首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose to use multiple-imaged gravitational lenses to set limits on gravity theories without dark matter, specifically tensor–vector–scalar (TeVeS) theory, a theory which is consistent with fundamental relativistic principles and the phenomenology of Modified Newtonian Dynamics (MOND) theory. After setting the framework for lensing and cosmology, we analytically derive the deflection angle for the point lens and the Hernquist galaxy profile, and study their patterns in convergence, shear and amplification. Applying our analytical lensing models, we fit galaxy-quasar lenses in the CfA-Arizona Space Telescope Lens Survey (CASTLES) sample. We do this with three methods, fitting the observed Einstein ring sizes, the image positions, or the flux ratios. In all the cases, we consistently find that stars in galaxies in MOND/TeVeS provide adequate lensing. Bekenstein's toy μ function provides more efficient lensing than the standard MOND μ function. But for a handful of lenses, a good fit would require a lens mass orders of magnitude larger/smaller than the stellar mass derived from luminosity unless the modification function μ and modification scale a 0 for the universal gravity were allowed to be very different from what spiral galaxy rotation curves normally imply. We discuss the limitation of present data and summarize constraints on the MOND μ function. We also show that the simplest TeVeS 'minimal-matter' cosmology, a baryonic universe with a cosmological constant, can fit the distance–redshift relation from the supernova data, but underpredicts the sound horizon size at the last scattering. We conclude that lensing is a promising approach to differentiate laws of gravity.  相似文献   

2.
If it is hypothesized that there is no dark matter, then some alternative gravitational theory must take the place of general relativity (GR) on the largest scales. Dynamical measurements can be used to investigate the nature of such a theory, but only where there is visible matter. Gravitational lensing is potentially a more powerful probe as it can be used to measure deflections far from the lens and, for sufficiently large separations, allow it to be treated as a point-mass. Microlensing within the local group does not yet provide any interesting constraints, as only images formed close to the deflectors are appreciably magnified, but stacking of multiple light-curves and observations of microlensing on cosmological scales may be able to discriminate between GR and non-dark matter theories. Galaxy–galaxy lensing is likely to be a more powerful probe of gravity, with the Sloan Digital Sky Survey (SDSS) commissioning data used here to constrain the deflection law of galaxies to be     for impact parameters in the range     . Together with observations of flat rotation curves, these results imply that, in any gravitational theory, photons must experience (close to) twice the deflection of massive particles moving at the speed of light (at least on these physical scales). The full SDSS data set will also be sensitive to asymmetry in the lensing signal and to variation of the deflection law with galaxy type. A detection of either of these effects would represent an independent confirmation that galaxies are dark matter-dominated; conversely, azimuthal symmetry of the shear signal would rule out the typically ellipsoidal haloes predicted by most simulations of structure formation.  相似文献   

3.
Gravitationally lensed quasars can be discovered as a by-product of galaxy redshift surveys. Lenses discovered spectroscopically in this way should require less observational effort per event than those found in dedicated lens surveys. Further, the lens galaxies should be relatively nearby, facilitating a number of detailed observations that are impossible for the more common high-redshift lenses. This is epitomized by the wide range of results that have been obtained from Q 2237+0305, which was discovered as part of the Center for Astrophysics redshift survey, and remains the only quasar lens discovered in this way. The likelihood of this survey yielding a lens is calculated to be ∼0.03, which is an order of magnitude larger than previous estimates due to two effects. First, the quasar images themselves increase the observed flux of the lens, so that lens galaxies up to a magnitude fainter than the nominal survey limit must be included in the calculation. Secondly, it is possible for lensed quasars with extremely faint deflectors to enter the survey due to the extended morphology of the multiple images. Extrapolating these results to future surveys, the 2 degree Field galaxy redshift survey should contain between 10 and 50 lenses and the Sloan Digital Sky Survey should yield between 50 and 300 lenses, depending on the cosmological model and the observing conditions.  相似文献   

