首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Illman WA  Craig AJ  Liu X 《Ground water》2008,46(1):120-132
Hydraulic tomography has been developed as an alternative to traditional geostatistical methods to delineate heterogeneity patterns in parameters such as hydraulic conductivity (K) and specific storage (S(s)). During hydraulic tomography surveys, a large number of hydraulic head data are collected from a series of cross-hole tests in the subsurface. These head data are then used to interpret the spatial distribution of K and S(s) using inverse modeling. Here, we use the Sequential Successive Linear Estimator (SSLE) of Yeh and Liu (2000) to interpret synthetic pumping test data created through numerical simulations and real data generated in a laboratory sandbox aquifer to obtain the K tomograms. Here, we define "K tomogram" as an image of K distribution of the subsurface (or the inverse results) obtained via hydraulic tomography. We examine the influence of signal-to-noise ratio and biases on results using inverse modeling of synthetic and real cross-hole pumping test data. To accomplish this, we first show that the pumping rate, which affects the signal-to-noise ratio, and the order of data included into the SSLE algorithm both have large impacts on the quality of the K tomograms. We then examine the role of conditioning on the K tomogram and find that conditioning can improve the quality of the K tomogram, but can also impair it, if the data are of poor quality and conditioning data have a larger support volume than the numerical grid used to conduct the inversion. Overall, these results show that the quality of the K tomogram depends on the design of pumping tests, their conduct, the order in which they are included in the inverse code, and the quality as well as the support volume of additional data that are used in its computation.  相似文献   

2.
We present a novel method to estimate the hydraulic and storage properties of a heterogeneous aquifer system using pilot-point-based hydraulic tomography (HT) inversion in conjunction with a geophysical a priori model. The a priori model involved a soil stratification obtained by combining electrical resistivity tomography inversion and field data from hydrogeological experiments. Pilot-point densities were assigned according to the stratification, which also constrained aquifer parameters during HT inversion. The forward groundwater flow model, HydroGeoSphere, was supplied to the parameter-estimation tool, PEST, to perform HT inversion. The performance of our method was evaluated on a hypothetical, two-dimensional, multi-layered, granitic aquifer system representative of those commonly occurring in the Kandi region in Telangana. Inversion results were compared using two commonly adopted methods of modeling parameter-heterogeneity: (1) using piece-wise zones of property values obtained from geostatistical interpolation of local-scale estimates; and (2) HT inversion starting from a homogeneous parameter field with a uniform distribution of pilot-points. Performances of the inverted models were evaluated by conducting independent pumping tests and statistical analyses (using a Taylor diagram) of the model-to-measurement discrepancies in drawdowns. Our results showed that using the aforementioned geophysical a priori model could improve the parameter-estimation process.  相似文献   

3.
In steady-state hydraulic tomography, the head data recorded during a series of pumping or/and injection tests can be inverted to determine the transmissivity distributions of an aquifer. This inverse problem is usually under-determined and ill-posed. We propose to use structural information inferred from a guiding image to constrain the inversion process. The guiding image can be drawn from soft data sets such as seismic and ground penetrating radar sections or from geological cross-sections inferred from the wells and some geological expertise. The structural information is extracted from the guiding image through some digital image analysis techniques. Then, it is introduced into the inversion process of the head data as a weighted four direction smoothing matrix used in the regularizer. Such smoothing matrix allows applying the smoothing along the structural features. This helps preserving eventual drops in the hydraulic properties. In addition, we apply a procedure called image-guided interpolation. This technique starts with the tomogram obtained from the image-guided inversion and focus this tomogram. These new approaches are applied on four synthetic toy problems. The hydraulic distributions estimated from the image-guided inversion are closer to the true transmissivity model and have higher resolution than those computed from a classical Gauss–Newton method with uniform isotropic smoothing.  相似文献   

4.
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced‐gradient tracer test. We estimated the three dimensional (3D) hydraulic‐conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot‐point method. We compared the estimated parameter field to available profiles of hydraulic‐conductivity variations from direct‐push injection logging (DPIL), and validated the hydraulic‐conductivity field with hydraulic‐head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual‐domain transport were estimated by fitting tracer data collected during a forced‐gradient tracer test. The dual‐domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic‐conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout.  相似文献   

