首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absolute elevation error in digital elevation models (DEMs) can be within acceptable National Map Accuracy standards, but still have dramatic impacts on field-level estimates of surface water flow direction, particularly in level regions. We introduce and evaluate a new method for quantifying uncertainty in flow direction rasters derived from DEMs. The method utilizes flow direction values derived from finer resolution digital elevation data to estimate uncertainty, on a cell-by-cell basis, in flow directions derived from coarser digital elevation data. The result is a quantification and spatial distribution of flow direction uncertainty at both local and regional scales. We present an implementation of the method using a 10-m DEM and a reference 1-m lidar DEM. The method contributes to scientific understanding of DEM uncertainty propagation and modeling and can inform hydrological analyses in engineering, agriculture, and other disciplines that rely on simulations of surface water flow.  相似文献   

2.
Digital elevation models (DEMs) have been widely used for a range of applications and form the basis of many GIS-related tasks. An essential aspect of a DEM is its accuracy, which depends on a variety of factors, such as source data quality, interpolation methods, data sampling density and the surface topographical characteristics. In recent years, point measurements acquired directly from land surveying such as differential global positioning system and light detection and ranging have become increasingly popular. These topographical data points can be used as the source data for the creation of DEMs at a local or regional scale. The errors in point measurements can be estimated in some cases. The focus of this article is on how the errors in the source data propagate into DEMs. The interpolation method considered is a triangulated irregular network (TIN) with linear interpolation. Both horizontal and vertical errors in source data points are considered in this study. An analytical method is derived for the error propagation into any particular point of interest within a TIN model. The solution is validated using Monte Carlo simulations and survey data obtained from a terrestrial laser scanner.  相似文献   

3.
Airborne LiDAR (light detection and ranging) data are now commonly regarded as the most accurate source of elevation data for medium-scale topographical modelling applications. However, quoted LiDAR elevation error may not necessarily represent the actual errors occurring across all surfaces, potentially impacting the reliability of derived predictions in Geographical Information Systems (GIS). The extent to which LiDAR elevation error varies in association with land cover, vegetation class and LiDAR data source is quantified relative to dual-frequency global positioning system survey data captured in a 400-ha area in Ireland, where four separate classes of LiDAR point data overlap. Quoted elevation errors are found to correspond closely with the minimum requirement recommended by the American Society of Photogrammetry and Remote Sensing for the definition of 95% error in urban areas only. Global elevation errors are found to be up to 5 times the quoted error, and errors within vegetation areas are found to be even larger, with errors in individual vegetation classes reaching up to 15 times the quoted error. Furthermore, a strong skew is noted in vegetated areas within all the LiDAR data sets tested, pushing errors in some cases to more than 25 times the quoted error. The skew observed suggests that an assumption of a normal error distribution is inappropriate in vegetated areas. The physical parameters that were found to affect elevation error most fundamentally were canopy depth, canopy density and granularity. Other factors observed to affect the degree to which actual errors deviate from quoted error included the primary use for which the data were acquired and the processing applied by data suppliers to meet these requirements.  相似文献   

4.
The detailed topographic information contained in light detection and ranging (LiDAR) digital elevation models (DEMs) can present significant challenges for modelling surface drainage patterns. These data frequently represent anthropogenic infrastructure, such as road embankments and drainage ditches. While LiDAR DEMs can improve estimates of catchment boundaries and surface flow paths, modelling efforts are often confounded difficulties associated with incomplete representation of infrastructure. The inability of DEMs to represent embankment underpasses (e.g. bridges, culverts) and the problems with existing automated techniques for dealing with these problems can lead to unsatisfactory results. This is often dealt with by manually modifying LiDAR DEMs to incorporate the effects of embankment underpasses. This paper presents a new DEM pre-processing algorithm for removing the artefact dams created by infrastructure in sites of embankment underpasses as well as enforcing flow along drainage ditches. The application of the new algorithm to a large LiDAR DEM of a site in Southwestern Ontario, Canada, demonstrated that the least-cost breaching method used by the algorithm could reliably enforce drainage pathways while minimizing the impact to the original DEM.  相似文献   

