首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parameterization of the spectral dependence of the optical characteristics of Martian aerosols has been proposed for processing the results of measurements of outgoing radiation. A method for retrieving the altitude profiles of the microphysical characteristics of Martian aerosols from the limb spectrometry of the OMEGA instrument of the Mars Express mission have been developed. For one of the observational sessions, the altitude profiles of the concentration and the modal radius of the size distribution function of aerosol particles retrieved with the proposed parameterization are presented. For the purpose of the interpretation of the data acquired from the optical remote sensing of planetary atmospheres, we consider how the spectral dependence of aerosol optical characteristics, in particular the volume coefficients of aerosol scattering and absorption and the phase function, can be parameterized in a specified, probably wide, spectral range. The method of such a parameterization has been proposed for the cases of a fixed chemical composition of the aerosol materials dominating in the atmosphere. It has been shown that these cases allow the required spectral dependences to be presented as a function of a small number of parameters, for which the parameters of the size distribution function of aerosol particles can be successfully used. However, since such direct calculations of the aerosol characteristics require an inadmissibly long period of time for the tasks of interpretation of the remote sensing data, an algorithm for organizing the parameterization function as a special, preliminary generated computer database has been suggested. This database provides the continuity in the dependence on the parameters, the specified computation accuracy, and the required output speed of the results. As a specific application, the parameterization of the spectral dependence of the optical characteristics of the Martian aerosols has been proposed for the tasks of processing the results of measurements of outgoing radiation. As a result, the method for retrieving the altitude profiles of the microphysical characteristics of Martian aerosols from the limb spectrometric measurements of the OMEGA instrument of the Mars Express mission has been developed. For one of the observational sessions, the altitude profiles of the concentration and the modal radius of the size distribution function of aerosol particles retrieved with the proposed parameterization are presented.  相似文献   

2.
The Huygens descent through Titan's atmosphere in January 2005 will provide invaluable information about Titan's atmospheric composition and aerosol properties. The Descent Imager/Spectral Radiometer (DISR) will perform upward and downward looking radiation observations at various spectral ranges and spatial resolutions. To prepare the DISR data interpretation we have developed a new model for radiation transfer in Titan's atmosphere. The model solves for the full three-dimensional polarized radiation field in spherical geometry. However, the atmosphere itself is assumed to be spherically symmetric. The model is initialized with a fast-to-compute plane–parallel solution based on the doubling and adding algorithm that incorporates a spherical correction for the incoming direct solar beam. The full three-dimensional problem is then solved using the characteristics method combined with the Picard iterative approximation as described in Rozanov et al. (J. Quant. Spectrosc. Radiat. Transfer 69 (2001) 491). Aerosol scattering properties are calculated with a new microphysical model. In this formulation, aerosols are assumed to be fractal aggregates and include methane gas absorption embedded into the extinction coefficient. The resulting radiance of the model atmosphere's internal field is presented for two prescribed DISR wavelengths.  相似文献   

3.
Solar radiation is the primary energy source for many processes in Earth's environment and is responsible for driving the atmospheric and oceanic circulation. The integrated strength and spectral distribution of solar radiation is modified from the space-based {Solar {Radiation and {Climate (SORCE) measurements through scattering and absorption processes in the atmosphere and at the surface. Understanding how these processes perturb the distribution of radiative flux density is essential in determining the climate response to changes in concentration of various gases and aerosol particles from natural and anthropogenic sources, as is discerning their associated feedback mechanisms. The past decade has been witness to a tremendous effort to quantify the absorption of solar radiation by clouds and aerosol particles via airborne and space-based observations. Vastly improved measurement and modeling capabilities have enhanced our ability to quantify the radiative energy budget, yet gaps persist in our knowledge of some fundamental variables. This paper reviews some of the many advances in atmospheric solar radiative transfer as well as those areas where large uncertainties remain. The SORCE mission's primary contribution to the energy budget studies is the specification of the solar total and spectral irradiance at the top of the atmosphere.  相似文献   

4.
An AOST Fourier spectrometer of the Phobos-Soil project is intended for studying Mars and Phobos by means of measurements of IR radiation spectra of the Martian surface and atmosphere, the Phobos surface, and the spectrum of solar radiation passing through the Martian atmosphere on its limb. The main scientific problems to be solved with the spectrometer on Mars are measurements of methane content, search for minor constituents, and study of diurnal variations in the temperature and atmospheric aerosol. The spectrometer will also study the Martian and Phobos surface both remotely and after landing. The spectral range of the instrument is 2.5?C25 ??m, the best spectral resolution (without apodization) is 0.6 cm?1, and the instantaneous field of view is 2.5°. The recording time of one spectrum is equal to 5 s in solar observations and 50 s in observations of Mars and Phobos. The instrument has self-thermal stabilization and two-axis pointing systems, as well as a built-in radiation source for flight calibration. The spectrometer mass is 4 kg, and power consumption is up to 13 W. Scientific problems, measurement modes, and, briefly, engineering implementation of the experiment are discussed in this work.  相似文献   

