首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Since October 1990, 3 weeks after the launch of the Ulysses spacecraft, the dust detector onboard recorded impacts of cosmic dust particles. Besides dust impacts, the detector recorded noise from a variety of sources. So far, a very rigid scheme had been applied to eliminate noise from impact data. The data labeled “big” dust impacts previously led to the identification of interstellar dust and of dust streams from Jupiter. The analysis presented here is concerned with data of signals of small amplitudes which are strongly contaminated by noise. Impacts identified in this data set are called “small” impacts. It is shown that dust impacts can be clearly distinguished from noise for most of the events due to the multi-coincidence characteristics of the instrument. 516 “small” impacts have been identified. For an additional 119 events, strong arguments can be given that they are probably small dust impacts. Thereby, the total number of dust impacts increases from 333 to 968 in the time period from 28 October 1990 to 31 December 1992. This increase permits a better statistical analysis, especially of the Jupiter dust streams which consist mostly of small and fast particles. Additional dust streams have been identified between the already known streams before and after Jupiter flyby. The dependence of the deflection from the Jupiter direction, the stream intensity and width on Jupiter distance support the assertion that they have been emitted from the Jovian system. The masses of the 635 “small” dust particles range from 6 × 10−17 to 3 × 10−10 g with a mean value of 1 × 10−12 g, which compares to a range from 1 × 10−16 to 4 × 10−9 g with a mean value of 2 × 10−11 g for the previously identified 333 “big” dust particles.  相似文献   

2.
An anomalous reduction in forest growth indices and temperature sensitivity has been detected in tree-ring width and density records from many circumpolar northern latitude sites since around the middle 20th century. This phenomenon, also known as the “divergence problem”, is expressed as an offset between warmer instrumental temperatures and their underestimation in reconstruction models based on tree rings. The divergence problem has potentially significant implications for large-scale patterns of forest growth, the development of paleoclimatic reconstructions based on tree-ring records from northern forests, and the global carbon cycle. Herein we review the current literature published on the divergence problem to date, and assess its possible causes and implications. The causes, however, are not well understood and are difficult to test due to the existence of a number of covarying environmental factors that may potentially impact recent tree growth. These possible causes include temperature-induced drought stress, nonlinear thresholds or time-dependent responses to recent warming, delayed snowmelt and related changes in seasonality, and differential growth/climate relationships inferred for maximum, minimum and mean temperatures. Another possible cause of the divergence described briefly herein is ‘global dimming’, a phenomenon that has appeared, in recent decades, to decrease the amount of solar radiation available for photosynthesis and plant growth on a large scale. It is theorized that the dimming phenomenon should have a relatively greater impact on tree growth at higher northern latitudes, consistent with what has been observed from the tree-ring record. Additional potential causes include “end effects” and other methodological issues that can emerge in standardization and chronology development, and biases in instrumental target data and its modeling. Although limited evidence suggests that the divergence may be anthropogenic in nature and restricted to the recent decades of the 20th century, more research is needed to confirm these observations.  相似文献   

3.
Land fraction and the solar energy at the top of the atmosphere (solar constant) may have been significantly lower early in Earth's history. It is likely that both of these factors played some important role in the climate of the early earth. The climate changes associated with a global ocean(i.e. no continents) and reduced solar constant are examined with a general circulation model and compared with the present-day climate simulation. The general circulation model used in the study is the NCAR CCM with a swamp ocean surface. First, all land points are removed in the model and then the solar constant is reduced by 10% for this global ocean case.Results indicate that a 4 K increase in air temperature occurs with global ocean simulation compared to the control. When solar constant is reduced by 10% under global ocean conditions a 23 K decrease in air temperature is noted. The global ocean warms much of the troposphere and stratosphere, while a reduction in the solar constant cools the troposphere and stratosphere. The largest cooling occurs near the surface with the lower solar constant.Global mean values of evaporation, water vapor amounts, absorbed solar radiation and the downward longwave radiation are increased under global ocean conditions, while all are reduced when the solar constant is lowered. The global ocean simulation produces sea ice only in the highest latitudes. A frozen planet does not occur when the solar constant is reduced—rather, the ice line settles near 30° of latitude. It is near this latitude that transient eddies transport large amounts of sensible heat across the ice line acting as a negative feedback under lower solar constant conditions keeping sea ice from migrating to even lower latitudes.Clouds, under lower solar forcing, also act as a negative feedback because they are reduced in higher latitudes with colder atmospheric temperatures allowing additional solar radiation to reach the surface. The overall effect of clouds in the global ocean is to act as a positive feedback because they are slightly reduced thereby allowing additional solar radiation to reach the surface and increase the warming caused by the removal of land. The relevance of the results to the “Faint-Young Sun Paradox” indicates that reduced land fraction and solar forcing affect dynamics, heat transport, and clouds. Therefore the associated feedbacks should be taken into account in order to understand their roles in resolving the “Faint-Young Sun Paradox”.  相似文献   

