首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Sulfate‐reduction data from various anaerobic reactor configurations, e. g., upflow anaerobic sludge blanket reactor (UASBR), completely stirred tank reactor (CSTR), and batch reactor (BR) with synthetic wastewaters, having glucose and acetate as the substrates and different levels of sulfate, were evaluated to determine the level of sulfate‐reducing activity by sulfate‐reducing bacteria coupled to organic matter removal. Anaerobic reactors were observed for the degree of competition between sulfate‐reducing sulfidogens and methane producing bacteria during the degradation of glucose and acetate. Low sulfate‐reducing activity was obtained with a maximum of 20% of organic matter degradation with glucose‐fed upflow anaerobic sludge bed reactors (UASBRs), while a minimum of 2% was observed with acetate‐fed batch reactors. The highest sulfate removal performance (72–89%) was obtained from glucose fed‐UASB reactors, with the best results observed with increasing COD/SO4 ratios. UASB reactors produced the highest level of sulfidogenic activity, with the highest sulfate removal and without a performance loss. Hence, this was shown to be the optimum reactor configuration. Dissolved sulfide produced as a result of sulfate reduction reached 325 mg/L and 390 mg/L in CST and UASB reactors, respectively, and these levels were tolerated. The sulfate removal rate was higher at lower COD/SO4 ratios, but the degree of sulfate removal improved with increasing COD/SO4 ratios.  相似文献   

2.
Two types of river sediments with contrasting characteristics (anoxic or oxic) were resuspended and the release of heavy metals and changes in water chemistry were investigated. During resuspension of the anoxic sediment, the dissolved oxygen (DO) concentration and redox potential of the water layer decreased abruptly within the first 1 min, followed by increases toward the end of the resuspension period. Heavy metals were released rapidly in the first 6 h, probably due to the oxidation of acid volatile sulfide (AVS) of the anoxic sediment, and then the aqueous phase concentrations of the heavy metals decreased due to resorption onto the sediment until the 12‐h point. During resuspension of the oxic sediment, the DO concentration and redox potential remained relatively constant in the oxic ranges. The heavy metals were released from the oxic sediment gradually during a 24‐h resuspension period. The temporal maximum concentrations of Ni, Cu, Zn, and Cd in the aqueous phases in both experiments frequently exceeded the USEPA water quality criteria or the water quality guidelines of Australia and New Zealand. This suggests that a resuspension event could bring about temporal water quality deterioration in the two sediment environments.  相似文献   

3.
An indigenous bacterial strain of Delftia sp. capable of degrading 2,4‐dicholorophenol and an indigenous bacterial community that degrades 2,4,6‐trichlorophenol (TCP) were employed to inoculate continuous down‐flow fixed‐bed reactors. Continuous‐reactors were constructed from PVC employing hollow PVC cylinders as support material. Synthetic wastewater was prepared by dissolving the corresponding chlorophenol in non‐sterile groundwater. Biodegradation was evaluated by spectrophotometry, chloride release, GC, and microbial growth. Detoxification was evaluated by using Daphnia magna as test organism. Delftia sp. was able to remove an average of 95.6% of DCP. Efficiency in terms of chemical oxygen demand (COD) was of 88.9%. The indigenous bacterial community that degrades TCP reached an average efficiency of 96.5 and 91.6% in terms of compound and COD removal, respectively. In both cases stoichiometric removal of chloride and detoxification was achieved. When synthetic wastewater feed was cut off for 7 days, both reactors showed a fast recovery after inflow restarting, reaching average outlet concentration values within 36 h. The promising behavior of the microorganisms and the low cost of the reactors tested allow us to suggest their possible application to remediation processes.  相似文献   

4.
Two main routes of methods for the preparation of photocatalytic active titanium dioxide films on glass substrates were investigated: (1) the use of titanium dioxide powder and (2) the in situ generation of the catalyst via hydrolysis of titanium tetraisopropoxide (TTIP) or TiCl4. The activities of the catalyst films were evaluated by measuring the degradation of dichloroacetic acid (DCA), clofibric acid, and terbuthylazine used as model organic compounds. The concentration decrease of DCA and the concentration increase of chloride ions as the decomposition product allowed to distinguish between photocatalytic degradation of DCA and adsorption onto the TiO2 films. Furthermore, TiO2 films of the commercially available materials P25 (Degussa) and Hombikat UV100 (Sachtleben Chemie) were used to investigate whether there was a difference in the degradation pathways of terbuthylazine as a model compound. For the experiments mini flow‐through reactors were constructed. The investigated immobilization techniques were easy to handle without need of any expensive equipment. All TiO2 coatings showed good photocatalytic activities and mechanical stabilities with efficient long‐term stabilities. The best immobilization reproducibility was achieved by the spray coating technique and by the in situ method with the dipping sol‐gel process starting by TTIP. During the continuous use of the TiO2 films no TiO2 particles were found in the irradiated solutions.  相似文献   