4.
5.
We use galaxy groups selected from the Sloan Digital Sky Survey (SDSS) together with mass models for individual groups to study the galaxy–galaxy lensing signals expected from galaxies of different luminosities and morphological types. We compare our model predictions with the observational results obtained from the SDSS by Mandelbaum et al. for the same samples of galaxies. The observational results are well reproduced in a Λ cold dark matter (ΛCDM) model based on the Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr data, but a ΛCDM model with higher σ8, such as the one based on the WMAP 1-yr data, significantly overpredicts the galaxy–galaxy lensing signal. We model, separately, the contributions to the galaxy–galaxy lensing signals from different galaxies: central versus satellite, early type versus late type and galaxies in haloes of different masses. We also examine how the predicted galaxy–galaxy lensing signal depends on the shape, density profile and the location of the central galaxy with respect to its host halo.  相似文献   

6.
Strong gravitational lensing by galaxies in MOdified Newtonian Dynamics (MOND) has until now been restricted to spherically symmetric models. These models were able to account for the size of the Einstein ring of observed lenses, but were unable to account for double-imaged systems with collinear images, as well as four-image lenses. Non-spherical models are generally cumbersome to compute numerically in MOND, but we present here a class of analytic non-spherical models that can be applied to fit double-imaged and quadruple-imaged systems. We use them to obtain a reasonable MOND fit to 10 double-imaged systems, as well as to the quadruple-imaged system Q2237+030 which is an isolated bulge-disc lens producing an Einstein cross. However, we also find five double-imaged systems and three quadruple-imaged systems for which no reasonable MOND fit can be obtained with our models. We argue that this is mostly due to the intrinsic limitation of the analytic models, even though the presence of small amounts of additional dark mass on galaxy scales in MOND is also plausible.  相似文献   

7.
Flexion is the significant third-order weak gravitational lensing effect responsible for the weakly skewed and arc-like appearance of lensed galaxies. Here we demonstrate how flexion measurements can be used to measure galaxy halo density profiles and large-scale structure on non-linear scales, via galaxy–galaxy lensing, dark matter mapping and cosmic flexion correlation functions. We describe the origin of gravitational flexion, and discuss its four components, two of which are first described here. We also introduce an efficient complex formalism for all orders of lensing distortion. We proceed to examine the flexion predictions for galaxy–galaxy lensing, examining isothermal sphere and Navarro–Frenk–White (NFW) profiles and both circularly symmetric and elliptical cases. We show that in combination with shear we can precisely measure galaxy masses and NFW halo concentrations. We also show how flexion measurements can be used to reconstruct mass maps in two-dimensional projection on the sky, and in three dimensions in combination with redshift data. Finally, we examine the predictions for cosmic flexion, including convergence–flexion cross-correlations, and we find that the signal is an effective probe of structure on non-linear scales.  相似文献   

8.
9.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

10.
We present the results of microlens ray-tracing simulations showing the effect of absorbing material between a source quasar and a lensing galaxy in a gravitational lens system. We find that, in addition to brightness fluctuations due to microlensing, the strength of the absorption line relative to the continuum varies with time, with the properties of the variations depending on the structure of the absorbing material. We conclude that such variations will be measurable via ultraviolet spectroscopy of image A of the gravitationally lensed quasar Q2237+0305 if the Lyman α clouds between the quasar and the lensing galaxy possess structure on scales smaller than ∼0.1 pc. The time-scale for the variations is on the order of years to decades, although very short-term variability can occur. While the Lyman α lines may not be accessible at all wavelengths, this approach is applicable to any absorption system, including metal lines.  相似文献   

