首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moon  Y.-J.  Wang  Haimin  Spirock  Thomas J.  Goode  P.R.  Park  Y.D. 《Solar physics》2003,217(1):79-94
We present a new method to resolve the 180° ambiguity for solar vector magnetogram measurements. The basic assumption is that the magnetic shear angle (), which is defined as the difference between the azimuth components of observed and potential fields, approximately follows a normal distribution. The new method is composed of three steps. First, we apply the potential field method to determine the azimuthal components of the observed magnetic fields. Second, we resolve the ambiguity with a new criterion: –90°+mp lele90°+mp, where mp is the most probable value of magnetic shear angle from its number distribution. Finally, to remove some localized field discontinuities, we use the criterion B tB mt ge0, where B t and B mt are an observed transverse field and its mean value for a small surrounding region, respectively. For an illustration, we have applied the new ambiguity removal method (Uniform Shear Method) to a vector magnetogram which covers a highly sheared region near the polarity inversion line of NOAA AR 0039. As a result, we have found that the new ambiguity solution was successful and removed spatial discontinuities in the transverse vector fields produced in the magnetogram by the potential field method. It is also found that our solution to the ambiguity gives nearly the same results, for highly sheared vector magnetograms and vertical current density distributions, of NOAA AR 5747 and AR 6233 as those of other methods. The validity of the basic assumption for an approximate normal distribution is demonstrated by the number distributions of magnetic shear angle for the three active regions under consideration.  相似文献   

2.
Using the flux-transport equation in the absence of sources, we study the relation between a highly peaked polar magnetic field and the poleward meridional flow that concentrates it. If the maximum flow speed m greatly exceeds the effective diffusion speed /R, then the field has a quasi-equilibrium configuration in which the poleward convection of flux via meridional flow approximately balances the equatorward spreading via supergranular diffusion. In this case, the flow speed () and the magnetic field B() are related by the steady-state approximation () (/R)B()/B() over a wide range of colatitudes from the poles to midlatitudes. In particular, a general flow profile of the form sin p cos q which peaks near the equator (q p) will correspond to a cos n magnetic field at high latitudes only if p = 1 and m = n /R. Recent measurements of n 8 and 600 km2 s–1 would then give m 7 m s–1.  相似文献   

3.
Durney  Bernard R. 《Solar physics》2000,197(2):215-226
The integrals, Ii(t) = GL ui j × B i dv over the volume GL are calculated in a dynamo model of the Babcock–Leighton type studied earlier. Here, GL is the generating layer for the solar toroidal magnetic field, located at the base of the solar convection zone (SCZ); i=r, , , stands for the radial, latitudinal, and azimuthal coordinates respectively; j = (4)-1 × B, where B is the magnetic field; ur,u are the components of the meridional motion, and u is the differential rotation. During a ten-year cycle the energy cycle I(t)dt needs to be supplied to the azimuthal flow in the GL to compensate for the energy losses due to the Lorentz force. The calculations proceed as follows: for every time step, the maximum value of |B| in the GL is computed. If this value exceeds Bcr (a prescribed field) then there is eruption of a flux tube that rises radially, and reaches the surface at a latitude corresponding to the maximum of |B| (the time of rise is neglected). This flux tube generates a bipolar magnetic region, which is replaced by its equivalent axisymmetric configuration, a magnetic ring doublet. The erupted flux can be multiplied by a factor Ft, i.e., by the number of eruptions per time step. The model is marginally stable and the ensemble of eruptions acts as the source for the poloidal field. The arbitrary parameters Bcr and Ft are determined by matching the flux of a typical solar active region, and of the total erupted flux in a cycle, respectively. If E(B) is the energy, in the GL, of the toroidal magnetic field B = B sin cos , B (constant), then the numerical calculations show that the energy that needs to be supplied to the differential rotation during a ten-year cycle is of the order of E(Bcr), which is considerably smaller than the kinetic energy of differential rotation in the GL. Assuming that these results can be extrapolated to larger values of Bcr, magnetic fields 104 G, could be generated in the upper section of the tachocline that lies below the SCZ (designated by UT). The energy required to generate these 104 G fields during a cycle is of the order of the kinetic energy in the UT.  相似文献   

4.
An exact solution of Einstein's equation is stated in which the density (), pressure (p), scale factorS and metric coefficients are functions of only one dimensionless self-similar variable,ct/R, wheret is cosmic time andR is a co-moving radial coordinate. The solution represents a cosmology that begins as a static sphere having R –2 and evolves into an expanding model which is pressure-free and has a hierarchical type of density law ( R , approximately, with =a number, 02). It is suggested that this model should supersede the previous models of Wesson and other workers, since it appears to be the simplest cosmology for a hierarchy.  相似文献   