5.
To evaluate the effect of the cliff on the radiation field, the upwelling radiation at the top of the atmosphere is computed over the cliff using the reflection and transmission functions derived from the doubling-adding method. The model is defined by the plane-parallel homogeneous atmosphere, which is composed of aerosol and molecules, and is bounded by the top level surface, cliff and low level surface. These surfaces may be assumed to be the Lambertian.In the computational procedure, the equation for the emergent radiation is expanded into a series of radiative interaction modes among atmosphere, surfaces and the cliff. In respective modes, probabilities of respective interactions are firstly evaluated. With the aid of these probabilities, the emergent radiation is calculated using the doubling-adding method for the model atmosphere bounded by the surfaces and cliff, where the above radiative interactions are considered upto twice as large to obtain the enough accuracy of simulation. The multiple scattering is considered.  相似文献   

6.
For the evaluation of the effect of the nonuniform surface albedo to the emergent radiation from the atmosphere, the emergent radiation from the atmosphere bounded by the two-halves of the Lambert surface with different albedos is computed. The principal plane is assumed to be perpendicular to the boundary of surfaces. The atmosphere is assumed to be homogeneous, which is composed of aerosol, molecules, and absorbent gases. Their optical thicknesses are 0.25, 0.23, and 0.02, respectively. The model aerosol is of the oceanic and water soluble types.In the computational procedure, the emergent radiation is approximated by the contributions due to the multiple scattering in the atmosphere, directly attenuated radiation, and radiation due to single scattering in the atmosphere which is reflected by the Lambert surface (up to 4 interactive radiative modes between atmosphere and surface). For quantitative analysis, results are compared with those of the atmosphere-uniform surface model, where the multiple scattering is considered. The numerical simulation exhibits the extraordinary effect near the surface boundary of different albedos. The effect decreases exponentially with the distance from the boundary. It is a function of the observational position, difference of surface albedos, optical thickness and aerosol type.The upward radiance would simply be evaluated using the present scattering approximation method if the atmosphere is in clear condition. Whereas in hazy condition, the effect of multiple scattering in the atmosphere should be considered more precisely, since the upward radiance exhibit a strong dependence on observational nadir angles due to multiple scattering in the atmosphere. Furthermore, it depends on the optical characteristics of aerosols.  相似文献   

7.
We analyzed 134 images of Saturn taken by the Hubble Space Telescope between 1991 and 2004. The images cover wavelengths between 231 and 2370 nm in 30 filters. We combined some 10 million calibrated reflectivity measurements into 18,000 center-to-limb curves. We used the method of principal component analysis to find the main latitudinal and temporal variations in Saturn's atmosphere and their spectral characteristics. The first principal variation is a strong latitudinal variation of the aerosol optical depth in the upper troposphere. This structure shifts with Saturn's seasons, but the structure on small scales of latitude stays constant. The second principal variation is a variable optical depth of stratospheric aerosols. The optical depth is large at the poles and small at mid- and low latitudes with a steep gradient in-between. This structure remains essentially constant in time. The third principal variation is a variation in the tropospheric aerosol size, which has only shallow gradients with latitude, but large seasonal variations. Thus, aerosol sizes and their phase functions inferred at a particular season are not representative of Saturn's atmosphere at other seasons. Aerosols are largest in the summer and smallest in the winter. The fourth principal variation is a feature of the tropospheric aerosols with irregular latitudinal structure and fast variability, on the time scale of months. Spherical aerosols do not display the spectral characteristic of that feature. We suspect that variations in the shape of aerosols may play a role. We found a spectral feature of the imaginary index of aerosols, which darkens them near 400 nm wavelength. While we can describe Saturn's variations quite accurately, our presented model of Saturn's average atmosphere is still uncertain due to possible systematic offsets in methane absorption data and limitations of the knowledge about the shape of aerosols. In order to compare our results with those from comparable investigations, which used less than 30 filters, we fit models to spectral subsets of our data. We found very different best-fitting models, depending on the subset of filters, indicating a high sensitivity of results on the spectral sampling.  相似文献   