5.
We present a novel pilot-point-based hydraulic tomography (HT) inversion procedure to delineate preferential flow paths and estimate hydraulic properties in a fractured aquifer. Our procedure considers a binary prior model developed using a randomized algorithm. The randomized algorithm involves discretizing the domain into grid cells, assigning a binary label to each cell, traversing the grid randomly, and choosing the optimal grid configuration cell-by-cell. This binary prior model is used to guide the placement of pilot points and to constrain aquifer parameters during pilot-point-based HT inversion. A two-dimensional fractured granite rock block was considered to test our methodology under controlled laboratory conditions. Multiple pumping tests were conducted at selected ports and the pressure responses were monitored. The pumping datasets thus obtained were preprocessed using median filters to remove random noise, and then analyzed using the proposed procedure. The proposed binary prior algorithm was implemented in C++ by supplying the forward groundwater model, HydroGeoSphere (HGS). Pilot-point-assisted HT inversion was performed using the parameter-estimation tool, coupled to HGS. The resulting parameter distributions were assessed by: (1) a visual comparison of the K- and Ss-tomograms with the known topology of the fractures and (2) comparing model predictions with measurements made at two validation ports that were not used in calibration. The performance assessment revealed that HT with the proposed randomized binary prior could be used to recover fracture-connectivity and to predict drawdowns in fractured aquifers with reasonable accuracy, when compared to a conventional pilot-point inversion scheme.  相似文献   

6.
The Theis equation has been widely used to study the transient movement of groundwater as a result of pumping in a confined aquifer. It is well known that the observed drawdown at early times has an obvious departure from the theoretical drawdown based on the Theis equation. The Theis equation was derived under the assumption that total stress in the aquifer was constant and the mechanical behavior of the confining unit was neglected. However, most geological formations, especially those which are well consolidated, have rigidity and therefore may bend like a plate to a certain extent. The increase in the effective stress in the aquifer due to pumping may not contribute entirely to the compression of the aquifer, but may be partially cancelled out by bending of the overlying aquitard. This means only a part of the total stress is used to compact the aquifer, or the aquifer cannot produce as much water as estimated from the Theis equation. This paper investigated the impact of the bending effect of the confining unit on drawdown. An analytical model which couples flow in the aquifer and bending of the confining unit was presented. The theory is based on elastic plates and solutions were given to the drawdown of groundwater level and deflection of the overlying formation. The drawdown estimated from the new equation was compared with that from the Theis equation. It can be concluded that drawdown from the Theis equation is less than the drawdown predicted by including the bending effect of the confining unit. Both a hypothetical example and a field pumping test in Shandong Province, China, were used to demonstrate the bending effect of the confining unit in the analysis of pumping test data. This paper demonstrated that the initial disagreement between observed drawdown and the Theis solution could be caused by the bending effect of the confining unit, a phenomenon not well addressed in traditional pumping test analysis. A quantitative understanding of this phenomenon can provide improved guidelines for analyzing drawdown data in a confined aquifer.  相似文献   

7.
A Potential-Based Inversion of Unconfined Steady-State Hydraulic Tomography   总被引:1,自引:0,他引:1  
The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.  相似文献   

8.
In this paper, we discuss the effects of anomalous out‐of‐plane bodies in two‐dimensional (2D) borehole‐to‐surface electrical resistivity tomography with numerical resistivity modelling and synthetic inversion tests. The results of the two groups of synthetic resistivity model tests illustrate that anomalous bodies out of the plane of interest have an effect on two‐dimensional inversion and that the degree of influence of out‐of‐plane body on inverted images varies. The different influences are derived from two cases. One case is different resistivity models with the same electrode array, and the other case is the same resistivity model with different electrode arrays. Qualitative interpretation based on the inversion tests shows that we cannot find a reasonable electrode array to determine the best inverse solution and reveal the subsurface resistivity distribution for all types of geoelectrical models. Because of the three‐dimensional effect arising from neighbouring anomalous bodies, the qualitative interpretation of inverted images from the two‐dimensional inversion of electrical resistivity tomography data without prior information can be misleading. Two‐dimensional inversion with drilling data can decrease the three‐dimensional effect. We employed two‐ and three‐dimensional borehole‐to‐surface electrical resistivity tomography methods with a pole–pole array and a bipole–bipole array for mineral exploration at Abag Banner and Hexigten Banner in Inner Mongolia, China. Different inverse schemes were carried out for different cases. The subsurface resistivity distribution obtained from the two‐dimensional inversion of the field electrical resistivity tomography data with sufficient prior information, such as drilling data and other non‐electrical data, can better describe the actual geological situation. When there is not enough prior information to carry out constrained two‐dimensional inversion, the three‐dimensional electrical resistivity tomography survey is the better choice.  相似文献   

9.
Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water‐level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water‐level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water‐level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three‐dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping‐induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.  相似文献   