5.
The nature and evolution of north-south asymmetry in the heliospheric current sheet (HCS) has been investigated using solar and interplanetary magnetic field (IMF) observations for the past few solar cycles. The mean heliographic latitude of the HCS (averaged over the solar longitude) a 0 is found to be non-zero during many solar rotations indicating that the large-scale solar magnetic field is more ordered in a system where the origin is shifted away from the centre of the Sun. We have shown that the asymmetry in HCS manifests in different forms depending on the transition heliographic latitude of the reversal of dominant polarity of the IMF ( T) and the difference in the maximum latitudinal extension of the HCS in the two solar hemispheres (). The classification of the observed asymmetry during 1971–1985 and its effect on IMF observations near Earth has been studied. We have also inferred the sign of T during 1947–1971 using inferred IMF polarity data. The observed sign reversals of T suggest the importance of periodicities less than the solar cycle period to be associated with the evolution of asymmetry in HCS. Asymmetry in sunspot activity about the solar equator does not seem to relate consistently well with the asymmetry in HCS about the heliographic equator.  相似文献   

6.
A simplified representation of the temperature distribution in the solar photosphere is proposed: ( 0) = 0 - 1 log 0. An expression is derived for the emergent continuous spectrum from the simple model. The limitations and applications of the simple model are discussed.  相似文献   

7.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2002,208(1):5-16
Based on analyzing corona images taken by the LASCO C1, C2, and C3 instruments, a study is made of the behavior of the streamer belt spanning one half of the 1996–2001 cycle of solar activity, from minimum to maximum activity, in the absence of coronal mass ejections. It is shown that: (1) The position of the streamer belt relative to the solar equator is generally characterized by two angles: o and E, where o is the latitudinal position (near the solar surface) of the middle of the base of the helmet, the top of which gradually transforms to a ray of the streamer belt with a further distance from the Sun, and E is the latitude of this ray for R>5–6 R from the Sun's center where the ray becomes radial. (2) Only rays lying at some of the selected latitudes o retain their radial orientation (oE) throughout their extent. Namely: o0° (equator), o±90° (north and south poles), and the angle o lying in the range ±(65°–75°) in the N- and S-hemispheres. (3) A deviation of rays from their radial orientation in the direction normal to the surface of the streamer belt occurs: for latitudes o<|65°–75°| toward the equator (>0°) reaching a maximum in the N and S hemispheres, respectively, when OM40°, and OM–42° for latitudes o>|65°–75°| toward the pole (<0°). The regularities obtained here are a numerical test which can be used to assess of the validity of the theory for describing the behavior of the Sun's quasi-stationary corona over a cycle of solar activity.  相似文献   

8.
The object of this paper is to investigate the behavior of a magnetic field in a viscous fluid cosmological model. It has been assumed that the expansion () is proportional to the eigenvalue 1 of the shear tensor i j and the coefficient of shearing viscosity is proportional to the scalar of expansion. The paper also discusses the behavior of the model when the magnetic field tends to zero and comments on some other physical properties.  相似文献   

9.
We have measured the longitudinal component, B, of the magnetic field in quiescent prominences and obtained a relationship between B and , where is the angle between the long axis of the prominence and the north-south direction on the sun. From this relationship we deduce a distribution function for the magnetic field vector in quiescent prominences in terms of the angle between the field and the long axis of the prominence. The mean angle, , for our data is small, - 15°, indicating that the magnetic field traverses quiescent prominences under a small, but finite angle.On leave from Max-Planck Institut für Physik und Astrophysik, München.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
Very Large Array (VLA) observations of compact transient sources on the Sun at 2 cm wavelength are presented. These sources have angular sizes of 5–25, brightness temperatures of T B 1–3 × 105 K, and lifetimes ranging between a few minutes to several hours. The emission originates in regions of diffuse plage and quiet Sun, where the photospheric magnetic fields are relatively weak (H 100 G). In some cases the 2 cm radiation may be explained as the thermal bremsstrahlung of a dense (N e 1010 cm-3) plasma in the transition region. For other sources, the relatively high circular polarization ( c 40–50 %) suggests a nonthermal emission mechanism, such as the gyrosynchrotron radiation of mildly relativistic electron with a power-law spectrum.  相似文献   

