首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work we present the results of an investigation aimed at a search for an oscillatory phenomenon during short gamma‐ray bursts. The wavelet technique, used for this analysis, is applied to the data from the BATSE 3B catalogue. We have detected oscillations, which periods are found to be in the milliseconds range and their amplitudes up to dozens of percents. A possible scenario for such a phenomenon is the coalescence of stellar‐mass black holes and neutron stars. During the coalescence process the matter orbiting the black hole produces rapid, periodic phenomena. Such system will also emit gravitational waves which cause the orbital radius to decrease and leads to the emission of a chirp of radiation. Estimates lead to a timescale of milliseconds for the coalescence process and oscillation frequencies of hundreds of Hz. The gamma‐ray bursts considered in this paper, show both frequencies and survival times of oscillations close to the mentioned values. A chirp phenomenon is also present. We therefore argue in favor of the black hole – neutron star coalescence as a scenario for the production of short gamma‐ray bursts (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The real‐time distribution of alert messages from satellites that detect gamma‐ray bursts are of key importance to neutrino telescopes.We describe how the distribution network of these alert messages is used by the ANTARES neutrino telescope, and the resulting increase in detection efficiency for neutrinos from gamma‐ray bursts. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Of great importance in distinguishing between models for gamma-ray bursts (GRBs) is the experimental determination of the highest energy gamma rays associated with bursts. The EGRET detection of a 15 GeV gamma ray indicates that the spectra of at least some bursts extend well beyond the several MeV limit of the BATSE detectors (Hurleyet al., 1994). The low expected flux means that the collecting area of the present generation of satellite-based detectors is too small to detect gamma rays much above this energy efficiently, and such searches are currently undertaken with ground based detectors. In this paper searches made for very high energy GRBs with a southern hemisphere air shower particle array are described.  相似文献   

4.
The possible low-frequency radio emission from the progenitors of gamma ray bursts can experience a delay from tens of seconds to hours on the way to the observer due to the dispersion in galactic and extragalactic plasma, and thus reach the observer as a radio afterglow of the burst. This opens a unique possibility (peculiar “time machine”) of seeing what happened at that place before the catastrophe.  相似文献   

5.
Radio observations may be one of the most promising but least explored bands of the spectrum to search for the counterparts of gamma ray bursters. We describe several ongoing experiments with demonstrated high sensitivity to monitor gamma ray bursts for evidence of a flaring or fading counterpart in the days, weeks and months following the original event.  相似文献   

6.
Recently, BeppoSAX and ASCA have observed an unusual resurgence of soft X-ray emission during the afterglows of GRB 970508 and 970828, together with marginal evidence for the existence of Fe lines in both objects. We consider the implications of the existence of a torus of iron-rich material surrounding the sites of gamma-ray bursts, as would be expected in the supra-nova model; in particular, we show that the fireball will quickly hit this torus, and bring it to a temperature of ≈3×107 K. Bremsstrahlung emission from the heated-up torus will cause a resurgence of the soft X-ray emission with all expected characteristics (flux level, duration and spectral hardening with time) identical to those observed during the re-burst. Also, thermal emission from the torus will account for the observed iron line flux. These events are also observable, for instance by new missions such as SWIFT , when beaming away from our line of sight makes us miss the main burst, as fast (soft) X-ray transients, with durations of ≈103 s and fluences of ≈10−7–10−4 erg cm−2. This model provides evidence in favour of the supra-nova model for gamma-ray bursts.  相似文献   

7.
A method is presented for the identification of high-energy neutrinos from gamma ray bursts (GRBs) by means of a large-scale neutrino telescope. The procedure makes use of a time profile stacking technique of observed neutrino induced signals in correlation with satellite observations. By selecting a rather wide time window, a possible difference between the arrival times of the gamma and neutrino signals may also be identified. This might provide insight in the particle production processes at the source. By means of a toy model it will be demonstrated that a statistically significant signal can be obtained with a km3 scale neutrino telescope on a sample of 500 GRBs for a signal rate as low as 1 detectable neutrino for 3% of the bursts.  相似文献   

8.
In this paper, the correlations of gamma ray with other bands are discussed for highly polarized blazars. The results show gamma rays are beamed. It is closely associated with the radio band emission, but not associated with optical or X-ray emissions. Gamma ray emission is likely from resynchrotron-self-Compton (SSC) process.  相似文献   

