相似文献   

5.
The Western Sonobari Complex in northwestern Mexico consists of metamorphosed rocks mostly derived from Palaeozoic (?) sedimentary and Mesozoic igneous protoliths. Rocks of this complex display amphibolite facies orogenic metamorphism, pervasive foliation, migmatization, and four folding phases. These features are ascribed to a contractional tectonic event with NNW–SSE shortening direction, which caused thrusting, thickening of the crust, and sinking of the lithological units. U–Pb geochronology of migmatitic leucosome bands indicates that peak metamorphic conditions were reached between ~93 and 89 Ma. Post-tectonic Late Cretaceous peraluminous aplite-pegmatite dikes transect the metamorphic foliation. Traditional thermobarometry in the metamorphic rocks yields average pressures and temperatures of 9.0–7.1 kbar and 745–663°C, typical of intermediate P/T Barrovian metamorphism. On the basis of its age and contractional character, the thickening event originating the metamorphism may be related to collision of the Alisitos island arc against crustal blocks of Mexico. Thermobarometric data of post-tectonic intrusives including Late Cretaceous granodiorite and Eocene gabbro indicate emplacement within an overthickened crust, while P-T conditions of post-tectonic dikes point towards an almost isothermal decompression path along the amphibolite facies field. Rock units of similar age and metamorphic character are discontinuously exposed from the Islas Marias offshore the Nayarit coast to the Peninsular Ranges batholith of Baja California, and even extend north into the Sierra Nevada batholith and the Sevier hinterland. This extensive belt of Barrovian metamorphic rocks thus provides a record of middle Cretaceous shortening and crustal thickening related to arc-continent collision followed by subduction resuming.  相似文献   

6.
The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20–25 km-thick, 125.3?±?1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3?±?1.2 Ma old, pre-MDC lattice dykes and 117.4?±?3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9–14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only?~?2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740–640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1?±?1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths. Thus, our integrative approach provides the opportunity to discriminate between igneous and metamorphic zircon within deep-crustal complexes. Also, without the tight field relations at Mt Daniel, the scatter beyond a statistically coherent group might be ascribed to the presence of “antecrysts”, but it is clear that the WFO solidified before the MDC was emplaced, and these older “igneous” grains are inherited. The bimodal age range of inherited igneous grains, dominated by ~?125 Ma and 350–320 Ma age clusters, indicate that the adjacent WFO and a Carboniferous metaigneous basement were the main sources of the MDC magmas. Mafic lenses, stretched and highly attenuated into wisps within the MDC and dominated by ~?124 Ma inherited zircons, are considered to be entrained restitic material from the WFO. A comparison with lower- and upper-crustal, high Sr/Y metaluminous granites elsewhere in Fiordland shows that zircon inheritance is common in the deep crust, near the source region, but generally much less so in coeval, shallow magma chambers (plutons). This is consistent with previous modelling on rapid zircon dissolution rates and high Zr saturation concentrations in metaluminous magmas. Accordingly, unless unusual circumstances exist, such as MDC preservation in the deep crust, low temperatures of magma generation, or rapid emplacement and crystallization at higher structural levels, information on zircon inheritance in upper crustal, Cordilleran plutons is lost during zircon dissolution, along with information on the age, nature and variety of the source material. The observation that dioritic magmas can form at these low temperatures (<?750 °C) also suggests that the petrogenesis of mafic rocks in the arc root might need to be re-assessed.  相似文献   

7.
Cretaceous granulite facies metamorphism in the Fiordland area of New Zealand has distinctive mineralogical, textural and structural features that set it apart from most other regional metamorphic belts. The metamorphism, developed over a 30×150-km area and the consequence of a 20-km-thick increment to crustal thickness, is closely associated in space and time with a large plutonic complex, the Western Fiordland Orthogneiss (WFO). Although temperatures and pressures as high as 700  °C and 12  kbar were attained, the metamorphic overprint on earlier low-pressure assemblages is weak and incomplete. Little strain accompanied the metamorphism. The temperature threshold at which metamorphic recrystallization is recorded is over 500  °C. Zoned garnets are preserved at unusually high temperatures, indicating duration of metamorphism on the order of 10 times shorter than in most other regional terranes. This pattern of features bears close similarity to metamorphism in the Coast Plutonic Complex in North America, where a mechanism of 'magma loading' has been invoked. In Fiordland, the high-pressure metamorphism can be explained by depression of country rock under a crustal zone that is inflated by intrusion of the WFO. Regional structure of the WFO as a horizontally sheeted complex suggests that the pluton was emplaced by vertical displacement of country rock, and supports the magma loading model.  相似文献   