4.
Stabilization and global climate policy   总被引:1,自引:0,他引:1  
Academic and political debates over long-run climate policy often invoke “stabilization” of atmospheric concentrations of greenhouse gases (GHGs), but only rarely are non-CO2 greenhouse gases addressed explicitly. Even though the majority of short-term climate policies propose trading between gases on a global warming potential (GWP) basis, discussions of whether CO2 concentrations should be 450, 550, 650 or perhaps as much as 750 ppm leave unstated whether there should be no additional forcing from other GHGs beyond current levels or whether separate concentration targets should be established for each GHG. Here, we use an integrated modeling framework to examine multi-gas stabilization in terms of temperature, economic costs, carbon uptake and other important consequences. We show that there are significant differences in both costs and climate impacts between different “GWP equivalent” policies and demonstrate the importance of non-CO2 GHG reduction on timescales of up to several centuries.  相似文献   

5.
I try to present a small view of the properties and issues related to astronomical interferometry observations. I recall a bit of history of the technique, give some basic assessments to the principle of interferometry, and finally, describe physical processes and limitations that affect optical long baseline interferometry and which are, in general, very useful for everyday work. Therefore, this text is not intended to perform strong demonstrations and show accurate results, but rather to transmit the general “feeling” one needs to have to not be destabilised by the first contact to real world interferometry.  相似文献   

6.
We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese “noren” or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized – but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.  相似文献   

7.
We have analyzed a Late Holocene record, almost 5000 years long, consisting of varved sediments deposited in the oxygen-minimum zone (OMZ) off Pakistan. We searched for cyclicity in the series of varve thickness (“varve” cycles), of unusually large excursions in varve thickness (“agitation” cycles), and of abundance of turbidites (“turbidite” cycles). We found the following high-frequency cycles (periods between 10 and 100 years) in one or several of the three types of series as follows: near 12.4, 14–15, 16.8, 18.6 (strong, agitation), 25–26 (strong, turbidite), 29–31 (strong, agitation), 39 (varve), 44 (strong, turbidite), 51–54 (strong, agitation), 56 (strong, varve), 64 (strong, turbidite), 69, 77 (strong, turbidite), 82 (very strong, agitation), and 95 years (strong, varve). Low-frequency cycles center around 99–115, 125 (very strong, varve), 164, 177, 202, 242–255 (strong, agitation and turbidite), 280 (strong, varve; doubled, turbidite), 340–370 and 460–490 years.Some cycles of varve thickness match the cyclicity of turbidite frequency (12.3, 14–15, 25–26, 245–255 years) but similarities between spectra are not striking. Taken as a whole, however, the sequence of cycles detected (by autocorrelation and standard Fourier analysis) seems to contain a large proportion of multiples of the basic tidal cycles 4.425 (lunar perigee cycle) and 9.3 years (lunar half-nodal cycle). This impression is supported by testing the three binned spectra for whole-number multiples and fractions as well as whole-number beat structure. We therefore propose that a large proportion of the cyclicity detected can be ascribed to tidal action. Our record also contains evidence for the presence of the 1470-year cycle previously reported from the glacial-age Greenland ice record. The main harmonics of this Greenland cycle can be tied to the pattern of periods seen in the varved sediments. We hypothesize that tidal action produces the cycle, and that the reason for its great length is the requirement that maximum tidal activity has to fall into a narrow seasonal window to be geologically effective.  相似文献   

