首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several alternative estimation and interpolation methods for making annual precipitation maps of Asturias are analysed. The data series in this study corresponds to the year 2003. There exists an evident relationship between precipitation and altitude, with a high correlation coefficient of 0.70, that reflects the hillside effect; that is, the increase in the amount of precipitation in more mountainous areas. The direct spatial variability of precipitation and of altitude and the cross variability of precipitation–altitude are defined by two exponential variogram models: one with a short-range structure (15–30 km) that reflects the control exerted by the lesser, local mountain ranges over the amount of precipitation; and another with a long-range structure (80 km) that supposes the influence over precipitation of the major mountainous alignments of the inland areas of the Cantabrian Mountain Range (Cordillera Cantábrica) situated between 60 and 90 km from the coastline. These variogram models had to be validated for coregionalization by the Pardo-Igúzquiza and Dowd method so as to be able to make the cokriging map. The geometric estimation methods employed were triangulation and inverse distance. The geostatistical estimation methods developed were simple kriging, ordinary kriging, kriging with a trend model (universal kriging), lognormal kriging, and cokriging. In all of these methods, a 3 × 3 km2 grid was selected with a total of 2580 points to estimate, a circular search window of 60 km, and a relatively small number of samples with the aim of highlighting the local features and variations on isohyet maps. The kriging methods were implemented using the WinGslib software, incorporating two specific programs, Prog2 and Fichsurf, so as to be able then to make isohyet maps using the Surfer software. All the methods employed, apart from triangulation, rendered realistic maps with good fits to the values of the original data (precipitation) of the sample maps. The problem with triangulation lies not in the reliability of the estimates but in the fact that it gives rise to contrived maps because of the tendency of isohyets to present abundant triangular facets. The reliability of the methods was based on cross-validation analysis and on evaluation of the different types of errors, both in their values and in their graphical representations. Substantial differences were not found in the values of the errors that might discriminate some methods from others in an evident way. Bearing the aforesaid in mind, should we have to make an evaluation of the different estimation methods in decreasing order of acceptance, this would be: kriging with a trend model, inverse distance, cokriging, lognormal kriging, ordinary kriging, simple kriging, and triangulation. The application of other estimation methods such as colocated cokriging, kriging with an external drift, and kriging of variable local means (residual kriging) is dependent on the availability of a digital model of the terrain with an altitude grid of the region.  相似文献   

2.
Spatial interpolation of marine environment data using P-MSN   总被引:1,自引:0,他引:1  
ABSTRACT

When a marine study area is large, the environmental variables often present spatially stratified non-homogeneity, violating the spatial second-order stationary assumption. The stratified non-homogeneous surface can be divided into several stationary strata with different means or variances, but still with close relationships between neighboring strata. To give the best linear-unbiased estimator for those environmental variables, an interpolated version of the mean of the surface with stratified non-homogeneity (MSN) method called point mean of the surface with stratified non-homogeneity (P-MSN) was derived. P-MSN distinguishes the spatial mean and variogram in different strata and borrows information from neighboring strata to improve the interpolation precision near the strata boundary. This paper also introduces the implementation of this method, and its performance is demonstrated in two case studies, one using ocean color remote sensing data, and the other using marine environment monitoring data. The predictions of P-MSN were compared with ordinary kriging, stratified kriging, kriging with an external drift, and empirical Bayesian kriging, the most frequently used methods that can handle some extent of spatial non-homogeneity. The results illustrated that for spatially stratified non-homogeneous environmental variables, P-MSN outperforms other methods by simultaneously improving interpolation precision and avoiding artificially abrupt changes along the strata boundaries.  相似文献   

