首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been demonstrated that the mathematical model of variable declining rate filters developed by Di Bernardo may be described by (z + 1) non‐linear equations, where z is the number of filters in a bank. Three approximate solutions to this system of equations have been developed and then verified by comparison with numerical solution and published experimental data. Two of these solutions appeared to be very accurate, while the third showed higher, but still acceptable errors of calculation. According to this approximation, flow rates through filters are elements of a geometric progression.  相似文献   

2.
Crushed recycled glass was evaluated as an alternative to silica sand in dual‐media filters. Pilot scale inline filtration experiments were carried out using raw waters from three different water sources with turbidities between 6.0 and 14.0 NTU. Two physically identical filter columns were operated in parallel in the experiments. One filter consisted of 62.5 cm silica sand and 41.5 cm anthracite coal, whereas the other filter contained 62.5 cm crushed recycled glass plus 41.5 cm anthracite coal. The total bed depth was 104 cm for both filters. The properties of the media were as follows: Glass effective size = 0.77 mm, uniformity coefficient = 1.41. Sand effective size = 0.79 mm, uniformity coefficient = 1.33. Coal effective size = 1.45 mm, uniformity coefficient = 1.39. Experiments were repeated five times as follows: (i) Without the use of a coagulant, (ii–iii) with 5 and 10 mg/L of alum, and (iv–v) with 5 and 10 mg/L of ferric chloride. The filtration rate used was 11.5 m/h. Turbidity, particle counts, and head losses were measured and compared as functions of time. The following were observed: (i) Effluent turbidities and particle counts of the two filters were very close, i.e., essentially the same effluent quality was obtained when crushed glass was used instead of silica sand. (ii) In the majority of the tests, the filter with crushed glass generated both a smaller clean‐bed head loss and smaller clogging head losses than those of the filter containing sand. It is concluded that crushed glass may be a good alternative to silica sand in dual‐media filtration.  相似文献   

3.
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot‐scale vertical flow filter intermittently fed with domestic waste water, model predictions on the system’s performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective‐diffusive gas‐phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.  相似文献   

4.
The ensemble Kalman filter (EnKF) is a commonly used real-time data assimilation algorithm in various disciplines. Here, the EnKF is applied, in a hydrogeological context, to condition log-conductivity realizations on log-conductivity and transient piezometric head data. In this case, the state vector is made up of log-conductivities and piezometric heads over a discretized aquifer domain, the forecast model is a groundwater flow numerical model, and the transient piezometric head data are sequentially assimilated to update the state vector. It is well known that all Kalman filters perform optimally for linear forecast models and a multiGaussian-distributed state vector. Of the different Kalman filters, the EnKF provides a robust solution to address non-linearities; however, it does not handle well non-Gaussian state-vector distributions. In the standard EnKF, as time passes and more state observations are assimilated, the distributions become closer to Gaussian, even if the initial ones are clearly non-Gaussian. A new method is proposed that transforms the original state vector into a new vector that is univariate Gaussian at all times. Back transforming the vector after the filtering ensures that the initial non-Gaussian univariate distributions of the state-vector components are preserved throughout. The proposed method is based in normal-score transforming each variable for all locations and all time steps. This new method, termed the normal-score ensemble Kalman filter (NS-EnKF), is demonstrated in a synthetic bimodal aquifer resembling a fluvial deposit, and it is compared to the standard EnKF. The proposed method performs better than the standard EnKF in all aspects analyzed (log-conductivity characterization and flow and transport predictions).  相似文献   