8.
The creation and accumulation of nanophase iron (npFe0) is a principal mechanism by which spectra of materials exposed to the space environment incur systematic changes referred to as “space weathering.” Since there is no reason to assume that cumulative space weathering products throughout the Solar System will be the same as those found in lunar soils, these products are likely to be very dependent on the specific environmental conditions under which they were produced. We have prepared a suite of analog soils to explore the optical effects of npFe0. By varying the size and concentration of npFe0 in the analogs we found significant systematic changes in the Vis/NIR spectral properties of the materials. Smaller npFe0 (<10 nm in diameter) dramatically reddens spectra in the visible wavelengths while leaving the infrared region largely unaffected. Larger npFe0 (>40 nm in diameter) lowers the albedo across the Vis/NIR range with little change in the overall shape of the continuum. Intermediate npFe0 sizes impact the spectra in a distinct pattern that changes with concentration. The products of these controlled experiments have implications for space-weathered material throughout the inner Solar System. Our results indicate that the lunar soil continuum is best modeled by npFe0 particles with bulk properties in the 15–25 nm size range. Larger npFe0 grains result in spectra that are similar in shape to the Mercury continuum. The continuum of S-type asteroid spectra appear to be best represented by low abundances of npFe0. The size of asteroidal npFe0 is similar to that of lunar soils, but slightly smaller on average (10–15 nm).  相似文献   

9.
10.
The “overshoot scenario” is an emissions scenario in which CO2 concentration in the atmosphere temporarily exceeds some pre-defined, “dangerous” threshold (before being reduced to non-dangerous levels). Support for this idea comes from its potential to achieve a balance between the burdens of current and future generations in dealing with global warming. Before it can be considered a viable policy, the overshoot scenario needs to be examined in terms of its impacts on the global climate and the environment. In, particular, it must be determined if climate change cause by the overshoot scenario is reversible or not, since crossing that “dangerous” CO2 threshold could result in climate change from which we might not be able to recover. In this study, we quantify the change in several climatic and environmental variables under the overshoot scenario using a global climate model of intermediate complexity. Compared to earlier studies on the overshoot scenario, we have an explicit carbon cycle model that allows us to represent carbon-climate feedbacks and force the climate model more realistically with CO2 emissions rates rather than with prescribed atmospheric pCO2. Our standard CO2 emissions rate is calculated on the basis of historical atmospheric pCO2 data and the WRE S650 non-overshoot stabilization profile. It starts from the preindustrial year 1760, peaks in the year 2056, and ends in the year 2300. A variety of overshoot scenarios were constructed by increasing the amplitude of the control emissions peak but decreasing the peak duration so that the cumulative emissions remain essentially constant. Sensitivity simulations of various overshoot scenarios in our model show that many aspects of the global climate are largely reversible by year 2300. The significance of the reversibility, which takes roughly 200 years in our experiments, depends on the time horizon with which it is viewed or the number of future generations for whom equity is sought. At times when the overshoot scenario has emissions rates higher then the control scenario, the transient changes in atmospheric and oceanic temperatures and surface ocean pH can be significant, even for moderate overshoot scenarios that remain within IPCC SRES emissions scenarios. The large transient changes and the centennial timescale of climate reversibility suggest that the overshoot might not be the best mitigation approach, even if it technically follows the optimal economic path.  相似文献   

11.
12.
We present an analysis of the very recent data from the CASA-MIA extensive air shower array (M.A.K. Glasmacher, Ph.D. Thesis, University of Michigan (1998) in terms of a search for the structure in the shower size spectrum claimed by us from an analysis of “the world's data”. Our earlier claim is found to be supported to the extent that there is strong evidence for the existence of structure in the spectrum which cannot obviously be explained by the conventional Galactic Modulation Model. There is modest evidence for the structure being of “our” form and strong support for “our” mass composition when “corrected” to the interaction model advocated by us. None of the results are inconsistent with there having been a recent, nearby, single supernova.  相似文献   

