首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Tarbell  T.D.  Ryutova  M.  Shine  R. 《Solar physics》2000,193(1-2):195-218
We study the response of the chromosphere and transition region to dynamic changes in the photospheric network magnetic fields. We present results from simultaneous measurements taken by TRACE in chromospheric and transition region (Civ) images, high-resolution magnetograms taken by MDI, and spectra of chromospheric (Cii) and transition region lines (Ovi) obtained with the SUMER instrument on SOHO. Enhanced emission in the Civ line is generally co-spatial with the magnetic pattern in the photosphere. We propose a mechanism of electro-mechanical coupling between the photosphere and upper layers of atmosphere based on hydrodynamic cumulation of energy produced by reconnecting flux tubes in the photosphere/chromosphere region (Tarbell et al., 1999). We believe that a basic process causing energetic events is the cascade of shock waves produced by colliding and reconnecting flux tubes. The continuous supply of flux tubes in the magnetic carpet ensures the ubiquitous nature of this process and its imprint on the upper atmosphere. The appearance of bright transients often, but not always, correlates with canceling mixed polarity magnetic elements in the photosphere. In other cases, transients occur in regions of unipolar flux tubes, suggesting reconnection of oblique components. Transients are also seen in regions with no fields detected with the MDI sensitivity; these may be reconnections of tiny features with diameters less than 100 km. Blinkers and other bright transients are often accompanied by two directional plasma jets. These may be generated by cylindrical self-focusing of shock fronts or by collision of shocks produced by neighboring reconnection processes. The observations suggest that stronger emissions correspond to lower velocity jets, and vice versa; this property is a natural consequence of the proposed mechanism. Plasma flows are always seen whenever the slit crosses strong magnetic flux tubes or vertices of converging flows in the supergranular network. The overall energy distribution between heating and plasma flows is an intrinsic feature of our mechanism.  相似文献   

2.
Simultaneous measurements of the magnetic fields in the photosphere and chromosphere were used to investigate if magnetic flux is submerging at sites between adjacent opposite polarity magnetic network elements in which the flux is observed to decrease or `cancel'. These data were compared with chromospheric and coronal intensity images to establish the timing of the emission structures associated with these magnetic structures as a function of height. We found that most of the cancelation sites show either that the bipole is observed longer in the photosphere than in the chromosphere and corona (44%) or that the timing difference of the disappearance of the bipole between these levels of the atmosphere is unresolved. The magnetic axis lengths of the structures associated with the cancelation sites are on average slightly smaller in the chromosphere than the photosphere. These observations suggest that magnetic flux is retracting below the surface for most, if not all, of the cancelation sites studied.  相似文献   

3.
In this paper, we study multiwavelength observations of an M6.4 flare in Active Region NOAA 11045 on 7 February 2010. The space- and ground-based observations from STEREO, SoHO/MDI, EIT, and Nobeyama Radioheliograph were used for the study. This active region rapidly appeared at the north-eastern limb with an unusual emergence of a magnetic field. We find a unique observational signature of the magnetic field configuration at the flare site. Our observations show a change from dipolar to quadrapolar topology. This change in the magnetic field configuration results in its complexity and a build-up of the flare energy. We did not find any signature of magnetic flux cancellation during this process. We interpret the change in the magnetic field configuration as a consequence of the flux emergence and photospheric flows that have opposite vortices around the pair of opposite polarity spots. The negative-polarity spot rotating counterclockwise breaks the positive-polarity spot into two parts. The STEREO-A 195 Å and STEREO-B 171 Å coronal images during the flare reveal that a twisted flux tube expands and erupts resulting in a coronal mass ejection (CME). The formation of co-spatial bipolar radio contours at the same location also reveals the ongoing reconnection process above the flare site and thus the acceleration of non-thermal particles. The reconnection may also be responsible for the detachment of a ring-shaped twisted flux tube that further causes a CME eruption with a maximum speed of 446 km/s in the outer corona.  相似文献   