5.
This paper proposes and illustrates a decision analytical approach to compare the value of alternative spatial data sets. In contrast to other work addressing value of information, its focus is on value of control. This is a useful concept when choosing the best data set for decision making under uncertainty due to error in the reported data. Application of the concept requires probabilistic accuracy measures and a loss function representing the cost of incorrect judgement about some target property. This is illustrated by an assessment of the suitability of two digital elevation models (DEMs) for determining the volume of sand required for building a container port. To demonstrate flexibility of the approach, accuracy assessment was based on both a random and a systematic sample of error data, using design-based estimation and model-based prediction, that is geostatistics. Analysis results included the expected loss for each combination of DEM and sampling strategy. These indicated that both DEMs were equally suitable for the intended use. Operational practicability of the method is highly dependent on the willingness of database producers to give access to sample information similar to the quick looks provided to potential users of remote sensing imagery.  相似文献   

6.
Digital elevation models (DEMs) vary in resolution and accuracy by the production method. DEMs with different resolutions and accuracies can generate varied topographic and hydrological features, which can in turn affect predictions by soil erosion models, such as the WEPP (Water Erosion Prediction Project) model. This study investigates the effects of DEMs on deriving topographic and hydrological attributes, and on predicting watershed erosion using WEPP v2006.5. Six DEMs at three resolutions from three sources were prepared for two small forested watersheds located in northern Idaho, USA. These DEMs were used to calculate topographic and hydrological parameters that served as inputs to WEPP. The model results of sediment yields and runoffs were compared with field observations. For both watersheds, DEMs with different resolutions and sources generated varied watershed shapes and structures, which in turn led to different extracted hill slope and channel lengths and gradients, and produced substantially different erosion predictions by WEPP.  相似文献   

7.
Digital elevation model (DEM) elevation accuracy and spatial resolution are typically considered before a given DEM is used for the assessment of coastal flooding, sea-level rise or erosion risk. However, limitations of DEMs arising from their original data source can often be overlooked during DEM selection. Global elevation error statistics provided by DEM data suppliers can provide a useful indicator of actual DEM error, but these statistics can understate elevation errors occurring outside of idealised ground reference areas. The characteristic limitations of a range of DEM sources that may be used for the assessment of coastal inundation and erosion risk are tested using high-resolution photogrammetric, low- and medium-resolution global positioning system (GPS)-derived and very high-resolution terrestrial laser scanning point data sets. Errors detected in a high-resolution photogrammetric DEM are found to be substantially beyond quoted error, demonstrating the degree to which quoted DEM accuracy can understate local DEM error and highlighting the extent to which spatial resolution can fail to provide a reliable indicator of DEM accuracy. Superior accuracies and inundation prediction results are achieved based on much lower-resolution GPS points confirming conclusions drawn in the case of the photogrammetric DEM data. This suggests a scope for the use of GPS-derived DEMs in preference to the photogrammetric DEM data in large-scale risk-mapping studies. DEM accuracies and superior representation of micro-topography achieved using high-resolution terrestrial laser scan data confirm its advantages for the prediction of subtle inundation and erosion risk. However, the requirement for data fusion of GPS to remove ground-vegetation error highlighted limitations for the use of side-scan laser scan data in densely vegetated areas.  相似文献   

8.
As sea level is projected to rise throughout the twenty-first century due to climate change, there is a need to ensure that sea level rise (SLR) models accurately and defensibly represent future flood inundation levels to allow for effective coastal zone management. Digital elevation models (DEMs) are integral to SLR modelling, but are subject to error, including in their vertical resolution. Error in DEMs leads to uncertainty in the output of SLR inundation models, which if not considered, may result in poor coastal management decisions. However, DEM error is not usually described in detail by DEM suppliers; commonly only the RMSE is reported. This research explores the impact of stated vertical error in delineating zones of inundation in two locations along the Devon, United Kingdom, coastline (Exe and Otter Estuaries). We explore the consequences of needing to make assumptions about the distribution of error in the absence of detailed error data using a 1 m, publically available composite DEM with a maximum RMSE of 0.15 m, typical of recent LiDAR-derived DEMs. We compare uncertainty using two methods (i) the NOAA inundation uncertainty mapping method which assumes a normal distribution of error and (ii) a hydrologically correct bathtub method where the DEM is uniformly perturbed between the upper and lower bounds of a 95% linear error in 500 Monte Carlo Simulations (HBM+MCS). The NOAA method produced a broader zone of uncertainty (an increase of 134.9% on the HBM+MCS method), which is particularly evident in the flatter topography of the upper estuaries. The HBM+MCS method generates a narrower band of uncertainty for these flatter areas, but very similar extents where shorelines are steeper. The differences in inundation extents produced by the methods relate to a number of underpinning assumptions, and particularly, how the stated RMSE is interpreted and used to represent error in a practical sense. Unlike the NOAA method, the HBM+MCS model is computationally intensive, depending on the areas under consideration and the number of iterations. We therefore used the HBM+ MCS method to derive a regression relationship between elevation and inundation probability for the Exe Estuary. We then apply this to the adjacent Otter Estuary and show that it can defensibly reproduce zones of inundation uncertainty, avoiding the computationally intensive step of the HBM+MCS. The equation-derived zone of uncertainty was 112.1% larger than the HBM+MCS method, compared to the NOAA method which produced an uncertain area 423.9% larger. Each approach has advantages and disadvantages and requires value judgements to be made. Their use underscores the need for transparency in assumptions and communications of outputs. We urge DEM publishers to move beyond provision of a generalised RMSE and provide more detailed estimates of spatial error and complete metadata, including locations of ground control points and associated land cover.  相似文献   