5.
Biomarker analyses for evaluating maturity of organic matter and depositional environments such as redox conditions, were performed in sediments across the Cenomanian–Turonian boundary (CTB) in the Saku Formation of the Yezo Group distributed along the Shumarinai‐gawa River and the Omagari‐zawa River, both in the Tomamae area, Hokkaido, Japan. Maturity indicators using steranes and hopanes, show that organic matter in sediments from the Shumarinai‐gawa and Omagari‐zawa sections are of lower maturity than those from the Hakkin‐gawa section (Oyubari area). Moreover, the ββ hopane ratios clearly show that the maturity of the Shumarinai‐gawa samples is lower than that of the Omagari‐zawa samples. These variations in the maturity of organic matter presumably reflect the difference in their burial histories. The results for the pristane/phytane (Pr/Ph) ratios suggest that the Shumarinai‐gawa samples were deposited under dysoxic to anoxic environments across the CTB, while the depositional environments of the Omagari‐zawa samples were relatively oxic. By another paleoredox indicator using C35 homohopanoids including a homohopene index (HHenI), higher values are observed in the Shumarinai‐gawa section, particularly in the horizons of the preceding period and an early stage of the first negative shift phase and the latest oceanic anoxic event 2 (OAE2) interval. These results suggest that the Shumarinai‐gawa samples record dysoxic to anoxic environments across the CTB. In contrast, the signals for the C35 homohopanoid index values show a relatively oxic condition in the Omagari‐zawa section. The trends of stratigraphic variations in redox conditions are different from those in the OAE2 interval in the proto‐Atlantic and Tethys regions as reported previously. Hence, the redox variations in the Tomamae area were basically related to a local environmental setting rather than global anoxia. However, the prominent anoxic emphasis observed in the HHenI profile of the Shumarinai‐gawa section can be a distinctive, and possibly global, event in the North‐West Pacific just before the OAE2.  相似文献   

6.
滇池流域点源污染控制与存在问题解析   总被引:1,自引:0,他引:1  
采用间隙水连续采集法考察滇池和抚仙湖沉积物-水界面营养盐通量,并比较在氧气缺乏及氧气充足条件下界面的氮磷行为.结果表明,滇池草海沉积物-水界面营养盐通量显著高于滇池湖心及抚仙湖.对云南滇池及抚仙湖沉积物进行好氧和厌氧处理对照比较,结果显示,好氧组上覆水pH显著大于厌氧组,而间隙水pH在两处理组之间差异不显著;这可能与厌氧呼吸途径过程中产生酸性物质有关;而在两种处理条件下,间隙水均处于厌氧状态.较好氧条件而言,厌氧条件下间隙水磷和铵氮浓度的增加,与有机质矿化增强有关;而间隙水磷还可能受FeOOH-P模型控制.由分子扩散模型计算获得的界面磷或者铵氮扩散通量均高于表观通量,而且好氧条件下的扩散通量与表观通量之间的差异较厌氧条件下的大;这表明两种营养盐均存在释放潜力,但这种潜力的发挥受氧气的影响,较好氧条件而言,厌氧条件下使用分子扩散模型得到的界面营养盐扩散通量更接近于表观通量.  相似文献   

7.
Glucose‐fed high‐rate UASB reactors were tested at three COD/SO4 ratios and hydraulic retention times to promote sulfate reducing activity and observe the effects on reactor performance. Different COD/SO4 ratios (20, 10, and 5) resulted in changes in organic matter removal, methane production, alkalinity, dissolved sulfide and biomass concentrations and profile. The COD removal dropped from 95 to 80–84 % at the lowest COD/SO4 ratio. Sulfate was removed at 79 to 89 % at the highest ratio and dropped to 72 to 74 % with increasing sulfate loading. Alkalinity was produced at higher levels with increasing sulfate loading. Specific methane production dropped with decreasing hydraulic retention times. Sulfate‐reducing activity used a maximum of 11.7 % of organic matter at the highest sulfate loading level, producing a slight shift to sulfate‐reducing activity in the substrate competition between sulfate‐reducing bacteria and methanogens. Increased sulfate loading at COD/SO4 ratios of 10 and 5 caused deterioration of the concentration profile of the sludge, resulting in biomass washout and decreased volatile fraction of biosolids in the reactors.  相似文献   