5.
The solution describing the wellbore flow rate in a constant‐head test integrated with an optimization approach is commonly used to analyze observed wellbore flow‐rate data for estimating the hydrogeological parameters of low‐permeability aquifers. To our knowledge, the wellbore flow‐rate solution for the constant‐head test in a two‐zone finite‐extent confined aquifer has never been reported so far in the literature. This article is first to develop a mathematical model for describing the head distribution in the two‐zone aquifer. The Laplace domain solutions for the head distributions and wellbore flow rate in a two‐zone finite confined aquifer are derived using the Laplace transform, and their corresponding time domain solutions are then obtained using the Bromwich integral method and residue theorem. These new solutions are expressed in terms of an infinite series with Bessel functions and not straightforward to calculate numerically. A large‐time solution for the wellbore flow rate is therefore developed by employing the relationship of small Laplace variable versus large time variable and L'Hospital's rule. The result shows that the large‐time solution is identical to the steady‐state solution obtained after applying the Tauberian theorem into the Laplace domain solution. This large‐time solution can reduce to the Thiem equation in the case of no skin. Finally, the newly developed solution is used to investigate the effects of outer boundary distance and conductivity ratio on the wellbore flow rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A simple queueing model which generates bed topography consistent with the mechanics of gravel motion is presented. The equations on which it is based are derived from the application of simple theoretical ideas and an analysis of published flume data (Meland and Norrman, 1966; Francis, 1973; Abbott and Francis, 1977). The simulation produces an extremely variable bed topography in which at least two scales of bedform may be identified. Features of 5–10 grain wavelengths, similar to pebble clusters, are superimposed on other forms whose wavelength is up to 30–40 grains and which resemble step-pools systems and antidunes. Sediment transport shows many of the characteristics found in the field and the model is, therefore, thought to provide a useful starting point from which to examine the interaction between flow, sediment transport, and bedforms in gravel-bed and cobble streams.  相似文献   

7.
Heating, ventilating, and air‐conditioning (HVAC) systems ensure indoor air quality and provide a comfortable environment. However, the conventional HVAC systems only provide indoor ventilation and adjust temperature and humidity. This work removes indoor volatile organic compounds (VOCs) using a feasible and novel air‐cleaning for an HVAC system, to remove indoor VOCs. An activated carbon‐fiber (ACF) filter calcined with copper oxide (CuO) catalyst, called a CuO/ACF catalyst filter, was the developed kit. Formaldehyde, a major VOC, was chosen as the target pollutant. Experiments were performed to confirm the filtration ability of the CuO/ACF catalyst filter in removing formaldehyde in a stainless‐steel chamber equipped with a simplified HVAC system. Total air exchange rate (ACH) was controlled at 0.5 and 1.0 h−1, the fresh ACH was 0.15 and 0.30 h−1, and relative humidity (RH) was set at 30 and 70%. A first‐order decay of formaldehyde existed in the controlled chamber when the two pretreated CuO/ACF catalyst filters were employed. Experimental results demonstrate that the CuO/ACF catalyst filters removed formaldehyde effectively. The decay constant was 0.425 and 0.618 h−1 for 0.5 and 2.0 ppm formaldehyde, respectively. Moreover, the formaldehyde decay rate increased as total ACH, fresh ACH, RH, and the Cu(NO3)2 concentration for calcination of CuO/ACF catalyst filter increased.  相似文献   

8.
以ADS1281为例,介绍新一代地震数据采集器后级滤波器设计。该后级滤波器包括变抽样率的梳状滤波器、有限脉冲响应(FIR1)4抽1滤波器和有限脉冲响应(FIR2)2抽1滤波器。其中,FIR1 4抽1滤波器和FIR2 2抽1又分为最小相位、线性相位和瞬态3种滤波器,文中使用设计的最小相位滤波抽取器对仿真的正弦波进行滤波验证,结果表明,通带波动和阻带衰减满足中国数字测震台网技术规程的要求。  相似文献   

9.
This paper investigates energy losses in compound channel under non-uniform flow conditions. Using the first law of thermodynamics, the concepts of energy loss and head loss are first distinguished. They are found to be different within one sub-section (main channel or floodplain). Experimental measurements of the head within the main channel and the floodplain are then analyzed for geometries with constant or variable channel width. Results show that head loss differs from one sub-section to another: the classical 1D hypothesis of unique head loss gradient appears to be erroneous. Using a model that couple 1D momentum equations, called “Independent Sub-sections Method (ISM)”, head losses are resolved. The relative weights of head losses related to bed friction, turbulent exchanges and mass transfers between sub-sections are estimated. It is shown that water level and the discharge distribution across the channel are influenced by turbulent exchanges for (a) developing flows in straight channels, but only when the flow tends to uniformity; (b) flows in skewed floodplains and symmetrical converging floodplains for small relative flow depth; (c) flows in symmetrical diverging floodplains for small and medium relative depth. Flow parameters are influenced by the momentum flux due to mass exchanges in all non-prismatic geometries for small and medium relative depth, while this flux is negligible for developing flows in straight geometry. The role of an explicit modeling of mass conservation between sub-sections is eventually investigated.  相似文献   