4.
Ryutova  M.  Habbal  S.  Woo  R.  Tarbell  T. 《Solar physics》2001,200(1-2):213-234
We propose a mechanism for the formation of a magnetic energy avalanche based on highly dynamic phenomena within the ubiquitous small-scale network magnetic elements in the quiet photosphere. We suggest that this mechanism may provide constant mass and energy supply for the corona and fast wind. Constantly emerging from sub-surface layers, flux tubes collide and reconnect generating magneto-hydrodynamic shocks that experience strong gradient acceleration in the sharply stratified photosphere/chromosphere region. Acoustic and fast magnetosonic branches of these waves lead to heating and/or jet formation due to cumulative effects (Tarbell et al., 1999). The Alfvén waves generated by post-reconnection processes have quite a restricted range of parameters for shock formation, but their frequency, determined by the reconnection rate, may be high enough (0.1–2.5 s–1) to carry the energy into the corona. We also suggest that the primary energy source for the fast wind lies far below the coronal heights, and that the chromosphere and transition region flows and also radiative transient form the base of the fast wind. The continuous supply of emerging magnetic flux tubes provides a permanent energy production process capable of explaining the steady character of the fast wind and its energetics.  相似文献   

5.
The associations of flares to flux emergence and cancellation have been further examined and clarified with the aid of complete time sequences of vector magnetograms of an active region for a 4-day period around the central meridian passage.It is found that the emergence of new flux and its driven flux cancellation with existing flux is a wholly inseparable, elementary process in the active region, favorable for flare occurence. The early discovery ofstructures magnetique evolutive (Martreset al., 1968) is confirmed and identified to be the net result of this process.All events of flux cancellation appear in the interface of two topologically separated magnetic loops. Direct indications of magnetic reconnection between two cancelling components in the photospheric layer are identified. The cancellation is most likely a slow reconnection in the lower atmosphere of the Sun. The quite popular view of interpreting flux cancellation as a pure flux submergence could not fit the magnetic topology learned from alignments of the transverse magnetic field. In this sense, the association of flares to flux cancellation seems to represent a coupling of the slow reconnection in the lower atmosphere to the fast reconnection higher in the corona.This slow reconnection can even take place below the photosphere. In one case, an inferred sub-photospheric reconnection eventually prevents one pole of an emerging flux region with the polarity opposite to the background from showing up at the photospheric level.Six of all eight flares which appeared in this period are spatially and temporally associated with the emergence of new flux and its driven cancellation. They might be divided into two groups. The first group of flares appears at the early phase of flux emergence and in close proximity to the cancelling site between new and old flux; the second ones appear after several hours of flux cancellation, centering around the cancelling site.  相似文献   

6.
Antiochos  S. K.  Dahlburg  R. B. 《Solar physics》1997,174(1-2):5-19
The effects of three-dimensionality on the modelling of solar magnetic fields are described. We focus on two processes that are believed to play an important role in coronal heating – the braiding of field lines by photospheric motions and the reconnection of colliding flux tubes. First, it is shown that a proper treatment of boundary conditions at the photosphere in 3D entails qualitatively new physical processes that are not present in 2D. The numerical resolution of even simple boundary velocity patterns in 3D leads to obstacles which have no counterpart in the 2D case. We conclude that adaptive mesh refinement is necessary for capturing the essential 3D physics of a braiding motion at the photosphere. Next, the effects of 3D on magnetic reconnection are discussed. Reconnection in 3D can lead to an evolution of interacting flux tubes, magnetic tunneling, that is not only impossible in lower dimensionality, but is strikingly counterintuitive. The implications of these results for the structure of the solar magnetic field and for coronal heating are described.  相似文献   

7.
Démoulin  P.  Priest  E. R. 《Solar physics》1997,175(1):123-155
Dissipation of magnetic energy in the corona requires the creation of very fine scale-lengths because of the high magnetic Reynolds number of the plasma. The formation of current sheets is a natural possible solution to this problem and it is now known that a magnetic field that is stressed by continous photospheric motions through a series of equilibria can easily form such sheets. Furthermore, in a large class of 3D magnetic fields without null points there are locations, called quasi-separatrix layers (QSLs), where the field-line linkage changes drastically. They are the relevant generalisation of normal separatrices to configurations without nulls: along them concentrated electric currents are formed by smooth boundary motions and 3D magnetic reconnection takes place when the layers are thin enough. With a homogenous normal magnetic field component at the boundaries, the existence of thin enough QSL to dissipate magnetic energy rapidly requires that the field is formed by flux tubes that are twisted by a few turns. However, the photospheric field is not homogeneous but is fragmented into a large number of thin flux tubes. We show that such thin tubes imply the presence of a large number of very thin QSLs in the corona. The main parameter on which their presence depends is the ratio between the magnetic flux located outside the flux tubes to the flux inside. The thickness of the QSLs is approximately given by the distance between neighbouring flux tubes multiplied by the ratio of fluxes to a power between two and three (depending on the density of flux tubes). Because most of the photospheric magnetic flux is confined in thin flux tubes, very thin QSLs are present in the corona with a thickness much smaller than the flux tube size. We suggest that a turbulent resistivity is triggered in a QSL, which then rapidly evolves into a dynamic current sheet that releases energy by fast reconnection at a rate that we estimate to be sufficient to heat the corona. We conclude that the fragmentation of the photospheric magnetic field stimulates the dissipation of magnetic energy in the corona.  相似文献   