3.
Geographically weighted spatial statistical methods are a family of spatial statistical methods developed to address the presence of non-stationarity in geographical processes, the so-called spatial heterogeneity. While these methods have recently become popular for analysis of spatial data, one of their characteristics is that they produce outputs that in themselves form complex multi-dimensional spatial data sets. Interpretation of these outputs is therefore not easy, but is of high importance, since spatial and non-spatial patterns in the results of these methods contain clues to causes of underlying non-stationarity. In this article, we focus on one of the geographically weighted methods, the geographically weighted discriminant analysis (GWDA), which is a method for prediction and analysis of categorical spatial data. It is an extension of linear discriminant analysis (LDA) that allows the relationship between the predictor variables and the categories to vary spatially. This produces a very complex data set of GWDA results, which include on top of the already complex discriminant analysis outputs (e.g. classifications and posterior probabilities) also spatially varying outputs (e.g. classification function parameters). In this article, we suggest using geovisual analytics to visualise results from LDA and GWDA to facilitate comparison between the global and local method results. For this, we develop a bespoke visual methodology that allows us to examine the performance of global and local classification method in terms of quality of classification. Furthermore, we are also interested in identifying the presence (or absence) of non-stationarity through comparison of the outputs of both methods. We do this in two ways. First, we visually explore spatial autocorrelation in both LDA and GWDA misclassifications. Second, we focus on relationships between the classification result and the independent variables and how they vary over space. We describe our visual analytic system for exploration of LDA and GWDA outputs and demonstrate our approach on a case study using a data set linking election results with a selection of socio-economic variables.  相似文献   

4.
This article describes a proposed work-sequence to generate accurate reservoir-architecture models, describing the geometry of bounding surfaces (i.e., fault locations and extents), of a structurally complex geologic setting in the Jeffara Basin (South East Tunisia) by means of geostatistical modeling. This uses the variogram as the main tool to measure the spatial variability of the studied geologic medium before making any estimation or simulation. However, it is not always easy to fit complex experimental variograms to theoretical models. Thus, our primary purpose was to establish a relationship between the geology and the components of the variograms to fit a mathematically consistent and geologically interpretable variogram model for improved predictions of surface geometries. We used a three-step approach based on available well data and seismic information. First, we determined the structural framework: a seismo-tectonic data analysis was carried out, and we showed that the study area is cut mainly by NW–SE-trending normal faults, which were classified according to geometric criteria (strike, throw magnitude, dip, and dip direction). We showed that these normal faults are at the origin of a large-scale trend structure (surfaces tilted toward the north-east). At a smaller scale, the normal faults create a distinct compartmentalization of the reservoirs. Then, a model of the reservoir system architecture was built by geostatistical methods. An efficient methodology was developed, to estimate the bounding faulted surfaces of the reservoir units. Emphasis was placed on (i) elaborating a methodology for variogram interpretation and modeling, whereby the importance of each variogram component is assessed in terms of probably geologic factor controlling the behavior of each structure; (ii) integrating the relevant fault characteristics, which were deduced from the previous fault classification analysis, as constraints in the kriging estimation of bounding surfaces to best reflect the geologic structure of the study area. Finally, the estimated bounding surfaces together with seismic data and variogram interpretations were used to obtain further insights into the tectonic evolution of the study area that has induced the current reservoirs configuration.  相似文献   

5.
Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species–habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as the selection of variables themselves. In this study, we combined bivariate scaling and Maximum entropy (Maxent) modeling to investigate multiscale habitat selection of endangered brown bear (Ursus arctos) populations in northwest Spain. Bivariate scaling showed that the strength of apparent habitat relationships was highly sensitive to the scale at which predictor variables are evaluated. Maxent models on the optimal scale for each variable suggested that landscape composition together with human disturbances was dominant drivers of bear habitat selection, while habitat configuration and edge effects were substantially less influential. We found that explicitly optimizing the scale of habitat suitability models considerably improved single-scale modeling in terms of model performance and spatial prediction. We found that patterns of brown bear habitat suitability represent the cumulative influence of habitat selection across a broad range of scales, from local resources within habitat patches to the landscape composition at broader spatial scales.  相似文献   

6.