10.
基于非因果滤波器的多次波匹配相减方法(英文)   总被引:1,自引:0,他引:1  
在常规多道匹配滤波方法中的滤波器是物理可实现的因果滤波器,只能实现地震信号序列延迟的滤波。本文提出了最小二乘意义下的非因果多道输入多道输出维纳滤波方法,通过比较多道匹配相减中因果和非因果滤波方法之间的差别,验证了方法的有效性,解决了模型数据滞后于实际数据的情况。而且,通过定义长度随偏移距和层速度变化的滑动时窗,解决了匹配时窗内同相轴数量随偏移距增大而增加的问题。并将上述方法应用到改进的扩展多道匹配相减去除多次波的方法中,利用Pluto1.5理论模拟数据,对非因果滤波器和变长度时窗的匹配相减方法进行测试,取得了很好的去除多次波后的地震数据。  相似文献   

11.
A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non‐linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to individual rainfall event. Because the filter was calibrated using total streamflow, an estimate of the direct runoff was also needed. The direct runoff was estimated from precipitation and potential evapotranspiration using a water balance model. The parameters for the base flow and direct runoff were estimated simultaneously using a Monte Carlo approach. Instead of one best solution, a range of satisfactory solutions was accepted. The filter was applied to data from two nested gauging stations in the Pang catchment (UK). Streamflow at the upstream station (Frilsham) is strongly dominated by base flow from the main aquifer, whereas at the downstream station (Pangbourne) a significant component of direct runoff also occurs. The filter appeared to provide satisfactory estimates at both stations. For Pangbourne, the rise of the base flow was strongly delayed compared with the rise of the streamflow. However, base flow exceeded streamflow on several occasions, especially during summer and autumn, which might be explained by evapotranspiration from riparian vegetation. To evaluate the results, the base flow was also estimated using three existing base‐flow separation filters: an arithmetic filter (BFI), a digital filter (Boughton) and another filter based on groundwater levels (Kliner and Knĕz̆ek). Both the BFI and Boughton filters showed a much smaller difference in base flow between the two stations. The Kliner and Knĕz̆ek filter gave consistently lower estimates of the base flow. Differences and lack of clarity in the definition of base flow complicated the comparison between the filters. An advantage of the method introduced in this paper is the clear interpretation of the separated components. A disadvantage is the high data requirement. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Modeling of the head recovery (buildup) in and intermittent operation of flowing wells lacks rigorous analytical tools. Presently different methods are applied in discharging and recovery phases. The presented reliable approximate solution considers a continuous free flow process and time variant screen loss parameters. The latter are temporarily set to large value to prevent inflow into the well bore during the single recovery or in repeated shut down periods. This method is called as screen loss control or SLC technique and is verified by means of comparative analysis with the constant rate pumping‐recovery test simulated in leaky aquifer. The evaluation of the free flow and recovery test in the free flowing well 28 (Artesia Heights) concluded with calibrated parameters close to those obtained in the earlier analyses based on split well flow process. The simulation of intermittent flowing well operation also underwent successful validation resulting in reasonable values of the Qw and s response functions.  相似文献   