8.
STRUCTURAL AND THERMAL EVOLUTION OF THE SOUTH ASIAN CONTINENTAL MARGIN ALONG THE KARAKORAM AND HINDU KUSH RANGES,NORTH PAKISTAN  相似文献   

9.
Among the Middle Penninic basements of the Internal NW-Alps, the Ruitor massif shows the best preserved remnants of pre-Permian metamorphic rocks. Their Barrovian-type mineral associations are somewhat masked by the greenschist to blueschist Alpine metamorphism of Tertiary age. Four Ruitor gneisses have been analysed, showing geochemical characters of granitoids from orogenic zones. Zircon morphology also suggests magmatic protoliths and a crustal source; some of the morphological zircon types suggest anatectic granites. The first U-Pb ages on zircon for this massif have been obtained concurrently through conventional multigrain and ion microprobe dating. Two metavolcanic rocks at 471LJ and 468ᆪ Ma could be slightly older than the porphyritic augen gneisses at 465ᆟ and 460lj Ma. Regional data from the other Internal basement massifs suggest that the Variscan event is poorly recorded, except in Ruitor-type units. Ruitor and Sapey gneisses belonged to the same unit (Nappe des Pontis), which was affected by a 480-450-Ma event including volcanism and anatexis and ended with a late calc-alkaline granite emplacement at 460-450 Ma. The distribution of Variscan basement units roughly parallels Alpine zonation.  相似文献   

10.
LA-ICPMS U–Pb data from metamorphic monazite in upper amphibolite and granulite-grade metasedimentary rocks indicate that the Nawa Domain of the northern Gawler Craton in southern Australia underwent multiple high-grade metamorphic events in the Late Paleoproterozoic and Early Mesoproterozoic. Five of the six samples investigated here record metamorphic monazite growth during the period 1730–1690 Ma, coincident with the Kimban Orogeny, which shaped the crustal architecture of the southeastern Gawler Craton. Combined with existing detrital zircon U–Pb data, the metamorphic monazite ages constrain deposition of the northern Gawler metasedimentary protoliths to the interval ca 1750–1720 Ma. The new age data highlight the craton-wide nature of the 1730–1690 Ma Kimban Orogeny in the Gawler Craton. In the Mabel Creek Ridge region of the Nawa Domain, rocks metamorphosed during the Kimban Orogeny were reworked during the Kararan Orogeny (1570–1555 Ma). The obtained Kararan Orogeny monazite ages are within uncertainty of ca 1590–1575 Ma zircon U–Pb metamorphic ages from the Mt Woods Domain in the central-eastern Gawler Craton, which indicate that high-grade metamorphism and associated deformation were coeval with the craton-scale Hiltaba magmatic event. The timing of this deformation, and the implied compressional vector, is similar to the latter stages of the Olarian Orogeny in the adjacent Curnamona Province and appears to be part of a westward migration in the timing of deformation and metamorphism in the southern Australian Proterozoic over the interval 1600–1545 Ma. This pattern of westward-shifting tectonism is defined by the Olarian Orogeny (1600–1585 Ma, Curnamona Province), Mt Woods deformation (1590–1575 Ma), Mabel Creek Ridge deformation (1570–1555 Ma, Kararan Orogeny) and Fowler Domain deformation (1555–1545 Ma, Kararan Orogeny). This westward migration of deformation suggests the existence of a large evolving tectonic system that encompassed the emplacement of the voluminous Hiltaba Suite and associated volcanic and mineral systems.  相似文献   

11.
Granulite facies orthogneiss of the Arthur River Complex (ARC) at Milford Sound, western Fiordland records a complex Early Cretaceous magmatic and orogenic history for the Pacific Gondwana margin that culminated in the emplacement and burial of a dioritic batholith, the Western Fiordland Orthogneiss (WFO). Enstatite-bearing mafic to intermediate protoliths of the ARC and WFO intruded the middle to upper crust. The early deformation history of the ARC is preserved in the Pembroke Granulite, where two-pyroxene S1 assemblages that reflect P <8 kbar and T  >750 °C were only patchily recrystallized during later deformation. S1 is cut by garnet-bearing, leucogabbroic to dioritic veins, which are cut by distinctive D2 fractures involving anorthositic veins and garnet–diopside–plagioclase-bearing reaction zones. These zones are widespread in the ARC and WFO and record conditions of P ≈14 kbar and T  >750 °C. Garnet–clinopyroxene-bearing corona reaction textures that mantle enstatite in both the ARC and WFO reflect Early Cretaceous burial by approximately 25 km of continental crust. Most of the ARC is formed from the Milford and Harrison Gneisses, which contain steeply dipping S4 assemblages that envelop the Pembroke Granulite and involve garnet, hornblende, diopside, clinozoisite, rutile and plagioclase, with or without kyanite. The P–T history of rocks in western Fiordland reflects pronounced Early Cretaceous convergence-related tectonism and burial, possibly related to the collision and accretion of island arc material onto the Pacific Gondwana margin.  相似文献   