8.
A. Tokunaga  R.D. Cess 《Icarus》1977,32(3):321-327
A model for the temperature inversion within the atmosphere of Saturn is proposed and is shown to be consistent with photometric data in the 17- to 25-μm region. The proposed model incorporates solar heating by some “aerosol,” with the aerosol heating per unit mass of the atmosphere being uniformly distributed throughout that portion of the atmosphere overlying the upper cloud deck. For a methane-to-hydrogen mixing ratio of 7 × 10?4, the model results suggest that 20% of the incident solar radiation is absorbed by the aerosol, while this is reduced to 16% for an enhanced methane mixing ratio of 2.1 × 10?3.  相似文献   

9.
For the evaluation of the effect of the non-uniform surface albedo on the emergent radiation from the atmosphere, the emergent radiation from the atmosphere bounded by the two half Lambert surfaces composed of different albedo is computed. This paper is the improved version of the previous paper (Takashima and Masuda, 1991). The atmosphere is assumed to be homogeneous, which is composed of aerosol, molecules, and absorbent gases. Their optical thicknesses are (1) 0.25, 0.23, and 0.02, and (2) 0.75, 0.23, and 0.02, respectively. The model aerosol is of the oceanic and water soluble types.In the computational procedure, the emergent radiation is calculated approximately by the contributions due to the multiple scattering in the atmosphere, and due to the diffusely or directly transmitted radiation through the atmosphere which is reflected by the surfaces once (4 interactive radiative modes between atmosphere and surface). Furthermore, to perform the hemispherical integration processing the radiative interaction, the transmission function based on the single scattering in the atmosphere is introduced and then the transmission function is averaged over the hemisphere with weighting function. The numerical simulation exhibits the extraordinary effect near the two half surface boundary of different albedoes. The effect decreases exponentially with the distance from the boundary. The effect depends on the atmospheric aerosol type, optical thickness, and surface albedo. The present version enables us to quantitatively discuss the radiative transfer trend near the boundary of two half surfaces. The upward radiance would simply be evaluated using the present scattering approximation method if the surface albedo is less than 0.3. The present method is thought of as a first step extending the one-dimensional radiative transfer model to two-dimensional using the doubling-adding method.  相似文献   

10.
A matrix transfer equation for multiple resonance scattering of radiation in a spectral line in a semiinfinite atmosphere with a uniform distribution of primary radiation sources is examined. A nonlinear matrix integral is obtained for this equation as a generalization of the Rybicki two-point Q-integral. One special case of the matrix [^(Q)] {\mathbf{\hat{Q}}} -integral is the Volterra equation for the matrix source function of the problem discussed here. The Volterra equation is solved numerically for a Doppler profile of the absorption coefficient. Several polarization characteristics of the emerging radiation are obtained.  相似文献   

11.
A new version is adopted for the evaluation of the upwelling radiation from atmosphere bounded by the surface, where the surface is composed of two half semi-infinite Lambert surfaces and a stream is inserted between them. The contrast of the stream is discussed with respect to the atmospheric effect. The width of the stream is considered to be 0.5, 1, and 3km; The solar and observational direction is located in the normal plane to the stream. The observational site is located at altitude 30km. The horizontal distance of observational site to the stream is fixed to 6.28 . The atmosphere is assumed to be homogeneous, which is composed of aerosol and molecules, where the model aerosol is of the oceanic type.In the computational procedure, a probability of radiation interacting with respective half surfaces and the stream are calculated based on the assumption of single scattering in the atmosphere, where isotropic scattering is undertaken. By use of this probability, the emergent radiation at the top of the atmosphere is calculated approximately by considering the radiative interactions between atmosphere and surfaces up to twice. The numerical simulation exhibits the extraordinary effect near the stream. The contrast of the stream depends upon the albedo of the surrounding surfaces. It increases with the increase of the stream width and decreases with the optical thickness.  相似文献   

12.
A new way is adopted for the evaluation of the upwelling radiation from atmosphere bounded by two half-Lambert surfaces. The atmosphere is assumed to be homogeneous, and is composed of aerosol, molecules, and absorbent gases, where the model aerosol is of the oceanic and water soluble types.In the computational procedure, an iterative doubling-adding equation is expanded into a series of the radiative interaction modes between atmosphere and surface. Next, a probability of radiation interacting with respective half surfaces is calculated based on the assumption of single-scattering in the atmosphere. On the basis of this probability, the emergent radiation at the top of the atmosphere is approximately calculated by considering the radiative intractions to be twice as large. The effect of the multiple-scattering is fully taken into account. A numerical simulation exhibits the extraordinary effect near the two half-surface boundary of different albedoes. The effect of the other half-surface on the radiance decreases monotonically with the distance from the boundary. The present new version enable us to quantitatively discuss radiative transfer near the boundary of two half-surfaces even if the optical thickness is large and (or) surface albedo is great.  相似文献   