11.
We use the Millennium Simulation (MS) to measure the cross-correlation between halo centres and mass (or equivalently the average density profiles of dark haloes) in a Lambda cold dark matter (ΛCDM) cosmology. We present results for radii in the range  10  h −1 kpc < r < 30  h −1 Mpc  and for halo masses in the range  4 × 1010 < M 200 < 4 × 1014  h −1 M  . Both at   z = 0  and at   z = 0.76  these cross-correlations are surprisingly well fitted if the inner region is approximated by a density profile of NFW or Einasto form, the outer region by a biased version of the linear mass autocorrelation function, and the maximum of the two is adopted where they are comparable. We use a simulation of galaxy formation within the MS to explore how these results are reflected in cross-correlations between galaxies and mass. These are directly observable through galaxy–galaxy lensing. Here also we find that simple models can represent the simulation results remarkably well, typically to ≲10 per cent. Such models can be used to extend our results to other redshifts, to cosmologies with other parameters, and to other assumptions about how galaxies populate dark haloes. Our galaxy formation simulation already reproduces current galaxy–galaxy lensing data quite well. The characteristic features predicted in the galaxy–galaxy lensing signal should provide a strong test of the ΛCDM cosmology as well as a route to understanding how galaxies form within it.  相似文献   

12.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

13.
One of the most direct routes for investigating the geometry of the Universe is provided by the numbers of strongly magnified gravitationally lensed galaxies as compared with those that are either weakly magnified or de-magnified. In the submillimetre waveband the relative abundance of strongly lensed galaxies is expected to be larger as compared with the optical or radio wavebands, both in the field and in clusters of galaxies. The predicted numbers depend on the properties of the population of faint galaxies in the submillimetre waveband, which was formerly very uncertain; however, recent observations of lensing clusters have reduced this uncertainty significantly and confirm that a large sample of galaxy–galaxy lenses could be detected and investigated using forthcoming facilities, including the FIRST and Planck Surveyor space missions and a large ground-based millimetre/submillimetre-wave interferometer array (MIA). We discuss how this sample could be used to impose limits on the values of cosmological parameters and the total density and form of evolution of the mass distribution of bound structures, even in the absence of detailed lens modelling for individual members of the sample. The effects of different world models on the form of the magnification bias expected in sensitive submillimetre-wave observations of clusters are also discussed, because an MIA could resolve and investigate images in clusters in detail.  相似文献   

14.
Observational evidence shows that gravitational lensing induces an angular correlation between the distribution of galaxies and much more distant QSOs. We use weak gravitational lensing theory to calculate this angular correlation, updating previous calculations and presenting new results exploring the dependence of the correlation on the large-scale structure. We study the dependence of the predictions on a variety of cosmological models, such as cold dark matter models, mixed dark matter models and models based on quintessence. We also study the dependence on the assumptions made about the nature of the primordial fluctuation spectrum: adiabatic, isocurvature and power spectra motivated by the cosmic string scenario are investigated. Special attention is paid to the issue of galaxy biasing, which is fully incorporated. We show that different mass power spectra imply distinct predictions for the angular correlation, and therefore the angular correlation provides an extra source of information about cosmological parameters and mechanisms of structure formation. We compare our results with observational data and discuss their potential uses. In particular, it is suggested that the observational determination of the galaxy–QSO correlation may be used to give an independent measurement of the mass power spectrum.  相似文献   

15.
The high-redshift radio-loud quasar PKS 2126−158 is found to have a large number of red galaxies in close apparent proximity. We use the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to obtain optical spectra for a large fraction of these sources. We show that there is a group of galaxies at   z ∼ 0.66  , coincident with a metal-line absorption system seen in the quasar's optical spectrum. The multiplexing capabilities of GMOS also allow us to measure redshifts of many foreground galaxies in the field surrounding the quasar.
The galaxy group has five confirmed members, and a further four fainter galaxies are possibly associated. All confirmed members exhibit early-type galaxy spectra, a rare situation for a Mg  ii absorbing system. We discuss the relationship of this group to the absorbing gas, and the possibility of gravitational lensing of the quasar due to the intervening galaxies.  相似文献   