12.
The general classification of intermediate-acid intrusive rocks in the metamorphic zone of Gaoligong Mountains as one of the metamorphic terranes of Proterozoic Gaoligong Mountains is problematic regarding the intrusion stage and age, as well as the subsequent metamorphism and deformation. In this study, we investigated granitic gneiss in the metamorphic zone of Gaoligong Mountains based on the 1:50,000 regional geological survey of Qushi Street (2011-2013) and SHRIMP U-Pb zircon geochronology. Results showed that the SHRIMP U-Pb zircon dating of granitic gneiss ranged from 163.5±5.7 Ma to 74.0±2.0 Ma. Thus, the granitic gneiss was grouped into orthometamorphic rocks (metamorphic intrusions). The dating data of granite rocks associated with intense metamorphism and deformation were divided into three groups, 163.5±5.7 to 162.3±3.1 Ma, 132.2-101.0 Ma and 99.4±3.5-74.0±2.0 Ma, which respectively represented three independent geologic events including an important magma intrusion with superimposed metamorphic effects in the late Middle Jurassic, regional dynamic metamorphism and superimposed reformation of fluid action in the early Cretaceous, and dynamic metamorphism dominated by ductile shear and metamorphism starting from the late Cretaceous.  相似文献   

13.
The Early Palaeozoic Orogen of SE China consists of three litho-tectonic elements, from top to bottom: a sedimentary Upper Unit, a metamorphic Lower Unit and a gneissic basement. The boundaries between these units are flat lying, south directed, ductile decollements. The lower one is coeval with an amphibolite facies metamorphism (M1). The belt is reworked by migmatite–granite domes, high-temperature metamorphism (M2) and granitic plutons related to post-orogenic crustal melting. We date here the syn-M1 ductile shearing at 453 ± 7 Ma by U-Th/Pb method on monazite. Previous ages and our new 40Ar/39Ar ages of biotites and muscovites show that the metamorphic rocks experienced syn-M2 exhumation from 440 to 400 Ma. The Early Palaeozoic Orogen of SE China is an intracontinental belt in which decollements accommodated the north-directed subduction of the Cathaysian continent. This orogen is an example of intracontinental subduction that was not preceded by oceanic subduction.  相似文献   

14.
Gabbro and eclogite boudins are preserved within the amphibolites of the composite para- and ortho-gneiss Variscan basement of the Savona Crystalline Massif (Ligurian Briançonnais, Italy). Whole rock trace element patterns, low initial εNd (+5.4 to +8.8) data and trace element analyses on relict igneous clinopyroxene revealed that the mafic rocks were derived from depleted mantle melts, which most likely underwent crustal contamination during emplacement. Gabbros have a cumulus origin controlled by clinopyroxene and plagioclase segregation, whereas the eclogites represent evolved melts. U-Pb and trace element micro-analyses on zircons separated from one amphibolitised gabbro and one eclogite help to constrain coeval ages at ~468 Ma for their igneous protoliths. The occurrence of a few inherited zircons confirms the involvement of a crustal component in the petrogenesis of the mafic rocks. In the eclogite, concordant zircon ages younger than the protolith age testify to metamorphic re-crystallisation (or new growth) from about 420 to 305 Ma. Zircon textures and trace element compositions indicate that eclogite facies metamorphism occurred 392–376 Ma ago. The younger zircon portions yielding a mean Concordia age of 333 ± 7 Ma are related to equilibration or new growth during the post-eclogite, amphibolite-facies equilibration.  相似文献   