13.
The processes of the solar radiation extinction in deep layers of the Venus atmosphere in a wavelength range from 0.44 to 0.66 µm have been considered. The spectra of the solar radiation scattered in the atmosphere of Venus at various altitudes above the planetary surface measured by the Venera-11 entry probe in December 1978 are used as observational data. The problem of the data analysis is solved by selecting an atmospheric model; the discrete-ordinate method is applied in calculations. For the altitude interval from 2–10 km to 36 km, the altitude and spectral dependencies of the volume coefficient of true absorption have been obtained. At altitudes of 3–19 km, the spectral dependence is close to the wavelength dependence of the absorption cross section of S3 molecules, whence it follows that the mixing ratio of this sulfur allotrope increases with altitude from 0.03 to 0.1 ppbv.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 304–320.Original Russian Text Copyright © 2005 by Maiorov, Ignat’ev, Moroz, Zasova, Moshkin, Khatuntsev, Ekonomov.  相似文献   

14.
A general treatment of the transfer of polarized radiation in spectral lines assuming a Rayleigh phase function and a general law of frequency redistribution is derived. It is shown how nine families of coupled integral equations for the moments of the radiation field arise which are necessary to fully describe the state of polarization of the emergent radiation from a plane-parallel, semi-infinite atmosphere. The special case of angle independent redistribution functions is derived from the general formalism, and it is shown how the nine families of integral equations reduce to the six linearly independent integral equations derived by Collins (1972). To serve as a test of the formulation, solutions for isothermal atmospheres are given.  相似文献   

15.
In this paper we develop a new exact method combined with finite Laplace transform and theory of linear singular operators to obtain a solution of transport equation in finite plane-parallel steady-state scattering atmosphere both for angular distribution of radiation from the bounding faces of the atmosphere and for intensity of radiation at any depth of the atmosphere. The emergent intensity of radiation from the bounding faces are determined from simultaneous linear integral equations of the emergent intensity of radiation in terms ofX andY equations of Chandrasekhar. The intensity of radiation at any optical depth for a positive and negative direction parameter is derived by inversion of the Laplace transform in terms of intergrals of the emergent intensity of radiation. A new expression of theX andY equation is also derived for easy numerical computation. This is a new and exact method applicable to all problems in finite plane parallel steady scattering atmosphere.  相似文献   

16.
It has been shown that the orbital polarization measurements of the Earth in the spectral range λ > 300 nm do not allow the sets of the Stokes parameters satisfying the homogeneity requirement for the optical properties of the “atmosphere + surface” system to be retrieved. Due to this, the atmospheric and surface contributions cannot be correctly separated and the physical properties of the atmospheric aerosol cannot be determined. This is caused by the optical heterogeneity of the system, the different nature of aerosol above different relief features, and the poorly predictable temporal changes of the optical properties of the “atmosphere + surface” system. Observations at λ < 300 nm are more acceptable, since not only the surface but also the tropospheric layer of the atmosphere, which are both mostly subjected to the effects of horizontal inhomogeneity and temporal variations, become practically invisible due to a high absorption by the ozone layer. Because of this, from the scans along specified latitude zones, one may obtain the quasi-homogeneous dependences of the second Stokes parameter Q(α) (U(α) = 0) suitable for estimating the physical characteristics of the stratospheric aerosol and revealing their horizontal and temporal variations.  相似文献   

17.
To correctly determine the relative contribution of aerosol to the scattering properties of a gas–aerosol medium in the continuum, we propose a method that allows more reliable values of the imaginary part of the refractive index n i to be obtained for Jupiter’s atmosphere in the short-wavelength spectral range. We considered the measurement data on the spectral values of the geometric albedo of Jupiter acquired in 1993 and used the model of homogeneous spherical aerosol particles. The obtained values of n i are 0.00378, 0.00309, 0.00254, 0.00175, 0.00123, 0.00084, 0.00064, 0.00045, 0.00031, 0.00033, 0.00013, and 0.00008 at wavelengths λ = 320, 350, 375, 400, 420, 450, 470, 500, 520, 550, 606, and 631 nm, respectively.  相似文献   