9.
This paper focuses on two common problems encountered when using Light Detection And Ranging (LiDAR) data to derive digital elevation models (DEMs). Firstly, LiDAR measurements are obtained in an irregular configuration and on a point, rather than a pixel, basis. There is usually a need to interpolate from these point data to a regular grid so it is necessary to identify the approaches that make best use of the sample data to derive the most accurate DEM possible. Secondly, raw LiDAR data contain information on above‐surface features such as vegetation and buildings. It is often the desire to (digitally) remove these features and predict the surface elevations beneath them, thereby obtaining a DEM that does not contain any above‐surface features. This paper explores the use of geostatistical approaches for prediction in this situation. The approaches used are inverse distance weighting (IDW), ordinary kriging (OK) and kriging with a trend model (KT). It is concluded that, for the case studies presented, OK offers greater accuracy of prediction than IDW while KT demonstrates benefits over OK. The absolute differences are not large, but to make the most of the high quality LiDAR data KT seems the most appropriate technique in this case.  相似文献   

10.
Digital elevation models (DEMs) given by spheroidal trapezoidal grids are more appropriate for large regional, sub-continental, continental and global geological and soil studies than square-spaced DEMs. Here we develop a method for derivation of topographic variables, specifically horizontal (k) and vertical h (k) landsurface curvatures, from spheroidal trapezoidal-spaced DEMs. First, we v derive equations for calculation of partial derivatives of elevation with DEMs of this sort. Second, we produce formulae for estimation of the method accuracy in terms of root mean square errors of partial derivatives of elevation, as well as k h and k (m and m respectively). We design the method for the case that the v kh k v Earth's shape can be ignored, that is, for DEM grid sizes of no more than 225 km. We test the method by the example of fault recognition using a DEM of a part of Central Eurasia. A comparative analysis of test results and factual geological data demonstrates that the method actually works in regions marked by complicated topographic and tectonic conditions. Upon increasing DEM grid size, one can produce generalised maps of k and k. Spatial distributions of m and m h v kh k v depend directly on the distribution of elevation RMSE. Areas with high values of m are marked by low values of m, and vice versa, areas with high values kh k v of m are marked by low values of m. Data on m and m should be utilised k v kh kh k v to control and improve applications of k and k to geological studies. The method h v developed opens up new avenues for carrying out some 'conventional' raster operations directly on geographical co-ordinates.  相似文献   

11.
S. Rayburg  M. Thoms  M. Neave 《Geomorphology》2009,106(3-4):261-270
It can be challenging to accurately determine the topography of physically complex landscapes in remote areas. Ground-based surveys can be difficult, time consuming and may miss significant elements of the landscape. This study compares digital elevation models (DEMs) generated from three different data sources, of the physically complex Narran Lakes Ecosystem, a major floodplain wetland ecosystem in Australia. Topographic surfaces were generated from an airborne laser altimetry (LiDAR) survey, a ground-based differential GPS (DGPS) survey containing more than 20,000 points, and the 9″ DEM of Australia. The LiDAR- and DGPS-derived data generated a more thorough DEM than the 9″ DEM; however, LiDAR generated a surface topography that yielded significantly more detail than the DGPS survey, with no noticeable loss of elevational accuracy. Both the LiDAR- and the DGPS-derived DEMs compute the overall surface area and volume of the largest floodplain lake within the system to within 1% of each other. LiDAR is shown to be a highly accurate and robust technique for acquiring large quantities of topographic data, even in locations that are unsuitable for ground surveying and where the overall landscape is of exceptionally low relief. The results of this study highlight the potential for LiDAR surveys in the accurate determination of the topography of floodplain wetlands. These data can form an important component of water resource management decisions, particularly where environmental water allocations for these important ecosystems need to be determined.  相似文献   