13.
Regular aquifer storage recovery, ASR, is often not feasible for small‐scale storage in brackish or saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. Flow barriers that partially penetrate a brackish or saline aquifer prevent a stored volume of fresh water from expanding sideways, thus increasing the recovery efficiency. In this paper, the groundwater flow and mixing is studied during injection, storage, and recovery of fresh water in a brackish or saline aquifer in a flow‐tank experiment and by numerical modeling to investigate the effect of density difference, hydraulic conductivity, pumping rate, cyclic operation, and flow barrier settings. Two injection and recovery methods are investigated: constant flux and constant head. Fresh water recovery rates on the order of 65% in the first cycle climbing to as much as 90% in the following cycles were achievable for the studied configurations with constant flux whereas the recovery efficiency was somewhat lower for constant head. The spatial variation in flow velocity over the width of the storage zone influences the recovery efficiency, because it induces leakage of fresh water underneath the barriers during injection and upconing of salt water during recovery.  相似文献   

14.
A transient axisymmetric saturated-unsaturated numerical flow model was coupled with a particle tracking model to investigate the movement of contaminants when a shallow unconfined aquifer is pumped at a constant rate. The particle tracking model keeps track of locations and masses of solutes in the aquifer, and the time of capture by the well. At the end of each time-step the flow model solves the Richard's equation for the hydraulic head distribution from which elemental velocities are calculated. Solutes are then displaced for a period equivalent to the time-step using both the magnitude and direction of the elemental velocities. Numerical experiments were performed to investigate effluent concentrations in wells with screens of different length and in different positions relative to zones of stratified contamination. At early times of pumping the effluent concentrations were similar to the concentrations adjacent to the well screen, but at late times, the concentrations approached the vertically averaged concentration in the aquifer. Time to attain the vertically averaged concentration was determined by the well geometry, initial location of the contaminant plume in relation to the well screen, and hydraulic properties of the aquifer. The results are consistent with the hydraulics of flow to a pumping well and of particular importance, they demonstrate that short-term pump tests could give erroneous design concentrations for pump-and-treat systems. The model provides a means of quantifying arrival times and mixing ratios. It could therefore provide a useful means of designing production wells in aquifers with stratified contamination and more efficient recovery systems for aquifer remediation.  相似文献   

15.
《国际泥沙研究》2016,(4):376-385
Twenty runs of experiments are carried out to investigate non-equilibrium transport of graded and uniform bed load sediment in a degrading channel. Well-sorted gravel and sand are employed to compose four kinds of sediment beds with different gravel/sand contents, i.e., uniform 100%gravel bed, uniform 100% sand bed, and two graded sediment beds respectively with 53% gravel and 47% sand as well as 22%gravel and 78%sand. For different sediment beds, the experiments are conducted under the same discharges, thereby allowing for the role of sediment composition in dictating the bed load transport rate to be identified. A new observed dataset is generated concerning the flow, sediment transport and evolution of bed elevation and composition, which can be exploited to underpin devel-opments of mathematical river models. The data shows that in a degrading channel, the sand greatly promotes the transport of gravel, whilst the gravel considerably hinders the transport of sand. The promoting and hindering effects are evaluated by means of impact factors defined based on sediment transport rates. The impact factors are shown to vary with flow discharge by orders of magnitude, being most pronounced at the lowest discharge. It is characterized that variations in sand or gravel inputs as a result of human activities and climate change may lead to severe morphological changes in degrading channels.  相似文献   

16.
High resolution terrain models generated from widely available Interferometric Synthetic Aperture Radar (IfSAR) and digital photogrammetry are an exciting resource for geomorphological research. However, these data contain error, necessitating pre‐processing to improve their quality. We evaluate the ability of digital filters to improve topographic representation, using: (1) a Gaussian noise removal filter; (2) the proprietary filters commonly applied to these datasets; and (3) a terrain sensitive filter, similar to those applied to laser altimetry data. Topographic representation is assessed in terms of both absolute accuracy measured with reference to independent check data and derived geomorphological variables (slope, upslope contributing area, topographic index and landslide failure probability) from a steepland catchment in northern England. Results suggest that proprietary filters often degrade or fail to improve precision. A combination of terrain sensitive and Gaussian filters performs best for both IfSAR and digital photogrammetry datasets, improving the precision of photogrammetry digital elevation models (DEMs) by more than 50 per cent relative to the unfiltered data. High‐frequency noise and high‐magnitude gross errors corrupt geomorphological variables derived from unfiltered photogrammetry DEMs. However, a terrain sensitive filter effectively removes gross errors and noise is minimized using a Gaussian filter. These improvements propagate through derived variables in a landslide prediction model, to reduce the area of predicted instability by up to 29 per cent of the study area. Interferometric Synthetic Aperture Radar is susceptible to removal of topographic detail by oversmoothing and its errors are less sensitive to filtering (maximum improvement in precision of 5 per cent relative to the raw data). Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