8.
Coronal bright points, first identified as X-ray Bright Points (XBPs), are compact, short-lived and associated with small-scale, opposite polarity magnetic flux features. Previous studies have yielded contradictory results suggesting that XBPs are either primarily a signature of emerging flux in the quiet Sun, or of the disappearance of pre-existing flux. With the goal of improving our understanding of the evolution of the quiet Sun magnetic field, we present results of a study of more recent data on XBPs and small-scale evolving magnetic structures. The coordinated data set consists of X-ray images obtained during rocket flights on 15 August and 11 December, 1987, full-disk magnetograms obtained at the National Solar Observatory - Kitt Peak, and time-lapse magnetograms of multiple fields obtained at Big Bear Solar Observatory. We find that XBPs were more frequently associated with pre-existing magnetic features of opposite polarity which appeared to be cancelling than with emerging or new flux regions. Most young, emerging regions were not associated with XBPs. However, some XBPs were associated with older ephemeral regions, some of which were cancelling with existing network or intranetwork poles. Nearly all of the XBPs corresponded to opposite polarity magnetic features which wereconverging towards each other; some of these had not yet begun cancelling. We suggest that most XBPs form when converging flow brings oppositely directed field lines together, leading to reconnection and heating of the newly-formed loops in the low corona.  相似文献   

9.
We carried out a multi-wavelength study of a Coronal Mass Ejection (CME) and an associated flare, occurring on 12 May 1997. We present a detailed investigation of magnetic-field variations in NOAA Active Region 8038 which was observed on the Sun during 7??C?16 May 1997. This region was quiet and decaying and produced only a very small flare activity during its disk passage. However, on 12 May 1997 it produced a CME and associated medium-size 1B/C1.3 flare. Detailed analyses of H?? filtergrams and SOHO/MDI magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed the two important results that the major opposite polarities of pre-existing region as well as in the emerging-flux region were approaching towards each other and moving magnetic features (MMF) were ejected from the major north polarity at a quasi-periodicity of about ten hours during 10??C?13 May 1997. These activities were probably caused by magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The quantitative measurements of magnetic-field variations such as magnetic flux, gradient, and sunspot rotation revealed that in this active region, free energy was slowly being stored in the corona. Slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration, revealed from fast separation of the H?? ribbons of the first 150 seconds, suggests that the CME accelerated in the inner corona, which is also consistent with the temporal profile of the reconnection electric field. Based on observations and analysis we propose a qualitative model, and we conclude that the mass ejections, filament eruption, CME, and subsequent flare were connected with one another and should be regarded within the framework of a solar eruption.  相似文献   

10.
本文首次给出了发生在太阳光球磁重联的一个直接的观测证据。 这一磁重联的观测特征是:(1)重联发生在一新浮现磁通量区的一极与极性相反的老磁通量之间;(2)重联前中性线附近磁剪切明显;(3)被重联两极为一对消磁结构,重联发生在稳定的磁通量损失数小时之后;(4)一个级别为C2.9的亚耀斑发生在重联之前。该耀斑以重联区为中心,双带离重联位置2~3万公里,直到耀斑极大相后14分钟,重联仍未发生;(5)重联后,磁对消速率呈增大趋势。  相似文献   

11.
Various topological features, for example magnetic null points and separators, have been inferred as likely sites of magnetic reconnection and particle acceleration in the solar atmosphere. In fact, magnetic reconnection is not constrained to solely take place at or near such topological features and may also take place in the absence of such features. Studies of particle acceleration using non-topological reconnection experiments embedded in the solar atmosphere are uncommon. We aim to investigate and characterise particle behaviour in a model of magnetic reconnection which causes an arcade of solar coronal magnetic field to twist and form an erupting flux rope, crucially in the absence of any common topological features where reconnection is often thought to occur. We use a numerical scheme that evolves the gyro-averaged orbit equations of single electrons and protons in time and space, and simulate the gyromotion of particles in a fully analytical global field model. We observe and discuss how the magnetic and electric fields of the model and the initial conditions of each orbit may lead to acceleration of protons and electrons up to 2 MeV in energy (depending on model parameters). We describe the morphology of time-dependent acceleration and impact sites for each particle species and compare our findings to those recovered by topologically based studies of three-dimensional (3D) reconnection and particle acceleration. We also broadly compare aspects of our findings to general observational features typically seen during two-ribbon flare events.  相似文献   