12.
The geometry of impounded surfaces is a key tool to reservoir storage management and projection. Yet topographic data and bathymetric surveys of average-aged reservoirs may be absent for many regions worldwide. This paper examines the potential of contour line interpolation (TOPO) and Structure from Motion (SfM) photogrammetry to reconstruct the topography of existing reservoirs prior to dam closure. The study centres on the Paso de las Piedras reservoir, Argentina, and assesses the accuracy and reliability of TOPO- and SfM- derived digital elevation models (DEMs) using different grid resolutions. All DEMs were of acceptable quality. However, different interpolation techniques produced different types of error, which increased (or decreased) with increasing (or decreasing) grid resolution as a function of their nature, and relative to the terrain complexity. In terms of DEM reliability to reproduce area–elevation relationships, processing-related disagreements between DEMs were markedly influenced by topography. Even though they produce intrinsic errors, it is concluded that both TOPO and SfM techniques hold great potential to reconstruct the bathymetry of existing reservoirs. For areas exhibiting similar terrain complexity, the implementation of one or another technique will depend ultimately on the need for preserving accurate elevation (TOPO) or topographic detail (SfM).  相似文献   

13.
Influence of survey strategy and interpolation model on DEM quality   总被引:2,自引:0,他引:2  
Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at slope breaks such as bank edges. A series of curves are presented that demonstrate these relationships for each interpolation and survey strategy. The simulated aerial LiDAR data set displayed the lowest errors across the flatter surfaces; however, sharp slope breaks are better modelled by the morphologically based survey strategy. The curves presented have general application to spatially distributed data of river beds and may be applied to standard deviation grids to predict spatial error within a surface, depending upon sampling strategy and interpolation algorithm.  相似文献   

14.
基于数字高程模型(DEM)计算得到的坡度、坡向等地形属性是滑坡危险性评价模型的重要输入数据, DEM误差会导致地形属性计算结果不确定性, 进而影响滑坡危险性评价模型的结果。本文选择基于专家知识的滑坡危险性评价模型和逻辑斯第回归模型, 采用蒙特卡洛模拟方法, 研究DEM误差所导致的滑坡危险性评价模型结果不确定性。研究区位于长江中上游的重庆开县, 采用5 m分辨率的DEM, 以序贯高斯模拟方法模拟了不同大小(误差标准差为1 m、7.5 m、15 m)和空间自相关性(变程为0 m、30 m、60 m、120 m)的12 类DEM误差场参与滑坡危险性评价。每次模拟包括100 个实现, 通过对每次模拟分别计算滑坡危险性评价结果的标准差图层和分类一致性百分比图层, 用以评价结果不确定性。评价结果表明, 在不同的DEM精度下, 两个滑坡危险性评价模型所得结果的总体不确定性随空间自相关程度的变化趋势并不相同。当DEM空间自相关性程度不同时, 基于专家知识的滑坡危险性评价模型的评价结果总体不确定随着DEM误差增加而呈现不同的变化趋势, 而逻辑斯第回归模型的评价结果总体不确定性随着DEM误差大小增加而单调增加。从评价结果总体不确定性角度而言, 总体上逻辑斯第回归模型比基于专家知识的滑坡危险性评价模型更加依赖于DEM数据质量。  相似文献   

15.
There are three major mathematical problems in digital terrain analysis: (1) interpolation of digital elevation models (DEMs); (2) DEM generalization and denoising; and (3) computation of morphometric variables through calculating partial derivatives of elevation. Traditionally, these three problems are solved separately by means of procedures implemented in different methods and algorithms. In this article, we present a universal spectral analytical method based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejér summation. The method is intended for the processing of regularly spaced DEMs within a single framework including DEM global approximation, denoising, generalization, as well as calculating the partial derivatives of elevation and local morphometric variables.