17.
We discuss the Hankel transforms related to a particular application, i.e. the dipole antenna radiation in conductive media, such as the antenna radiation in sea-bed electromagnetic applications. In this application, the electromagnetic wavefields decay very rapidly with distance. A good filter means that it can be used to evaluate weak fields. Exponential sampling transforms a Hankel transform into a convolution equation, which must be solved to obtain the filter coefficients. Here, we use a direct matrix inversion method to solve the convolution equation in the sample domain, instead of the Fourier transform method and the Wiener–Hopf method, previously used to solve the convolution equation. This direct method is conceptually simple and is suitable for our optimization process: by using the Sommerfeld identity, we search for the optimum sampling interval, which corresponds to the minimum wavefield, evaluated for a given length filter. The performances of the new filters obtained are compared with some well-known filters. We find that our filters perform better for our application; that is, for the same length filters, our filters are able to calculate weaker fields. For users working in similar applications, three sets of filters with lengths 61, 121, 241 are available from the author.  相似文献   

18.
A borehole permeameter is well suited for testing saturated hydraulic conductivity (K(sat)) at specific depths in the vadose zone. Most applications of the method involve fine-grained soils that allow hand auguring of test holes and require a small water reservoir to maintain a constant head. In non-cohesive gravels, hand-dug test holes are difficult to excavate, holes are prone to collapse, and large volumes of water are necessary to maintain a constant head for the duration of the test. For coarse alluvial gravels, a direct-push steel permeameter was designed to place a slotted pipe at a specific sampling depth. Measurements can be made at successive depths at the same location. A 3790 L (1000 gallons) trailer-mounted water tank maintained a constant head in the permeameter. Head in the portable tank was measured with a pressure transducer and flow was calculated based on a volumetric rating curve. A U.S. Bureau of Reclamation analytical method was utilized to calculate K(sat). Measurements with the permeameter at a field site were similar to those reported from falling-head tests.  相似文献   

19.
Linear relationship between dipole and Schlumberger sounding resistivities leads to the use of digital filters to transform the former to the latter. This transformation is of importance from the viewpoint that Schlumberger interpretational techniques and know-how could then be applied to the pseudo-Schlumberger field curve. Filters for this transformation are presented for the radial, perpendicular, and parallel (30°) dipole method. The characteristics of these filters are similar to the ones for transforming dipole data to the kernel and are favourable in that they do not amplify noise. A sampling interval of (In 10) /6 has been used in determining the filter yielding good accuracy. Like previous filters the present one is handy and fast in operation.  相似文献   

20.
This paper presents the Kalman Filtered Double Constraint Method (DCM‐KF) as a technique to estimate the hydraulic conductivities in the grid blocks of a groundwater flow model. The DCM is based on two forward runs with the same initial grid block conductivities, but with alternating flux‐head conditions specified on parts of the boundary and the wells. These two runs are defined as: (1) the flux run, with specified fluxes (recharge and well abstractions), and (2) the head run, with specified heads (measured in piezometers). Conductivities are then estimated as the initial conductivities multiplied by the fluxes obtained from the flux run and divided by the fluxes obtained from the head run. The DCM is easy to implement in combination with existing models (e.g., MODFLOW). Sufficiently accurate conductivities are obtained after a few iterations. Because of errors in the specified head‐flux couples, repeated estimation under varying hydrological conditions results in different conductivities. A time‐independent estimate of the conductivities and their inaccuracy can be obtained by a simple linear KF with modest computational requirements. For the Kleine Nete catchment, Belgium, the DCM‐KF yields sufficiently accurate calibrated conductivities. The method also results in distinguishing regions where the head‐flux observations influence the calibration from areas where it is not able to influence the hydraulic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号