12.
The magnetic structure of arch filament systems   总被引:1,自引:0,他引:1  
Photographic-type magnetograms are used in conjunction with H filtergrams to study the structure and evolution of magnetic fields associated with arch filament systems. The magnetograms show that the opposite ends of the arch filaments are indeed rooted in photospheric magnetic fields of opposite polarity. Furthermore, these magnetic field systems are in every case new magnetic flux appearing at the solar surface. Time lapse studies show the detailed process by which the flux tubes emerge through the surface. First, supergranules bring individual strands of magnetic flux to the surface and sweep the two feet of the flux tube to opposite sides of the supergranule. Then, the flux tube rises through the chromosphere, creating a visible arch filament. It is also shown that the observed rotation of the axis of an arch filament system in the plane of the solar surface is caused by the emergence of successive flux loops, each possessing different axial tilts.  相似文献   

13.
Two-dimensional (2D) compressible magnetohydrodynamic simulations are performed to explore the idea that the asymmetric reconnection between newly emerging intranetwork magnetic field flux and pre-existing network flux causes the explosive events in the solar atmosphere. The dependence of the reconnection rate as a function of time on the density and temperature of the emerging flux are investigated. For a Lundquist number of L u= 5000 we find that the tearing mode instability can lead to the formation and growth of small magnetic islands. Depending on the temperature and density ratio of the emerging plasma, the magnetic island can be lifted upward and convected out of the top boundary, or is suppressed downward and convected out of the top boundary, or is suppressed downward nad submerged below the bottom boundary. The motions of the magnetic islands with different direction are accompanied respectively with upward or downward high velocity flow which might be associated with the red- and blue-shifted components detected in the explosive events.  相似文献   

14.
The role of null-point reconnection in a three-dimensional numerical magnetohydrodynamic (MHD) model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence, where they can be found mostly in the model photosphere and transition region, forming two loose clusters on either side of the emerging flux tube. Up to 26 nulls are present at any one time, and tracking in time shows that there is a total of 305 overall, despite the initial simplicity of the magnetic field configuration. We find evidence for the reality of the nulls in terms of their methods of creation and destruction, their balance of signs, their long lifetimes, and their geometrical stability. We then show that due to the low parallel electric fields associated with the nulls, null-point reconnection is not the main type of magnetic reconnection involved in the interaction of the newly emerged flux with the overlying field. However, the large number of nulls implies that the topological structure of the magnetic field must be very complex and the importance of reconnection along separators or separatrix surfaces for flux emergence cannot be ruled out.  相似文献   

15.
Zipper reconnection has been proposed as a mechanism for creating most of the twist in the flux tubes that are present prior to eruptive flares and coronal mass ejections. We have conducted a first numerical experiment on this new regime of reconnection, where two initially untwisted parallel flux tubes are sheared and reconnected to form a large flux rope. We describe the properties of this experiment, including the linkage of magnetic flux between concentrated flux sources at the base of the simulation, the twist of the newly formed flux rope, and the conversion of mutual magnetic helicity in the sheared pre-reconnection state into the self-helicity of the newly formed flux rope.  相似文献   

16.
A recent discovery from the Big Bear Solar Observatory has linked the cancellation of opposite polarity magnetic fragments in the photosphere (i.e., so-called cancelling magnetic features) to X-ray bright points and has stimulated the setting up of a converging flux model for the process. Cancelling magnetic features can occur between magnetic fragments of differing strengths in many different situations. Here, therefore, we model two opposite polarity fragments of different strengths in the photosphere by two unequal sources in an overlying uniform field. Initially in thepre-interaction phase these sources are assumed to be unconnected, but as they move closer together theinteraction phase starts with an X-type neutral point forming, initially on the photosphere, then rising up into the chromosphere and corona before lowering back down to the photosphere. Thecapture phase then follows with the sources fully connected as they move together. Finally, after they come in to contact, during thecancellation phase the weaker source is cancelled by part of the stronger source. The height of the X-type neutral point varies with the separation of the sources and the ratio of the source strengths, as do the positions of the neutral points before connection and after complete reconnection of the two sources. The neutral point is the location of magnetic reconnection and therefore energy release which is believed to power the X-ray bright point in the corona. By using a current sheet approximation, where it is assumed no reconnection takes place as the two sources move together, the total amount of energy released during reconnection may be estimated. The typical total free magnetic energy is found to be of the order of 1020–1021 J, which is as required for an X-ray bright point. It is also found that, as the ratio of the source strengths increases, the height of the X-type neutral point decreases, as do the total energy released, and the lifetime of the bright point.  相似文献   