13.
The Ecuadorian Amazon, one of the richest reserves of biodiversity in the world, has faced one of the highest rates of deforestation of any Amazonian nation. Most of this forest elimination has been caused by agricultural colonization that followed the discovery of oil fields in 1967. Since the 1990s, an increasing process of urbanization has also engendered new patterns of population mobility within the Amazon, along with traditional ways by which rural settlers make their living. However, while very significant in its effects on deforestation, urbanization and regional development, population mobility within the Amazon has hardly been studied at all, as well as the distinct migration patterns between men and women. This paper uses a longitudinal dataset of 250 farm households in the Northern Ecuadorian Amazon to understand differentials between men and women migrants to urban and rural destinations and between men and women non-migrants. First, we use hazard analysis based on the Kaplan–Meier (KM) estimator to obtain the cumulative probability that an individual living in the study area in 1990 or at time t, will out-migrated at some time, t+n, before 1999. Results indicate that out-migration to other rural areas in the Amazon, especially pristine areas is considerably greater than out-migration to the growing, but still incipient, Amazonian urban areas. Furthermore, men are more likely to out-migrate to rural areas than women, while the reverse occurs for urban areas. Difference-of-means tests were employed to examine potential factors accounting for differentials between male and female out-migration to urban and rural areas. Among the key results, relative to men younger women are more likely to out-migrate to urban areas; more difficult access from farms to towns and roads constrains women's migration; and access to new lands in the Amazon–an important cause of further deforestation–is more associated with male out-migration. Economic factors such as engagement in on-farm work, increasing resource scarcity–measured by higher population density at the farm and reduction in farm land on forest and crops–and increase in pasture land are more associated with male out-migration to rural areas. On the other hand, increasing resource scarcity, higher population density and weaker migration networks are more associated with female out-migration to urban areas. Thus, a “vicious cycle” is created: Pressure over land leads to deforestation in most or all farm forest areas and reduces the possibilities for further agricultural extensification (deforestation); out-migration, especially male out-migration, occurs to other rural or forest areas in the Amazon (with women being more likely to choose urban destinations); and, giving continuing population growth and pressures in the new settled areas, new pressures promote further out-migration to rural destinations and unabated deforestation.  相似文献   

14.
I start with a brief introduction to MOND phenomenology and its possible roots in cosmology—a notion that may turn out to be the most far reaching aspect of MOND. Next I discuss the implications of MOND for the dark matter (DM) doctrine: MOND’s successes imply that baryons determine everything. For DM this would mean that the puny tail of leftover baryons in galaxies wags the hefty DM dog. This has to occur in many intricate ways, and despite the haphazard construction history of galaxies—a very tall order. I then concentrate on galaxy clusters in light of MOND, which still requires some yet undetected cluster dark matter, presumably in some baryonic form (CBDM). This CBDM might contribute to the heating of the X-ray emitting gas and thus alleviate the cooling flow puzzle. MOND, qua theory of dynamics, does not directly enter the microphysics of the gas; however, it does force a new outlook on the role of DM in shaping the cluster gas dynamics: MOND tells us that the cluster DM is not cold dark matter, is not so abundant, and is not expected in galaxies; it is thus not subject to constraints on baryonic DM in galaxies. The mass in CBDM required in a whole cluster is, typically, similar to that in hot gas, but is rather more centrally concentrated, totally dominating the core. The CBDM contribution to the baryon budget in the universe is thus small. Its properties, deduced for isolated clusters, are consistent with the observations of the “bullet cluster”. Its kinetic energy reservoir is much larger than that of the hot gas in the core, and would suffice to keep the gas hot for many cooling times. Heating can be effected in various ways depending on the exact nature of the CBDM, from very massive black holes to cool, compact gas clouds.  相似文献   

15.
In this chapter, we will give a brief overview on our current theoretical understanding how planets form from the solid material in circumstellar disks in the core accretion-gas capture model. This chapter will not be as concise and complete as a review on this matter, yet will serve as an introductory text to generate interest in the subject. Students are referred to comprehensive text books and some important reviews.This chapter will discuss “dusty storms”, e.g. the dust transport in turbulent protoplanetary disks, followed by the latest model of planetesimal formation, e.g. gravoturbulent planetesimal formation, which deals with particle concentration in turbulence and N-body simulations thereof. We also briefly describe the core accretion-gas capture process and talk about nascent planets, e.g. the observability of planet–disk interaction concluding with the migration of young planets and the final arrangement of planetary systems.  相似文献   