11.
Makarov  V.I.  Tlatov  A.G.  Callebaut  D.K.  Obridko  V.N. 《Solar physics》2002,206(2):383-399
Lockwood, Stamper, and Wild (1999) argued that the average strength of the magnetic field of the Sun has doubled in the last 100 years. They used an analysis of the geomagnetic index aa. We calculated the area of polar zones of the Sun, A pz, occupied by unipolar magnetic field on H synoptic magnetic charts, following Makarov (1994), from 1878 to 2000. We found a gradual decrease of the annual minimum latitude of the high-latitude zone boundaries, 2m, of the global magnetic field of the Sun at the minimum of activity from 53° in 1878 down to 38° in 1996, yielding an average decrease of 1.2° per cycle. Consequently the area of polar zones A pz of the Sun, occupied by unipolar magnetic field at the minimum activity, has risen by a factor of 2 during 1878–1996. This means that the behavior of the index aa and consequently the magnetic flux from the Sun may be explained by an increase of the area of polar caps with roughly the same value of the magnetic field in this period. The area of the unipolar magnetic field at the poles (A pz) may be used as a new index of magnetic activity of the Sun. We compared A pz with the aa, the Wolf number W and A* -index (Makarov and Tlatov, 2000). Correlations based on `11-year' averages are discussed. A temperature difference of about 1° between the Maunder Minimum and the present time was deduced. We have found that the highest latitude of the polar zone boundaries of the large-scale magnetic field during very low solar activity reaches about 60°, cf., the Maunder Minimum. It is supposed that the 2m-latitude coincides with the latitude where r=0, with (r,) being the angular frequency of the solar rotation. The causes of the waxing and waning of the Sun's activity in conditions like Maunder Minimum are discussed.  相似文献   

12.
The velocity field in a large complex sunspot is investigated in Fe i 6302.5 Å and in H with a spatial resolution of about 2.5. The Evershed flow is almost parallel to the solar surface. For the inclination angle between the velocity and the horizontal = 4.4°±1.3° is estimated; = 11° is the definite upper limit.  相似文献   

13.
The theory of homogeneous nucleation is discussed and applied to the formation of interstellar grains. Special attention is given to the thermodynamics of very small clusters (N10); it is found that, at least for carbon and metals, the free energies ofN-mers may be conveniently expressed in terms of a parameter N which is nearly independent ofN. Estimates of N from the Lothe-Pound theory disagree with the experimental observations forN<10; it is preferable to simply approximate N 1/2 ( is known from bulk properties). The kinetic process of nucleation and cluster growth is essentially just a function of two dimensionless parameters; /T and . The domain in which nucleation theory should be valid is delineated. Approximate formulae are given for the critical supercooling, the critical cluster size, and the mean final cluster size; more accurate numerical results are presented graphically. Nucleation of grains in planetary nebulae, novae, and red giant outflows is discussed. The origin of the Pt-rich nuggets found in the Allende meteorite is considered; it is shown that the nuggets could have been formed by homogeneous nucleation in the primordial solar nebula, whereas they couldnot have formed in a supernova explosion.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium, held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

14.
J. J. Aly 《Solar physics》1987,111(2):287-296
We consider a simple model in which the coronal magnetic field B is assumed to be potential in the region between the solar surface o and an exterior source-surface 1 of arbitrary shape. We prove that the boundary value problem that determines B from the value B lof its component on 0 along either (orthoradial direction) or (fixed direction) has at most one solution. On the other hand, we show that a solution can exist only if B lsatisfies some solubility conditions.  相似文献   

15.
As a consequence of the Taylor–Proudman balance, a balance between the pressure, Coriolis and buoyancy forces in the radial and latitudinal momentum equations (that is expected to be amply satisfied in the lower solar convection zone), the superadiabatic gradient is determined by the rotation law and by an unspecified function of r, say, S(r), where r is the radial coordinate. If the rotation law and S(r) are known, then the solution of the energy equation, performed in this paper in the framework of the ML formalism, leads to a knowledge of the Reynolds stresses, convective fluxes, and meridional motions. The ML-formalism is an extension of the mixing length theory to rotating convection zones, and the calculations also involve the azimuthal momentum equation, from which an expression for the meridional motions in terms of the Reynolds stresses can be derived. The meridional motions are expanded as U r(r,)=P 2(cos)2(r)/r 2+P 4(cos)4(r)/r 2 +..., and a corresponding equation for U (r,). Here is the polar angle, is the density, and P 2(cos), P 4(cos) are Legendre polynomials. A good approximation to the meridional motion is obtained by setting 4(r)=–H2(r) with H–1.6, a constant. The value of 2(r) is negative, i.e., the P 2 flow rises at the equator and sinks at the poles. For the value of H obtained in the numerical calculations, the meridional motions have a narrow countercell at the poles, and the convective flux has a relative maximum at the poles, a minimum at mid latitudes and a larger maximum at the equator. Both results are in agreement with the observations.  相似文献   