17.
The origin of radio emission from plerions is considered. Recent observations suggest that radio-emitting electrons are presently accelerated rather than having been injected at early stages of the plerion evolution. The observed flat spectra without a low-frequency cut-off imply an acceleration mechanism that raises the average particle energy by orders of magnitude but leaves most of the particles at an energy of less than approximately a few hundred MeV. It is suggested that annihilation of the alternating magnetic field at the pulsar wind termination shock provides the necessary mechanism. Toroidal stripes of opposite magnetic polarity are formed in the wind emanating from an obliquely rotating pulsar magnetosphere (the striped wind). At the termination shock, the flow compresses and the magnetic field annihilates by driven reconnection. Jump conditions are obtained for the shock in a striped wind. It is shown that the post-shock magnetohydrodynamic parameters of the flow are the same as if the energy of the alternating field had already been converted into plasma energy upstream of the shock. Therefore, the available estimates of the ratio of the Poynting flux to the matter energy flux, σ, should be attributed not to the total upstream Poynting flux but only to that associated with the average magnetic field. A simple model for the particle acceleration in the shocked striped wind is presented.  相似文献   

18.
Longcope  D. W. 《Solar physics》1996,169(1):91-121
Magnetic field enters the corona from the interior of the Sun through isolated magnetic features on the solar surface. These features correspond to the tops of submerged magnetic flux tubes, and coronal field lines often connect one flux tube to another, defining a pattern of inter-linkage. Using a model field, in which flux tubes are represented as point magnetic charges, it is possible to quantify this inter-linkage. If the coronal field were current-free then motions of the magnetic features would change the inter-linkage through implicit (vacuum) magnetic reconnection. Without reconnection the conductive corona develops currents to avoid changing the flux linkage. This current forms singular layers (ribbons) flowing along topologically significant field lines called separators. Current ribbons store magnetic energy as internal stress in the field: the amount of energy stored is a function of the flux tube displacement. To explore this process we develop a model called the minimum-current corona (MCC) which approximates the current arising on a separator in response to displacement of photospheric flux. This permits a model of the quasi-static evolution of the corona above a complex active region. We also introduce flaring to rapidly change the flux inter-linkage between magnetic features when the internal stress on a separator becomes too large. This eliminates the separator current and releases the energy stored by it. Implementation of the MCC in two examples reveals repeated flaring during the evolution of simple active regions, releasing anywhere from 1027–1029 ergs, at intervals of hours. Combining the energy and frequency gives a general expression for heat deposition due to flaring (i.e., reconnection).  相似文献   

19.
We examine the excitation of oscillations in the magnetic network of the Sun through the footpoint motion of photospheric magnetic flux tubes located in intergranular lanes. The motion is derived from a time series of high-resolution G-band and continuum filtergrams using an object-tracking technique. We model the response of the flux tube to the footpoint motion in terms of the Klein-Gordon equation, which is solved analytically as an initial value problem for transverse (kink) waves. We compute the wave energy flux in upward-propagating transverse waves. In general we find that the injection of energy into the chromosphere occurs in short-duration pulses, which would lead to a time variability in chromospheric emission that is incompatible with observations. Therefore, we consider the effects of turbulent convective flows on flux tubes in intergranular lanes. The turbulent flows are simulated by adding high-frequency motions (periods 5-50 s) with an amplitude of 1 km s(-1). The latter are simulated by adding random velocity fluctuations to the observationally determined velocities. In this case, we find that the energy flux is much less intermittent and can in principle carry adequate energy for chromospheric heating.  相似文献   

20.
The presently prevailing theories of solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes to solar flare energy. In this paper, we discuss solar flares from an entirely different point of view, namely in terms of power supply by a dynamo process in the photosphere. By this process, electric currents flowing along the magnetic field lines are generated and the familiar ‘force-free’ fields or the ‘sheared’ magnetic fields are produced. Upward field-aligned currents thus generated are carried by downward streaming electrons; these electrons can excite hydrogen atoms in the chromosphere, causing the optical Hα flares or ‘low temperature flares’. It is thus argued that as the ‘force-free’ fields are being built up for the magnetic energy storage, a flare must already be in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号