8.
Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene‐contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene‐contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen‐based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.  相似文献   

9.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The efficiency of the biological removal of carbon and nitrogen from leachates is determined by the activity of microbial populations present in biological reactors. In this work, a complete characterization of bacterial communities revealed by personal genome machine sequencing (PGM) has been carried out from different points of a nitrification–denitrification process operated in an urban landfill. The leachate fed to the treatment is a mixture of young leachate, old leachate, and effluent from an anaerobic digestion process, in a volume ratio of 1:0.9:0.12, respectively. The anoxic and oxic reactors are followed by an ultrafiltration step. Samples are taken from different points of the process. Results reveal the microbial diversity of the samples, which include detection of minority populations that are difficult to explore by other methods. Bacteria belonging to Bacteroidetes and Proteobacteria are dominant in all the samples analyzed. Proteobacteria represents more than 50% of the total population in all cases. Samples taken after the biological treatment show a significant reduction in the relative abundance of Firmicutes, Tenericutes, and Lentisphaerae phyla in comparation with the initial leachate. The relative abundance of the classes is also studied and the most abundant in the samples are β‐Proteobacteria and Flavobacteria.  相似文献   

11.
The deterioration of sediments is a serious environmental problem. Controlling nutrient release fluxes from sediments is important to alleviating eutrophication and to reducing terrigenous nutrient loads. The purpose of this study was to evaluate the phosphate removal performance of granulated coal ash (GCA) from seawater, which is produced from coal thermal electric power generation. Batch experiments were carried out to investigate the removal kinetics of phosphate from seawater under both oxic and anoxic conditions. Phosphate was removed well from seawater under both oxic and anoxic conditions. The adsorption isotherm for phosphate revealed that GCA could remove phosphate effectively from seawater above a concentration of 1.7 μmol L−1. GCA can reduce the concentration of phosphate in seawater effectively under anoxic conditions where iron type adsorbents cannot be applied. Therefore, GCA could potentially be used to adsorb phosphate in the organically-enriched sediment, which generally occurs under highly reductive conditions.  相似文献   

12.
Dissolved carbon monoxide (CO) is present in ground water produced from a variety of aquifer systems at concentrations ranging from 0.2 to 20 nanomoles per liter (0.0056 to 0.56 microg/L). In two shallow aquifers, one an unconsolidated coastal plain aquifer in Kings Bay, Georgia, and the other a fractured-bedrock aquifer in West Trenton, New Jersey, long-term monitoring showed that CO concentrations varied over time by as much as a factor of 10. Field and laboratory evidence suggests that the delivery of dissolved oxygen to the soil zone and underlying aquifers by periodic recharge events stimulates oxic metabolism and produces transiently high CO concentrations. In between recharge events, the aquifers become anoxic and more substrate limited, CO is consumed as a carbon source, and CO concentrations decrease. According to this model, CO concentrations provide a transient record of oxic metabolism affecting ground water systems after dissolved oxygen has been fully consumed. Because the delivery of oxygen affects the fate and transport of natural and anthropogenic contaminants in ground water, CO concentration changes may be useful for identifying predominantly anoxic ground water systems subject to periodic oxic or microaerophilic conditions.  相似文献   

13.
Although lignin is known to be not readily biodegradable the concentration of dissolved lignin decreased during aerobic biological treatment of paper mill wastewater performed in sequencing batch reactors (SBR). Systematic lab scale batch tests were conducted to clarify whether the observed removal of lignin was the result of biodegradation or adsorption onto the activated sludge. For the batch tests, sludge samples were taken from sequencing batch reactors operated at solid retention times (SRT) of 10, 15, 20, 30, and 40 days, respectively. The amount of lignin present in the bulk liquid and in the sludge samples was quantified by an analytical procedure comprising pyrolysis, gas chromatography and mass spectrometry (py‐GC/MS analysis). It was found that lignin adsorbs onto the activated sludge by up to 30%[TH]w/w. This demonstrates the sludge excellent adsorption properties. The ultimate removal of lignin is achieved by sludge wasting. The highest overall removal rate was found when sludge was used from the SBR run at SRT of 20 days.  相似文献   