10.
An inverse method is developed to simultaneously estimate multiple hydraulic conductivities, source/sink strengths, and boundary conditions, for two-dimensional confined and unconfined aquifers under non-pumping or pumping conditions. The method incorporates noisy observed data (hydraulic heads, groundwater fluxes, or well rates) at measurement locations. With a set of hybrid formulations, given sufficient measurement data, the method yields well-posed systems of equations that can be solved efficiently via nonlinear optimization. The solution is stable when measurement errors are increased. The method is successfully tested on problems with regular and irregular geometries, different heterogeneity patterns and variances (maximum Kmax/Kmin tested is 10,000), and error magnitudes. Under non-pumping conditions, when error-free observed data are used, the estimated conductivities and recharge rates are accurate within 8% of the true values. When data contain increasing errors, the estimated parameters become less accurate, as expected. For problems where the underlying parameter variation is unknown, equivalent conductivities and average recharge rates can be estimated. Under pumping (and/or injection) conditions, a hybrid formulation is developed to address these local source/sink effects, while different types of boundary conditions can also exert significant influences on drawdowns. Local grid refinement near wells is not needed to obtain accurate results, thus inversion is successful with coarse inverse grids, leading to high computation efficiency. Furthermore, flux measurements are not needed for the inversion to succeed; data requirement of the method is thus not much different from that of interpreting classic well tests. Finally, inversion accuracy is not sensitive to the degree of nonlinearity of the flow equations. Performance of the inverse method for confined and unconfined aquifer problems is similar in terms of the accuracy of the estimated parameters, the recovered head fields, and the solver speed.  相似文献   

11.
Drawdown data from independent pumping tests have widely been used to validate the estimated hydraulic parameters from inverse modeling or hydraulic tomography (HT). Yet, the independent pumping test has not been clearly defined. Therefore, the goal of this paper is to define this independent pumping test concept, based on the redundant or nonredundant information about aquifer heterogeneity embedded in the observed heads during cross-hole pumping tests. The definition of complete, moderate redundancy and high nonredundancy of information are stipulated using cross-correlation analysis of the relationship between the head and heterogeneity. Afterward, data from numerical experiments and field sequential pumping test campaigns reinforce the concept and the definition.  相似文献   

12.
We present the first demonstration of hydraulic tomography (HT) to estimate the three-dimensional (3D) hydraulic conductivity (K) distribution of a fractured aquifer at high-resolution field scale (HRFS), including the fracture network and connectivity through it. We invert drawdown data collected from packer-isolated borehole intervals during 42 pumping tests in a wellfield at the former Naval Air Warfare Center, West Trenton, New Jersey, in the Newark Basin. Five additional tests were reserved for a quality check of HT results. We used an equivalent porous medium forward model and geostatistical inversion to estimate 3D K at high resolution (K blocks <1 m3), using no strict assumptions about K variability or fracture statistics. The resulting 3D K estimate ranges from approximately 0.1 (highest-K fractures) to approximately 10−13 m/s (unfractured mudstone). Important estimated features include: (1) a highly fractured zone (HFZ) consisting of a sequence of high-K bedding-plane fractures; (2) a low-K zone that disrupts the HFZ; (3) several secondary fractures of limited extent; and (4) regions of very low-K rock matrix. The 3D K estimate explains complex drawdown behavior observed in the field. Drawdown tracing and particle tracking simulations reveal a 3D fracture network within the estimated K distribution, and connectivity routes through the network. Model fit is best in the shallower part of the wellfield, with high density of observations and tests. The capabilities of HT demonstrated for 3D fractured aquifer characterization at HRFS may support improved in situ remediation for contaminant source zones, and applications in mining, repository assessment, or geotechnical engineering.  相似文献   

13.
The solutions of constant‐head and constant‐flux tests are commonly used to predict the temporal or spatial drawdown distribution or to determine aquifer parameters. Theis and Thiem equations, for instance, are well‐known transient and steady‐state drawdown solutions, respectively, of the constant‐flux test. It is known that the Theis equation is not applicable to the case where the aquifer has a finite boundary or the pumping time tends to infinity. On the other hand, the Thiem equation does not apply to the case where the aquifer boundary is infinite. However, the issue of obtaining the Thiem equation from the transient drawdown solution has not previously been addressed. In this paper, the drawdown solutions for constant‐head and constant‐flux tests conducted in finite or infinite confined aquifers with or without consideration of the effect of the well radius are examined comprehensively. Mathematical verification and physical interpretation of the solutions to these two tests converging or not converging to the Thiem equation are presented. The result shows that there are some finite‐domain solutions for these two tests that can converge to the Thiem equation when the time becomes infinitely large. In addition, the time criteria to give a good approximation to the finite‐domain solution by the infinite‐domain solution and the Thiem equation are investigated and presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.  相似文献   