16.
We develop simple accurate methods of calculating ideal MHD instability eigenvalues for infinitely-long cylindrical tubes, with twist functionT(r)=B /rB z . A complete theoretical treatment is presented for force-free magnetic equilibria with arbitraryT(r), and detailed semi-analytic results for the kink instability are given for the particular case of a power-law twistT(r)=r , where the index is non-negative. Our results show that the most rapidly growing and energetic instabilities occur in the Gold-Hoyle =0 field, with the instability progressively weakening with increasing . However, the maximum force eigenvalue is always small, so that even in the Gold-Hoyle case (where =O(10–2) in dimensionless units) only a small proportion of the available magnetic energy can be released in the linear phase. Our results also confirm that the linear pinch (=) is remarkably weak (=O(10–3)) yet relatively resistant to line-tying! It is shown that the weakness of the force eigenvalue implies that the influence of uniform gas pressure on stability is negligible. Implications for the energy-release mechanism in solar flares are discussed.  相似文献   

17.
Exact corotations are equilibrium points in the phase space of the asteroidal elliptic restricted problem of three bodies averaged over the synodic period, at a mean-motions resonance. If the resonant critical angle is =(p+q) jup pq, exact corotations are double resonant motions defined by the conditionsd/dt=0 andd(– jup )/dt=0. The first condition is characteristic of the periods resonance(p + q) : p and the second one is a secular resonance equivalent to that usually known as thev 5-resonance. This paper presents the symmetric solutions =0 (mod ), = jup (mod ). Corotations have a coherence property which is unique in non-collisional Celestial Mechanics: An elementary calculation shows that, in the neighbourhood of these solutions, the motions cluster aroundp independent longitude values and are, in each cluster, as close together as and are close to the equilibrium values.  相似文献   

18.
The scope of the present paper is to provide analytic solutions to the problem of the attitude evolution of a symmetric gyrostat about a fixed point in a central Newtonian force field when the potential function isV (2).We assume that the center of mass and the gyrostatic moment are on the axis of symmetry and that the initial conditions are the following: (t 0)=0, (t 0)=0, (t 0)=(t 0)=0, 1(t 0)=0, 2(t 0)=0 and 3(t 0)= 3 0 .The problem is integrated when the third component of the total angular momentum is different from zero (B 1 0). There now appear equilibrium solutions that did not exist in the caseB 1=0, which can be determined in function of the value ofl 3 r (the third component of the gyrostatic momentum).The possible types of solutions (elliptic, trigonometric, stationary) depend upon the nature of the roots of the functiong(u). The solutions for Euler angles are given in terms of functions of the timet. If we cancel the third component of the gyrostatic momentum (l 3 r =0), the obtained solutions are valid for rigid bodies.  相似文献   

19.
Keenan  F. P.  Foster  V. J.  Aggarwal  K. M.  Widing  K. G. 《Solar physics》1996,168(1):47-63
A method for the reconstruction of the linear force-free magnetic field in a bounded domain (as a rectangular box, ) is presented here. The Dirichlet boundary-value problem for the Helmholtz equation is solved for the B z component specified at the boundary. Chebyshev's iteration method with the optimal rearrangement of the iteration parameters sequence was used. The solution is obtained as for the positive-definite, and for the non-sign-definite difference analogue of the differential operator 2 u + 2 u. Specifying two scalar functions, B x and B y on the intersection of the lateral part of the boundary with one selected plane z = constant, and using B z inside the , we have found B x and B y throughout .The algorithm was tested with the numerical procedure which gives the analytic solution B of the linear force-free field (LFFF) equations for the dipole in a half-space. The root-mean-square deviation of the analytic solution B from the calculated B does not exceed 1.0%. Boundary conditions for the B calculation were taken as given by the analytic LFFF solution B. Comparison of B with B, which was calculated by the potential non-photospheric boundary conditions, show that they differ significantly. Thus, the specification of boundary conditions at non-photospheric boundaries of the volume under consideration is of particular importance when modeling the LFFF in a bounded volume.The algorithm proposed here allows one to use the information about magnetic fields in the corona for the modeling of LFFF in a limited domain above an active region on the Sun.  相似文献   

20.
The radial velocity, intensity variations of the Caii line and chemical composition of the suspected magnetic star HD 151 199 have been studied using three 9.6 A/mm and twenty-one 40 A/mm dispersion spectrograms which were taken at St. Michel and Asiago Observatories respectively. The radial velocity and the intensity of the Caii K line suggest a variation with a 6.143 day period. The range is about 40 km/sec for the radial velocity and the K line changes in intensity by 50%. Preliminary results of the photometric data in the Geneva system show a similar trend of variation in (B 2B 1) with the same period. H and H contours and the Balmer discontinuity give eff=0.50 and logg=4. The most probable microturbulence is found to be 6.4 km/sec. The excitation temperature, exc=0.50, is derived from the Fe lines and adopted for the other elements as well. A quantitative analysis by curve of growth and weighting function method, using Mihalas and Conti's atmospherical models was made. HD 151 199 shows an overabundance of Ca, Sr, Ba, by factors of 2, 40, and 5 with respect to 30 L Mi. Euii is probably overabundant also but it is not possible to give this element a numerical value. The other elements seem to be normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号