Experimental variograms are crucial for most geostatistical studies. In kriging, for example, the variography has a direct influence on the interpolation weights. Despite the great importance of variogram estimators in predicting geostatistical features, they are commonly influenced by outliers in the dataset. The effect of some randomly spatially distributed outliers can mask the pattern of the experimental variogram and produce a destructuration effect, implying that the true data spatial continuity cannot be reproduced. In this paper, an algorithm to detect and remove the effect of outliers in experimental variograms using the Mahalanobis distance is proposed. An example of the algorithm’s application is presented, showing that the developed technique is able to satisfactorily detect and remove outliers from a variogram.

  相似文献   

7.
Ordinary kriging (OK) has been used widely for ore-reserve estimation because of its superior characteristics in relation to other methods. One of these characteristics is related to the quantification of uncertainty by the kriging variance. However, the kriging variance does not recognize local data variability, which is an important issue in the process of ore-reserve estimation, when heterogeneous mineral deposits with richer and poorer parts are being evaluated. This paper proposes the use of interpolation variance as a reliable measure of local data variability and, therefore, adequate for ore-reserve classification. With a reliable measurement of data variability, local confidence can be calculated using the classical confidence interval around an estimate. Errors derived from local confidence then are used to assign classes according to a degree of certainty within some confidence level. Comparative tests using both OK variance and interpolation variance are carried out using exploration data from Chapada Copper Deposit, State of Goiás, Brazil. Results show that the interpolation variance provides a better way to measure uncertainty and consequently to classify reserves.  相似文献   

8.
Geographically weighted regression (GWR) is an important local technique to model spatially varying relationships. A single distance metric (Euclidean or non-Euclidean) is generally used to calibrate a standard GWR model. However, variations in spatial relationships within a GWR model might also vary in intensity with respect to location and direction. This assertion has led to extensions of the standard GWR model to mixed (or semiparametric) GWR and to flexible bandwidth GWR models. In this article, we present a strongly related extension in fitting a GWR model with parameter-specific distance metrics (PSDM GWR). As with mixed and flexible bandwidth GWR models, a back-fitting algorithm is used for the calibration of the PSDM GWR model. The value of this new GWR model is demonstrated using a London house price data set as a case study. The results indicate that the PSDM GWR model can clearly improve the model calibration in terms of both goodness of fit and prediction accuracy, in contrast to the model fits when only one metric is singly used. Moreover, the PSDM GWR model provides added value in understanding how a regression model’s relationships may vary at different spatial scales, according to the bandwidths and distance metrics selected. PSDM GWR deals with spatial heterogeneities in data relationships in a general way, although questions remain on its model diagnostics, distance metric specification, and computational efficiency, providing options for further research.  相似文献   

9.
The shuttle radar topography mission (SRTM), was flow on the space shuttle Endeavour in February 2000, with the objective of acquiring a digital elevation model of all land between 60° north latitude and 56° south latitude, using interferometric synthetic aperture radar (InSAR) techniques. The SRTM data are distributed at horizontal resolution of 1 arc‐second (~30 m) for areas within the USA and at 3 arc‐second (~90 m) resolution for the rest of the world. A resolution of 90 m can be considered suitable for the small or medium‐scale analysis, but it is too coarse for more detailed purposes. One alternative is to interpolate the SRTM data at a finer resolution; it will not increase the level of detail of the original digital elevation model (DEM), but it will lead to a surface where there is the coherence of angular properties (i.e. slope, aspect) between neighbouring pixels, which is an important characteristic when dealing with terrain analysis. This work intents to show how the proper adjustment of variogram and kriging parameters, namely the nugget effect and the maximum distance within which values are used in interpolation, can be set to achieve quality results on resampling SRTM data from 3” to 1”. We present for a test area in western USA, which includes different adjustment schemes (changes in nugget effect value and in the interpolation radius) and comparisons with the original 1” model of the area, with the national elevation dataset (NED) DEMs, and with other interpolation methods (splines and inverse distance weighted (IDW)). The basic concepts for using kriging to resample terrain data are: (i) working only with the immediate neighbourhood of the predicted point, due to the high spatial correlation of the topographic surface and omnidirectional behaviour of variogram in short distances; (ii) adding a very small random variation to the coordinates of the points prior to interpolation, to avoid punctual artifacts generated by predicted points with the same location than original data points and; (iii) using a small value of nugget effect, to avoid smoothing that can obliterate terrain features. Drainages derived from the surfaces interpolated by kriging and by splines have a good agreement with streams derived from the 1” NED, with correct identification of watersheds, even though a few differences occur in the positions of some rivers in flat areas. Although the 1” surfaces resampled by kriging and splines are very similar, we consider the results produced by kriging as superior, since the spline‐interpolated surface still presented some noise and linear artifacts, which were removed by kriging.  相似文献   