15.
A.S. Gaab  M. Jank  U. Poller  W. Todt 《Lithos》2006,87(3-4):261-275
Magmatic protoliths of Ordovician age have been identified in the metamorphic rocks of the Muráñ Gneiss Complex, Veporic Unit (Central Western Carpathians). Vapor digestion single zircon U–Pb dating yields an intrusion age of 464 ± 35 Ma (upper intercept) for the granite protolith. A lower intercept age of 88 ± 40 Ma records amphibolite-facies metamorphic overprint in the Cretaceous, during the Alpine orogeny. Geochemical and isotopic data suggest crustal origin of the orthogneiss. Ndinitial are between − 2.6 and − 5.0 and TDMNd between 1.3 and 1.5 Ga (two-step approach). 87Sr / 86Srinitial ratios vary between 0.7247 and 0.7120, and a steep REE pattern further constrains the crustal affinity of these rocks. Associated amphibolite bodies have Ndinitial values of 6.5, 87Sr / 86Srinitial ratio of 0.7017, and a flat REE pattern. They are interpreted as MORB derived metabasites. Whole-rock Pb isotope analyses define a linear array in a 206Pb / 204Pb vs. 207Pb / 204Pb diagram with an age of ca. 134 Ma, consistent with intense Alpine metamorphism and deformation.

These basement rocks of the Central Western Carpathians are interpreted as Ordovician magmatic rocks intruded at an active margin of Gondwana. They represent the eastern prolongation of Cambro–Ordovician units of the European Variscides, which were part of the peri-Gondwana superterrane and accreted to Laurussia during the Variscan orogeny. Variscan metamorphic overprint is not recorded by the isotopic data of the Muráñ Gneiss Complex. Alpine metamorphism is the most dominant overprint.  相似文献   


16.
Single zircon and titanite U-Pb SHRIMP data presented for tonalite-trondhjemite-granodiorite (TTG) suite gneisses and an ultramafic rock from the northern and central regions of the Lewisian Complex of northwest Scotland, show that protolith ages of tonalitic gneisses in the northern region (2800–2840?Ma) are significantly younger than those in the central region (2960–3030?Ma). Further evidence of a major (2490–2480?Ma) metamorphic event in the central region is documented by a metamorphic zircon associated with a granulite facies ultramafic body. A dioritic gneiss from the northern region has also been dated at c. 2680?Ma. The northern region therefore does not comprise reworked central region rocks and consequently the old models for the evolution of the Lewisian which were based upon this concept need replacing. It is instead proposed that two distinct crustal blocks, now the northern and central regions, were tectonically juxtaposed along a boundary corresponding to the Laxford Front. Juxtaposition would appear to have occurred in Proterozoic times, as it must have postdated the 2490–2480?Ma (?Inverian) metamorphism recorded only in the central region, and the emplacement of granite sheets restricted to the northern side of the boundary. The first recorded event common to both regions is resetting of titanite ages associated with c. 1750?Ma Laxfordian amphibolite facies metamorphism. Zircon inheritance in rocks of both regions is scarce. Within one zircon from the northern region a c. 3550?Ma core was found. This represents the oldest known material from the region.  相似文献   

17.
The Miyun area of Beijing is located in the northern part of the North China Craton(NCC)and includes a variety of Archean granitoids and metamorphic rocks.Magmatic domains in zircon from a tonalite reveal Early Neoarchean(2752±7 Ma) ages show a small range in ε_(Hf)(t) from 3.1 to 7.4and t_(DM1)(Hf) from 2742 to 2823 Ma,similar to their U-Pb ages,indicating derivation from a depleted mantle source only a short time prior to crystallization.SHRIMP zircon ages of granite,gneiss,amphibolite and hornblendite in the Miyun area reveal restricted emplacement ages from 2594 to2496 Ma.They also record metamorphic events at ca.2.50 Ga,2.44 Ga and 1.82 Ga,showing a similar evolutionary history to the widely distributed Late Neoarchean rocks in the NCC.Positive ε_(Hf)(t) values of 1.5 to 5.9,with model ages younger than 3.0 Ga for magmatic zircon domains from these Late Neoarchean intrusive rocks indicate that they are predominantly derived from juvenile crustal sources and suggest that significant crustal growth occurred in the northern NCC during the Neoarchean.Late Paleoproterozoic metamorphism developed widely in the NCC,not only in the Trans-North China Orogen,but also in areas of Eastern and Western Blocks,which suggest that the late Paleoproterozoic was the assembly of different micro-continents,which resulted in the final consolidation to form the NCC,and related to the development of the Paleo-Mesoproterozoic Columbia or Nuna supercontinent.  相似文献   