18.
To evalute the effect of the non-uniform surface on the radiation field, the upwelling radiation at the top of the atmosphere bounded by the checkerboard type of terrain is computed using the modified doubling method. The terrain is composed of the square Lambert surfaces with two different albedoes. The dimension of the each square is assumed to be 0.5–6 km. The radiance of the terrain is discussed with respect to the atmospheric effect. The observational site is located at altitude 30 km. The corresponding projected point on the ground is located at the center of a square. The solar and observational direction is located in the plane parallel to the checkerboard squares. The atmosphere is assumed to be homogeneous, which is composed of aerosol and molecules, where the model aerosol is of the oceanic or the water soluble types.Numerical simulation exhibits the extraordinary effect near the edge of each squares. The radiance of the terrain depends upon the difference of albedoes and size of squares. It increases with the increase of the dimension of the square. It decreases with the optical thickness. At large optical thickness, the variation of radiation with zenith direction depends upon the aerosol characteristics. It shows little dependence on the solar zenith angle if less than 20°.  相似文献   

19.
Reflection effect phenomenon is studied on the formation of spectral lines in a close binary system when primary component has an extended atmosphere and the secondary component is a point source. Irradiation effect is calculated using one dimensional rod model and self radiation is calculated using continuum radiative transfer equation in spherically symmetric atmosphere. The total radiation is the sum of the radiation of the individual components and the mutually reflected light. Line profiles are also computed along the line of sight observer at infinity for irradiation, self radiation and total radiation and compared in order to study the reflection effect on spectral lines. It is found that the radiation field varies on the primary component when angle of incidence changes from the secondary component. The contour maps show that the radiative interaction makes the outer surface of the primary star warm when its companion illuminates the radiation. The effect of reflection on spectral lines is studied and noticed that the flux in the lines increases at all frequency points and the cores of the lines received more flux than the wings and equivalent width changes accordingly.  相似文献   

20.
The descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe into the atmosphere of Titan measured the brightness of sunlight using a complement of spectrometers, photometers, and cameras that covered the spectral range from 350 to 1600 nm, looked both upward and downward, and made measurements at altitudes from 150 km to the surface. Measurements from the upward-looking visible and infrared spectrometers are described in Tomasko et al. [2008a. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci., this volume]. Here, we very briefly review the measurements by the violet photometers, the downward-looking visible and infrared spectrometers, and the upward-looking solar aureole (SA) camera. Taken together, the DISR measurements constrain the vertical distribution and wavelength dependence of opacity, single-scattering albedo, and phase function of the aerosols in Titan's atmosphere.Comparison of the inferred aerosol properties with computations of scattering from fractal aggregate particles indicates the size and shape of the aerosols. We find that the aggregates require monomers of radius 0.05 μm or smaller and that the number of monomers in the loose aggregates is roughly 3000 above 60 km. The single-scattering albedo of the aerosols above 140 km altitude is similar to that predicted for some tholins measured in laboratory experiments, although we find that the single-scattering albedo of the aerosols increases with depth into the atmosphere between 140 and 80 km altitude, possibly due to condensation of other gases on the haze particles. The number density of aerosols is about 5/cm3 at 80 km altitude, and decreases with a scale height of 65 km to higher altitudes. The aerosol opacity above 80 km varies as the wavelength to the −2.34 power between 350 and 1600 nm.Between 80 and 30 km the cumulative aerosol opacity increases linearly with increasing depth in the atmosphere. The total aerosol opacity in this altitude range varies as the wavelength to the −1.41 power. The single-scattering phase function of the aerosols in this region is also consistent with the fractal particles found above 60 km.In the lower 30 km of the atmosphere, the wavelength dependence of the aerosol opacity varies as the wavelength to the −0.97 power, much less than at higher altitudes. This suggests that the aerosols here grow to still larger sizes, possibly by incorporation of methane into the aerosols. Here the cumulative opacity also increases linearly with depth, but at some wavelengths the rate is slightly different than above 30 km altitude.For purely fractal particles in the lowest few km, the intensity looking upward opposite to the azimuth of the sun decreases with increasing zenith angle faster than the observations in red light if the single-scattering albedo is assumed constant with altitude at these low altitudes. This discrepancy can be decreased if the single-scattering albedo decreases with altitude in this region. A possible explanation is that the brightest aerosols near 30 km altitude contain significant amounts of methane, and that the decreasing albedo at lower altitudes may reflect the evaporation of some of the methane as the aerosols fall into dryer layers of the atmosphere. An alternative explanation is that there may be spherical particles in the bottom few kilometers of the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号