10.
喀斯特地区春季土壤水分空间插值方法对比   总被引:1,自引:0,他引:1  
以杨眉河小流域为研究区,通过土壤水分采样,选取辅助变量,采用普通克里金、协同克里金、回归克里金3种地统计学方法对土壤水分数据进行空间插值。结果表明:1)回归克里金对研究区土壤水分估算误差最小,其次为协克里金,普通克里金的误差最大;2)普通克里金生成的土壤水分表面最为平滑,而回归克里金最大程度反映了研究区实际的土壤水分空间变化;3)对于协同克里金,以湿度指数(WI)样点数据作为辅助变量的估算误差小于将WI栅格数据作为辅助变量的估算误差。总之,在可获得有效辅助变量的条件下,回归克里金对研究区土壤水分估算的效果优于协同克里金与普通克里金。  相似文献   

11.
农情遥感监测需要高时间分辨率的遥感数据,目前这些数据大都为中低空间分辨率影像。在这些尺度下,像元内部往往是异质的,从而影响农情参数反演精度。因此分析和表达农田景观空间异质性和最优尺度选择对遥感农情监测质量的提高具有重要的应用价值。选取建三江农垦区四种典型农田景观为研究点,Landsat/TM NDVI为实验数据,利用实验变异函数对四种景观类型的各向空间异质性进行了分析, 而后通过变异函数模型拟合,定量分析了各个研究点的整体空间异质性,并在此基础上进行了研究区遥感监测最优尺度选择。研究表明:(1) 基于实验变异函数的结构分析方法,可定性地认识空间异质性的大小和方向,进而挖掘出其背后的自然和人为驱动因素。(2) 对实验变异函数进行拟合分析,可定量地刻画不同景观格局各自的空间异质性特性。此外,基于变异函数对空间异质性的定量表达,讨论了利用积分变程A结合Nyquist-Shannon采样定理进行最优尺度选择的方法。  相似文献   

12.
An aspect of global change currently not well understood is how processes operating on spatial scales finer than those used in recent global circulation models (GCMs) contribute to changes in atmospheric composition and the subsequent changes in climate. We use the ‘IPAT’ formulation as a framework to test relationships among social driving forces and user group greenhouse gas (GHG) emissions in northwestern North Carolina. Using regression, correlation, and bivariate mapping to examine relationships between a suite of socioeconomic variables and GHG emissions for the residential, commercial/industrial, and agricultural end‐user categories, we find that various measures of population and affluence serve equally well as explanatory variables.  相似文献   

13.
Most forest fires in Korea are spatially concentrated in certain areas and are highly related to human activities. These site-specific characteristics of forest fires are analyzed by spatial regression analysis using the R-module generalized linear mixed model (GLMM), which can consider spatial autocorrelation. We examined the quantitative effect of topology, human accessibility, and forest cover without and with spatial autocorrelation. Under the assumption that slope, elevation, aspect, population density, distance from road, and forest cover are related to forest fire occurrence, the explanatory variables of each of these factors were prepared using a Geographic Information System-based process. First, we tried to test the influence of fixed effects on the occurrence of forest fires using a generalized linear model (GLM) with Poisson distribution. In addition, the overdispersion of the response data was also detected, and variogram analysis was performed using the standardized residuals of GLM. Second, GLMM was applied to consider the obvious residual autocorrelation structure. The fitted models were validated and compared using the multiple correlation and root mean square error (RMSE). Results showed that slope, elevation, aspect index, population density, and distance from road were significant factors capable of explaining the forest fire occurrence. Positive spatial autocorrelation was estimated up to a distance of 32 km. The kriging predictions based on GLMM were smoother than those of the GLM. Finally, a forest fire occurrence map was prepared using the results from both models. The fire risk decreases with increasing distance to areas with high population densities, and increasing elevation showed a suppressing effect on fire occurrence. Both variables are in accordance with the significance tests.  相似文献   