15.
Accurate characterization of heterogeneity in groundwater basins is crucial to the sustainable management of groundwater resources. This study explores the temporal sampling issues and the role of flux measurements in the characterization of heterogeneity in groundwater basins using numerical experiments. The experiments involve a digital basin imitating the groundwater basin of the North China Plain (NCP), where the groundwater exploitation reduction program is ongoing. Using the experiments, we champion that the reduction program could collect groundwater level information induced by operational variations of existing pumping wells at different locations in the basin. Such a dataset could serve as a basin-scale hydraulic tomography (HT) to characterize the basin-scale heterogeneity cost-effectively. Both steady-state and transient-state inversion experiments demonstrate the advantage of HT surveys in characterizing basin-scale heterogeneity over conventional pumping tests at fixed well locations. Additionally, head data at the early, intermediate, and late time from well hydrographs should be selected for the HT analysis to maximize HT's power and save computational costs. When accurate geological zones are incorporated in prior information, flux measurements significantly improve parameter estimates based on conventional pumping tests. However, their effects are less noticeable for long-term HT surveys in such basin-scale aquifers without fissures or fractures. This basin-scale tomographic survey example serves a guide for field data collection and optimization of the analysis of future basin-scale HT.  相似文献   

16.
This paper derives an equivalent of Darcian Theis solution for non-Darcian flow induced by constant rate pumping of a well in a confined aquifer. The derivation, which is valid at later times only, is original. It utilizes Izbash's equation. This introduces an additional parameter to Darcian condition, namely, empirical exponent. The solution is a non-Drcian equivalent of Jacob straight line method for analyzing pumping tests at late times. It can be used to determine aquifer parameters: storativity, analogous hydraulic conductivity, and empirical exponent. However, while the Jacob method requires a minimum of only one pumping test with one observation well, the additional parameter in the present solution means that a minimum of two observation wells in one test or two pumping tests at different rates with one observation well are required. The derived solution is applied to a case study at Plomeur in Brittany, France, and is shown to provide a practical and efficient method for analyzing pumping tests where non-Darcian groundwater flow occurs.  相似文献   

17.
First‐arrival traveltime tomography is a robust tool for near‐surface velocity estimation. A common approach to stabilizing the ill‐posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a first‐arrival traveltime tomography method with modified total‐variation regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into the two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total‐variation problem. We apply the conjugate gradient method and split‐Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization, and creates less artefacts than the total variation regularization method for the models with sharp interfaces. For the field data, pre‐stack time migration sections show that the modified total‐variation traveltime tomography produces a near‐surface velocity model, which makes statics corrections more accurate.  相似文献   

18.
To take into account the variability of the medium through which the groundwater flow takes place, we presented the groundwater flow equation within a confined aquifer with prolate coordinates. The new equation is a perturbed singular equation. The perturbed parameters is introduced and can be used as accurately replicate the variability of the aquifer from one point to another. When the perturbed parameter tends to zero, we recover the Theis equation. We solved analytically and iteratively the new equation. We compared the obtained solution with experimental observed data together with existing solutions. The comparison shows that the modified equation predicts more accurately the physical problem than the existing model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We have derived an analytical solution for two-region flow toward a well in a confined aquifer based on a linearization method. The two-region flow includes Izbash non-Darcian flow near the well and Darcian flow in the rest of the aquifer. The wellbore storage is also considered. The type curves in the non-Darcian and Darcian flow domains are obtained by a numerical Laplace inversion method incorporated in MATLAB programs. We have compared our results with the one-region Darcian flow model (Theis). Our solutions agree with those of Sen [Sen Z. Type curves for two-region well flow. J Hydr Eng 1988;114(12):1461–84] which were obtained using the Boltzmann transform at late times for fully turbulent flow, while some difference has been found at early and moderate times. We have defined a dimensionless non-Darcian hydraulic conductivity term which is shown to be a key parameter for analyzing the two-region flow. A smaller dimensionless non-Darcian hydraulic conductivity results in a larger drawdown in the non-Darcian flow region at late times. However, the dimensionless non-Darcian hydraulic conductivity does not affect the slope of the dimensionless drawdown versus the logarithmic dimensionless time in the non-Darcian flow region at late times. The dimensionless non-Darcian hydraulic conductivity does not affect the late time drawdown in the Darcian flow region.  相似文献   

20.
In this paper, we present the uncertainty analysis of the 2D electrical tomography inverse problem using model reduction and performing the sampling via an explorative member of the Particle Swarm Optimization family, called the Regressive‐Regressive Particle Swarm Optimization. The procedure begins with a local inversion to find a good resistivity model located in the nonlinear equivalence region of the set of plausible solutions. The dimension of this geophysical model is then reduced using spectral decomposition, and the uncertainty space is explored via Particle Swarm Optimization. Using this approach, we show that it is possible to sample the uncertainty space of the electrical tomography inverse problem. We illustrate this methodology with the application to a synthetic and a real dataset coming from a karstic geological set‐up. By computing the uncertainty of the inverse solution, it is possible to perform the segmentation of the resistivity images issued from inversion. This segmentation is based on the set of equivalent models that have been sampled, and makes it possible to answer geophysical questions in a probabilistic way, performing risk analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号