16.
We have observed the galaxy environments around a sample of 21 radio-loud, steep-spectrum quasars at 0.5≤ z ≤0.82, spanning several orders of magnitude in radio luminosity. The observations also include background control fields used to obtain the excess number of galaxies in each quasar field. The galaxy excess was quantified using the spatial galaxy–quasar correlation amplitude, B gq, and an Abell-type measurement, N 0.5. A few quasars are found in relatively rich clusters, but on average, they seem to prefer galaxy groups or clusters of approximately Abell class 0. We have combined our sample with literature samples extending down to z ≈0.2 and covering the same range in radio luminosity. By using the Spearman statistic to disentangle redshift and luminosity dependences, we detect a weak, but significant, positive correlation between the richness of the quasar environment and the radio luminosity of the quasar. However, we do not find any epoch dependence in B gq, as has previously been reported for radio quasars and galaxies. We discuss the radio luminosity–cluster richness link and possible explanations for the weak correlation that is seen.  相似文献   

17.
Clusters of galaxies offer a robust test bed for probing the nature of dark matter that is insensitive to the assumption of the gravity theories. Both Modified Newtonian Dynamics (MOND) and General Relativity (GR) would require similar amounts of non-baryonic matter in clusters as MOND boosts the gravity only mildly on cluster scales. Gravitational lensing allows us to estimate the enclosed mass in clusters on small (∼20–50 kpc) and large (∼several 100 kpc) scales independent of the assumptions of equilibrium. Here, we show for the first time that a combination of strong and weak gravitational lensing effects can set interesting limits on the phase-space density of dark matter in the centres of clusters. The phase-space densities derived from lensing observations are inconsistent with neutrino masses ranging from 2–7 eV, and hence do not support the 2 eV-range particles required by MOND. To survive, the most plausible modification for MOND may be an additional degree of dynamical freedom in a covariant incarnation.  相似文献   

18.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

19.
We report the discovery of a new gravitational lens system. This object, ULAS J234311.93-005034.0, is the first to be selected by using the new UKIRT Infrared Deep Sky Survey (UKIDSS), together with the Sloan Digital Sky Survey (SDSS). The ULAS J234311.93-005034.0 system contains a quasar at redshift 0.788 which is doubly imaged, with separation 1.4 arcsec. The two quasar images have the same redshift and similar, though not identical, spectra. The lensing galaxy is detected by subtracting point spread functions from R -band images taken with the Keck telescope. The lensing galaxy can also be detected by subtracting the spectra of the A and B images, since more of the galaxy light is likely to be present in the latter. No redshift is determined from the galaxy, although the shape of its spectrum suggests a redshift of about 0.3. The object's lens status is secure, due to the identification of two objects with the same redshift together with a lensing galaxy. Our imaging suggests that the lens is found in a cluster environment, in which candidate arc-like structures, that require confirmation, are visible in the vicinity. Further discoveries of lenses from the UKIDSS survey are likely as part of this programme, due to the depth of UKIDSS and its generally good seeing conditions.  相似文献   

20.
We study the amplitude of the weak gravitational lensing signal as a function of stellar mass around a sample of relatively isolated galaxies. This selection of lenses simplifies the interpretation of the observations, which consist of data from the Red-Sequence Cluster Survey and the Sloan Digital Sky Survey. We find that the amplitude of the lensing signal as a function of stellar mass is well described by a power law with a best-fitting slope  α= 0.74 ± 0.08  . This result is inconsistent with modified Newtonian dynamics (MOND), which predicts  α= 0.5  (we find  α > 0.5  with 99.7 per cent confidence). As a related test, we determine the MOND mass-to-light ratio as a function of luminosity. Our results require dark matter for the most luminous galaxies ( L ≳ 1011 L). We rule out an extended halo of gas or active neutrinos as a way of reconciling our findings with MOND. Although we focus on a single alternative gravity model, we note that our results provide an important test for any alternative theory of gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号