14.
ABSTRACT

Recently developed urban air quality sensor networks are used to monitor air pollutant concentrations at a fine spatial and temporal resolution. The measurements are however limited to point support. To obtain areal coverage in space and time, interpolation is required. A spatio-temporal regression kriging approach was applied to predict nitrogen dioxide (NO2) concentrations at unobserved space-time locations in the city of Eindhoven, the Netherlands. Prediction maps were created at 25 m spatial resolution and hourly temporal resolution. In regression kriging, the trend is separately modelled from autocorrelation in the residuals. The trend part of the model, consisting of a set of spatial and temporal covariates, was able to explain 49.2% of the spatio-temporal variability in NO2 concentrations in Eindhoven in November 2016. Spatio-temporal autocorrelation in the residuals was modelled by fitting a sum-metric spatio-temporal variogram model, adding smoothness to the prediction maps. The accuracy of the predictions was assessed using leave-one-out cross-validation, resulting in a Root Mean Square Error of 9.91 μg m?3, a Mean Error of ?0.03 μg m?3 and a Mean Absolute Error of 7.29 μg m?3. The method allows for easy prediction and visualization of air pollutant concentrations and can be extended to a near real-time procedure.  相似文献   

15.
中国土壤温度的空间插值方法比较   总被引:15,自引:1,他引:14  
利用中国698个气象站点1971~2000年的地面气候资料,采用三种不同方法预测中国0cm、20cm和40cm深度年均土壤温度的空间分布,其中普通克里格和泛克里格法直接以年均土壤温度数据为源数据、回归克里格法以中国年均气温数据和中国DEM数据为源数据进行预测。预测结果的准确性通过平均绝对误差(MAE)和均方根误差(RMSE)值来评价。结果表明回归克里格法预测的MAE值和RMSE值均为最小,说明其预测结果的准确性最好、预测的极端误差也最小;其次为泛克里格法;普通克里格法预测的效果最差。回归克里格法预测结果由于采用了中国DEM数据进行修正,在空间特征表达方面能够更好地表达复杂地形地区的局部变异,其平滑效应明显小于泛克里格法和普通克里格法的预测结果。  相似文献   

16.
“Krige”空间内插技术在地理学中的应用   总被引:24,自引:1,他引:24  
称为“Krige”技术的内插稀疏观测资料的随机方法是Matheron(1970年)提出的,D.R.Krige首先将这一方法应用于找矿上,因而命名于“Krige”技术。本文首先定义和说明了空间协方差曲线,基于无偏估计和最优原理导出了“Krige”内插权重系数的代数方程组,最后给出实例说明该方法如何应用到地理学和水文学中。  相似文献   

17.
Uncertainty Estimate in Resources Assessment: A Geostatistical Contribution   总被引:2,自引:0,他引:2  
For many decades the mining industry regarded resources/reserves estimation and classification as a mere calculation requiring basic mathematical and geological knowledge. Most methods were based on geometrical procedures and spatial data distribution. Therefore, uncertainty associated with tonnages and grades either were ignored or mishandled, although various mining codes require a measure of confidence in the values reported. Traditional methods fail in reporting the level of confidence in the quantities and grades. Conversely, kriging is known to provide the best estimate and its associated variance. Among kriging methods, Ordinary Kriging (OK) probably is the most widely used one for mineral resource/reserve estimation, mainly because of its robustness and its facility in uncertainty assessment by using the kriging variance. It also is known that OK variance is unable to recognize local data variability, an important issue when heterogeneous mineral deposits with higher and poorer grade zones are being evaluated. Altenatively, stochastic simulation are used to build local or global uncertainty about a geological attribute respecting its statistical moments. This study investigates methods capable of incorporating uncertainty to the estimates of resources and reserves via OK and sequential gaussian and sequential indicator simulation The results showed that for the type of mineralization studied all methods classified the tonnages similarly. The methods are illustrated using an exploration drill hole data sets from a large Brazilian coal deposit.  相似文献   