16.
David Parry Rubincam   《Icarus》2007,192(2):460-468
Photon thrust from shape alone can produce quasi-secular changes in an asteroid's orbital elements. An asteroid in an elliptical orbit with a north–south shape asymmetry can steadily alter its elements over timescales longer than one orbital trip about the Sun. This thrust, called here orbital YORP (YORP = Yarkovsky–O'Keefe–Radzievskii–Paddack), operates even in the absence of thermal inertia, which the Yarkovsky effects require. However, unlike the Yarkovsky effects, which produce secular orbital changes over millions or billions of years, the change in an asteroid's orbital elements from orbital YORP operates only over the precession timescale of the orbit or of the asteroid's spin axis; this is generally only thousands or tens of thousands of years. Thus while the orbital YORP timescale is too short for an asteroid to secularly journey very far, it is long enough to warrant investigation with respect to 99942 Apophis, which might conceivably impact the Earth in 2036. A near-maximal orbital YORP effect is found by assuming Apophis is without thermal inertia and is shaped like a hemisphere, with its spin axis lying in the orbital plane. With these assumptions orbital YORP can change its along-track position by up to ±245 km, which is comparable to Yarkovsky effects. Though Apophis' shape, thermal properties, and spin axis orientation are currently unknown, the practical upper and lower limits are liable to be much less than the ±245 km extremes. Even so, the uncertainty in position is still likely to be much larger than the 0.5 km “keyhole” Apophis must pass through during its close approach in 2029 in order to strike the Earth in 2036.  相似文献   

17.
A typical question in climate change analysis is whether a certain observed climate characteristic, like a pronounced anomaly or an interdecadal trend, is an indicator of anthropogenic climate change or still in the range of natural variability. Many climatic features are described by one-dimensional index time series, like for instance the global mean temperature or circulation indices. Here, we present a Bayesian classification approach applied to the time series of the northern annular mode (NAM), which is the leading mode of Northern Hemisphere climate variability. After a pronounced negative phase during the 1950s and 1960s, the observed NAM index reveals a distinct positive trend, which is also simulated by various climate model simulations under enhanced greenhouse conditions. The objective of this study is to decide whether the observed temporal evolution of the NAM may be an indicator of global warming. Given a set of prior probabilities for disturbed and undisturbed climate scenarios, the Bayesian decision theorem decides whether the observed NAM trend is classified in a control climate, a greenhouse-gas plus sulphate aerosol climate or a purely greenhouse-gas induced climate as derived from multi-model ensemble simulations.The three climate scenarios are well separated from each other in terms of the 30-year NAM trends. The multi-model ensembles contain a weak but statistically significant climate change signal in the form of an intensification of the NAM. The Bayesian classification suggests that the greenhouse-gas scenario is the most probable explanation for the observed NAM trend since 1960, even if a high prior probability is assigned to the control climate. However, there are still large uncertainties in this classification result because some periods at the end of the 19th century and during the “warm” 1920s are also classified in an anthropogenic climate, although natural forcings are likely responsible for this early NAM intensification. This demonstrates a basic shortcoming of the Bayesian decision theorem when it is based on one-dimensional index time series like the NAM index.  相似文献   

18.
In a microwave background polarization map that covers only part of the sky, it is impossible to separate the E and B components perfectly. This difficulty in general makes it more difficult to detect the B component in a data set. Any polarization map can be separated in a unique way into “pure E”, “pure B” and “ambiguous” components. Power that resides in the pure E(B) component is guaranteed to be produced by E(B) modes, but there is no way to tell whether the ambiguous component comes from E or B modes. A polarization map can be separated into the three components either by finding an orthonormal basis for each component, or directly in real space by using Green functions or other methods.  相似文献   

19.
The performance goals of the Square Kilometre Array (SKA) are such that major departures from prior practice for imaging interferometer arrays are required. One class of solutions involves the construction of large numbers of stations, each composed of one or more small antennas. The advantages of such a “large-N” approach are already documented, but attention has recently been drawn to scaling relationships for SKA data processing that imply excessive computing costs associated with the use of small antennas. In this paper we examine the assumptions that lead to such scaling laws, and argue that in general they are unlikely to apply to the SKA situation. A variety of strategies for SKA imaging which exhibit better scaling behaviour are discussed. Particular attention is drawn to field of view issues, and the possibility of using weighting functions within an advanced correlator system to precisely control the field-of-view.  相似文献   

20.
I review the processes that shape the evolution of protoplanetary discs around young, solar-mass stars. I first discuss observations of protoplanetary discs, and note in particular the constraints these observations place on models of disc evolution. The processes that affect the evolution of gas discs are then discussed, with the focus in particular on viscous accretion and photoevaporation, and recent models which combine the two. I then discuss the dynamics and growth of dust grains in discs, considering models of grain growth, the gas–grain interaction and planetesimal formation, and review recent research in this area. Lastly, I consider the so-called “transitional” discs, which are thought to be observed during disc dispersal. Recent observations and models of these systems are reviewed, and prospects for using statistical surveys to distinguish between the various proposed models are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号