18.
柴北缘前寒武纪岩体(地层)分布广泛。为确定柴北缘地区前寒武纪岩体(地层)受早古生代碰撞造山作用的影响,采用LA-ICP-MS技术,对大柴旦地区前寒武纪黑云斜长片麻岩、斜长角闪岩及石榴子石斜长角闪岩中的锆石进行了U-Pb同位素定年。黑云斜长片麻岩获得479~472Ma的变质年龄,斜长角闪岩获得440Ma和470Ma 2个变质年龄,石榴子石斜长角闪岩获得418.8Ma±3.0Ma的变质年龄。初步确定,柴北缘早古生代造山作用对前寒武纪岩体构成了3次强度不等的变质作用叠加,分别为大洋俯冲末期阶段(495~467Ma)岛弧花岗岩弱热烘烤变质作用、大陆碰撞造山阶段(467~423Ma)区域变质作用、S型花岗岩热动力变质作用和大陆后碰撞造山阶段(423~371Ma) I型花岗岩强烈接触热变质作用。  相似文献   

19.
Basement rocks from the Western Hindu Kush preserve evidence of multiple metamorphic and magmatic events that occurred along the boundary between the Archean–Proterozoic Afghan Central and Afghan–Tajik Blocks. To verify the different metamorphic stages or events, mineral textures and phase equilibria in metamorphic basement rocks and their age relations to magmatic episodes have been investigated. Quartzofeldspathic gneiss and migmatite with lenses of amphibolite (with assumed Proterozoic age for their metamorphism) are intruded by the Triassic Hindu Kush granitoid batholith and small Cretaceous and Oligocene granite intrusions. The age of thermal overprint (210–170 Ma) by the Triassic batholith is confirmed by new monazite data. Both Triassic and Cretaceous granitoids and surrounding basement rocks underwent subsequent metamorphism up to epidote–amphibolite facies. The degree of this metamorphism increases southward at the contact to the Kabul Block, which under-plates the Western Hindu Kush from the south. An early Miocene age was obtained by Pb–Th analyses in thorite and huttonite, which are close or slightly younger than the Oligocene granite in this area. The Cretaceous meta-granodiorite near the border with the Kabul Block contains xenoliths of granulite facies rocks that could come from the Neoarchean granulite facies basement of the Kabul Block. The multi-stage metamorphic and magmatic evolution classifies the Hindu Kush mountain belt as a long-lived suture zone that was active since the early Palaeozoic. The results of this study support the interpretation about possible relations of the Afghan Central Blocks to the southern margin of Eurasia during the evolution of Para- and Neotethys.  相似文献   

20.
In the eastern Himalayan syntaxis, the southern Lhasa terrane is dominated by middle- to high-grade metamorphic rocks (Nyingchi Complex), which are intruded by felsic melts. U-Pb zircon dating and zircon Hf isotopic composition of these metamorphic and magmatic rocks provide important constraints on the tectono-thermal evolution of the Lhasa terrane during convergent process between Indian and Asian continents. U-Pb zircon data for an orthogneiss intruding the Nyingchi Complex yield a protolith magma crystallization age of 83.4 ± 1.2 Ma, with metamorphic ages of 65-46 Ma. This orthogneiss is characterized by positive εHf (t) values of + 8.3 and young Hf model ages of ~ 0.6 Ga, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. Zircons from a quartz diorite yield a magma crystallization age of 63.1 ± 0.6 Ma, with εHf (t) values of − 8.2 to − 2.7, suggesting that this magma was sourced from partial melting of older crustal materials. Zircon cores from a foliated biotite granite show ages ranging from 347 to 2690 Ma, with age peaks at 347-403 Ma, 461-648 Ma and 1013-1183 Ma; their zircon εHf (t) values range from − 30.6 to + 6.9. Both the U-Pb ages and Hf isotopic composition of the zircon cores are similar to those of detrital zircons from the Nyingchi Complex paragneiss, implying that the granite was derived from anatexis of the Nyingchi Complex metasediments. The zircon rims from the granite indicate crustal anatexis at 64.4 ± 0.7 Ma and subsequent metamorphism at 55.1 ± 1.3 and 41.4 ± 2.3 Ma. Our results suggest that the late Cretaceous magmatism in the southern Lhasa terrane resulted from Neo-Tethys oceanic slab subduction and we infer that Paleocene crustal anatexis and metamorphism were related to the thermal perturbation caused by rollback of the northward subducted Neo-Tethyan oceanic slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号