18.
Continuous depletion of groundwater levels from deliberate and uncontrolled exploitation of groundwater resources lead to the severe problems in arid and semi-arid hard-rock regions of the world. Geostatistics and geographic information system (GIS) have been proved as successful tools for efficient planning and management of the groundwater resources. The present study demonstrated applicability of geostatistics and GIS to understand spatial and temporal behavior of groundwater levels in a semi-arid hard-rock aquifer of Western India. Monthly groundwater levels of 50 sites in the study area for 36-month period (May 2006 to June 2009; excluding 3 months) were analyzed to find spatial autocorrelation and variances in the groundwater levels. Experimental variogram of the observed groundwater levels was computed at 750-m lag distance interval and the four most-widely used geostatistical models were fitted to the experimental variogram. The best-fit geostatistical model was selected by using two goodness-of-fit criteria, i.e., root mean square error (RMSE) and correlation coefficient (r). Then spatial maps of the groundwater levels were prepared through kriging technique by means of the best-fit geostatistical model. Results of two spatial statistics (Geary’s C and Moran’s I) indicated a strong positive autocorrelation in the groundwater levels within 3-km lag distance. It is emphasized that the spatial statistics are promising tools for geostatistical modeling, which help choose appropriate values of model parameters. Nugget-sill ratio (<0.25) revealed that the groundwater levels have strong spatial dependence in the area. The statistical indicators (RMSE and r) suggested that any of the three geostatistical models, i.e., spherical, circular, and exponential, can be selected as the best-fit model for reliable and accurate spatial interpolation. However, exponential model is used as the best-fit model in the present study. Selection of the exponential model as the best-fit was further supported by very high values of coefficient of determination (r 2 ranging from 0.927 to 0.994). Spatial distribution maps of groundwater levels indicated that the groundwater levels are strongly affected by surface topography and the presence of surface water bodies in the study area. Temporal pattern of the groundwater levels is mainly controlled by the rainy-season recharge and amount of groundwater extraction. Furthermore, it was found that the kriging technique is helpful in identifying critical locations over the study area where water saving and groundwater augmentation techniques need to be implemented to protect depleting groundwater resources.  相似文献   

19.
Previous studies of correlation coefficients between paired observations using census, hydrologic, and remote sensing data abound. It is well established that bivariate relationships at coarser spatial resolutions are often stronger than at finer resolutions. No assessment as yet, however, corroborates this tendency with water resources variables. In this study, multiscale correlations between water use or water availability and population are presented in three river basins—the Missouri (United States), Danube (Europe), and Ganges (South Asia). High-resolution gridded data sets were obtained at 0.5° and resampled to fourteen different geographic scales to examine the effects of scale on the strength and trends of correlations. Correlation coefficients between most variable pairs increased at coarser scales. Smoothing fine-scale spatial patterns in the data at coarser scales is posited as a possible explanation. The increase was not often linear, however, nor was there always an increase. The Missouri Basin did not show a significant increase in correlations between water use and population with grid-cell size and nonlinear increases are evident in the Ganges Basin.  相似文献   

20.
A real-world mining application of pair-copulas is presented to model the spatial distribution of metal grade in an ore body. Inaccurate estimation of metal grade in an ore reserve can lead to failure of a mining project. Conventional kriged models are the most commonly used models for estimating grade and other spatial variables. However, kriged models use the variogram or covariance function, which produces a single average value to represent the spatial dependence for a given distance. Kriged models also assume linear spatial dependence. In the application, spatial pair-copulas are used to appropriately model the non-linear spatial dependence present in the data. The spatial pair-copula model is adopted over other copula-based spatial models since it is better able to capture complex spatial dependence structures. The performance of the pair-copula model is shown to be favorable compared to a conventional lognormal kriged model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号