14.
We have developed a rugged, durable platinum wire Eh electrode for application in subsurface environments. The electrode design is described in detail and its performance under aerobic and anaerobic steady-state and transient conditions is assessed. The electrode consists of a 0.5-mm-diameter platinum wire (99.99% purity) cast in a glass fiber-reinforced epoxy jacket. The construction allowed installation through direct insertion into sandy media to depths up to several meters. Data collection was through connection to a datalogger with high impedance input; data points were collected every 10 seconds and averaged and stored once an hour. The electrodes functioned in situ for periods of more than three years and gave reliable readings during oxic, anoxic, and transitional conditions. Performance testing and examination of electrodes recovered after three years in situ indicated that they were not impacted by corrosion, dissolution, or poisoning.  相似文献   

15.
A process-based methodology was used to compare the vulnerability of public supply wells tapping seven study areas in four hydrologically distinct regional aquifers to volatile organic compound (VOC) contamination. This method considers (1) contributing areas and travel times of groundwater flowpaths converging at individual supply wells, (2) the oxic and/or anoxic conditions encountered along each flowpath, and (3) the combined effects of hydrodynamic dispersion and contaminant- and oxic/anoxic-specific biodegradation. Contributing areas and travel times were assessed using particle tracks generated from calibrated regional groundwater flow models. These results were then used to estimate VOC concentrations relative to an unspecified initial concentration (C/C0) at individual public supply wells. The results show that the vulnerability of public supply wells to VOC contamination varies widely between different regional aquifers. Low-recharge rates, long travel times, and the predominantly oxic conditions characteristic of Basin and Range aquifers in the western United States leads to lower vulnerability to VOCs, particularly to petroleum hydrocarbons such as benzene and toluene. On the other hand, high recharge rates and short residence times characteristic of the glacial aquifers of the eastern United States leads to greater vulnerability to VOCs. These differences lead to distinct patterns of C/C0 values estimated for public supply wells characteristic of each aquifer, information that can be used by resource managers to develop monitoring plans based on relative vulnerability, to locate new public supply wells, or to make land-use management decisions.  相似文献   

16.
Mineralization of 14C‐radiolabled vinyl chloride ([1,2‐14C] VC) and cis‐dichloroethene ([1,2‐14C] cis‐DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene‐exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo‐first‐order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First‐order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen‐linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen‐linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.  相似文献   

17.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Anaerobic digestion (AD) is an effective way to convert animal manures into profitable by‐products while simultaneously reducing the pollution of water, air, and soil caused by these wastes. Conventional high‐rate anaerobic reactors cannot effectively process animal manures with high solids‐containing wastes. The two‐phase configuration for AD has several advantages over conventional one‐phase processes, e. g., increased stability of the process, smaller size and cost efficient process configurations. In the present study, the experiments were carried out in a two‐phase system composed of an acidogenic reactor and a methanogenic reactor, and in a one‐phase system composed of only a methanogenic reactor. The reactors were operated as unmixed (without an external mixing aid), unsophisticated, and daily‐fed mode. It was found that the two‐phase configuration was more efficient than the one‐phase system. The biogas production in the two‐phase system at a hydraulic retention time (HRT) of 8.6 days (only methanogenic phase) was calculated to be 42% higher at an organic loading rate (OLR) of 3.5 g VS/L·day than that of the one‐phase with a HRT of 20 days. This translates into significant performance improvement and reduced volume requirement. This finding represents a further step in the achievement of wider use of simple anaerobic reactor configurations for waste treatment in rural areas.  相似文献   

19.
    
The investigated coal mining lakes (ML 111, ML 117, and ML 107) in the Lusatian lignite mining district are extremely acidic. The concentrations of iron in these geogenic acidified lakes are orders of magnitude higher than in acidic bog lakes and softwater lakes acidified by atmospheric deposition. For the most part ferric iron was the predominant species by a Fe(III) to Fe(II) ratio of more than 10. Density stratification of the water column leads to vertical concentration gradients of ferrous iron. Extremely high concentrations of ferrous iron were found in the anoxic layers above the sediment of ML 111 and ML 107. High concentrations of Fe(II) were correlated with high concentrations of carbon dioxide. A microbial potential to reduce ferric iron was found in the sediments. In ML 111 and ML 117 the concentrations of Fe(II) in the epilimnion were markedly higher than in the oxic hypolimnetic layers. It can be suggested that the occurence of ferrous iron in the epilimnion is of photochemical origin, as described for softwater lakes. Minimum concentrations of dissolved organic carbon in the epilimnion could be correlated to the increase of ferrous iron concentrations. Especially in springtime and summer the concentrations of Fe(II) in the epilimnion were higher than in the oxic hypolimnetic layer below.  相似文献   

20.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号