The method is exemplified by a portion of the Great Rift Valley and central Kenyan highlands. A DEM of this territory (the matrix 480 × 481 with a grid spacing of 30″) was extracted from the global DEM SRTM30_PLUS. We evaluated various sets of expansion coefficients (up to 7000) to approximate and reconstruct DEMs with and without the Fejér summation. Digital models of horizontal and vertical curvatures were computed using the first and second partial derivatives of elevation derived from the reconstructed DEMs. To evaluate the approximation accuracy, digital models of residuals (differences between the reconstructed DEMs and the initial one) were calculated. The test results demonstrated that the method is characterized by a good performance (i.e., a distinct monotonic convergence of the approximation) and a high speed of data processing. The method can become an effective alternative to common techniques of DEM processing.  相似文献   


16.
DEM提取黄土高原地面坡度的不确定性   总被引:72,自引:0,他引:72  
选择陕北黄土高原6个典型地貌类型区为试验样区,采用野外实测及高精度的1:1万比例尺DEM为基准数据,研究栅格分辨率及地形粗糙度对DEM所提取地面平均坡度精度的影响。结果显示,对于1:1万比例尺DEM,5 m是保证该地区地形描述精度的理想分辨率尺度;多要素逐步回归模拟的方法进一步揭示了DEM所提取的地面平均坡度误差E与栅格分辨率X以及地形起伏的代表性因子-沟壑密度S之间存在的量化关系为E = (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625,该结果也为确定适用的DEM分辨率提供了理论依据。  相似文献   

17.
Slope is one of the crucial terrain variables in spatial analysis and land use planning,especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas,but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

18.
Slope is one of the crucial terrain variables in spatial analysis and land use planning, especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas, but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as(0.0015S2 0.031S-0.0325)X-0.0045S2-0.155S 0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

19.
Slope is one of the crucial terrain variables in spatial analysis and land use planning, especially in the Loess Plateau area of China which is suffering from serious soil erosion. DEM based slope extracting method has been widely accepted and applied in practice. However slope accuracy derived from this method usually does not match with its popularity. A quantitative simulation to slope data uncertainty is important not only theoretically but also necessarily to applications. This paper focuses on how resolution and terrain complexity impact on the accuracy of mean slope extracted from DEMs of different resolutions in the Loess Plateau of China. Six typical geomorphologic areas are selected as test areas, representing different terrain types from smooth to rough. Their DEMs are produced from digitizing contours of 1:10,000 scale topographic maps. Field survey results show that 5 m should be the most suitable grid size for representing slope in the Loess Plateau area. Comparative and math-simulation methodology was employed for data processing and analysis. A linear correlativity between mean slope and DEM resolution was found at all test areas, but their regression coefficients related closely with the terrain complexity of the test areas. If taking stream channel density to represent terrain complexity, mean slope error could be regressed against DEM resolution (X) and stream channel density (S) at 8 resolution levels and expressed as (0.0015S2+0.031S-0.0325)X-0.0045S2-0.155S+0.1625, with a R2 value of over 0.98. Practical tests also show an effective result of this model in applications. The new development methodology applied in this study should be helpful to similar researches in spatial data uncertainty investigation.  相似文献   

20.
Viewshed and line-of-sight are spatial analysis functions used in applications ranging from urban design to archaeology to hydrology. Vegetation data, a difficult variable to effectively emulate in computer models, is typically omitted from visibility calculations or unrealistically simulated. In visibility analyzes performed on a small scale, where calculation distances are a few hundred meters or less, ineffective incorporation of vegetation can lead to significant modeling error. Using an aerial LiDAR (light detection and ranging) data set of a lodgepole pine (Pinus contorta) dominant ecosystem in Idaho, USA, tree obstruction metrics were derived and integrated into a short-range visibility model. A total of 15 visibility plots were set at a micro-scale level, with visibility modeled to a maximum of 50 m from an observation point. Digital photographs of a 1 m2 target set at 5 m increments along three sightline paths for each visibility plot were used to establish control visibility values. Trunk obstructions, derived from mean vegetation height LiDAR data and processed through a series of tree structure algorithms, were factored into visibility calculations and compared to reference data. Results indicate the model calculated using trunk obstructions with LiDAR demonstrated a mean error of 8.8% underestimation of target visibility, while alternative methods using mean vegetation height and bare-earth models have an underestimation of 65.7% and overestimation of 31.1%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号