9.
We discuss the prompt emission of gamma-ray bursts (GRBs), allowing for γγ pair production and synchrotron self-absorption. The observed hard spectra suggest heavy pair-loading in GRBs. The re-emission of the generated pairs results in the energy transmission from high-energy gamma-rays to long-wavelength radiation. Due to strong self-absorption, the synchrotron radiation by pairs is in optically thick regime. Thus, the re-emission would appear as a thermal-like spectral bump in the extreme-ultraviolet/soft X-ray band, other than the peak from the main burst. The confirmation of the thermal-like feature and the double-peak structure by future satellites, such as Swift, would indicate that the dominant radiation mechanism in GRBs is synchrotron rather than inverse-Compton radiation.  相似文献   

10.
本文研究了CGRO卫星上BATSE探测器对硬X天空监测过程中触发和记录到的1 0 0 0多个γ暴和 40 0 0多个太阳硬X射线暴的强度和时间性质 ,发现它们的强度分布相似 ,这也许意味着硬X射线天空中两种主要的爆发现象机制相似 ,同时对将γ暴的强度分布作为其宇宙学起源的证据提出了疑问 .对太阳暴的持续时间分析表明 ,其强度和持续时间呈正相关 ,而γ暴是弱负相关 .太阳暴的强度和持续时间在BATSE运行过程中有长时标变化 ,最近对γ暴的研究也发现了这种现象  相似文献   

11.
There is increasing evidence of a local population of short duration gamma-ray bursts (sGRB), but it remains to be seen whether this is a separate population to higher redshift bursts. Here we choose plausible luminosity functions (LFs) for both neutron star binary mergers and giant flares from soft gamma repeaters (SGR), and combined with theoretical and observed Galactic intrinsic rates we examine whether a single progenitor model can reproduce both the overall Burst and Transient Source Experiment (BATSE) sGRB number counts and a local population, or whether a dual progenitor population is required. Though there are large uncertainties in the intrinsic rates, we find that at least a bimodal LF consisting of lower and higher luminosity populations is required to reproduce both the overall BATSE sGRB number counts and a local burst distribution. Furthermore, the best-fitting parameters of the lower luminosity population agree well with the known properties of SGR giant flares, and the predicted numbers are sufficient to account for previous estimates of the local sGRB population.  相似文献   

12.
We describe the evolutionary progression of an outburst of the Rapid Burster. Four outbursts have been observed with the Rossi X-Ray Timing Explorer between 1996 February and 1998 May, and our observations are consistent with a standard evolution over the course of each. An outburst can be divided into two distinct phases. Phase I is dominated by type I bursts, with a strong persistent emission component; it lasts for 15–20 d. Phase II is characterized by type II bursts, which occur in a variety of patterns. The light curves of time-averaged luminosity for the outbursts show some evidence for reflares, similar to those seen in soft X-ray transients. The average recurrence time for Rapid Burster outbursts during this period was 218 d, in contrast to an average ∼180‐d recurrence period observed during 1976–1983.  相似文献   

13.
In the relativistic fireball model, the afterglow of a gamma-ray burst (GRB) is produced by synchrotron radiation of the electrons accelerated in the external shock that emerges as the relativistic flow moves. According to this model, the afterglow peaks on a time scale of ~10 s when observed in the soft gamma-ray band. The peak flux can be high enough to be detected by modern all-sky monitors. We investigate the emission from short (ΔT<1 s) GRBs on a time scale t≈10 s using BATSE/CGRO data. A significant flux is recorded for ~20% of the events. In most cases, the observed persistent emission can be explained in terms of the model as an early burst afterglow. No early afterglows of most short GRBs are observed. The model parameters for these bursts are constrained.  相似文献   

14.
We study solar radio type II bursts combining with Wind/WAVES type II bursts and coronal mass ejections (CMEs). The aim of the present work is to investigate the effectiveness of shocks to cause type II bursts in the solar corona and the interplanetary space. We consider the following findings. The distribution of the cessation heights of type II emission is confined to a rather narrow range of height than the distribution of the heights of start frequencies. This is suggestive of the presence of a gradient for the Alfvén speed from the heliocentric height of ∼1.4 solar radii. The range of the kinetic energy of CMEs associated with coronal type II emission taken together with the suggested computation method and the Alfvén speed gradient, indicates the limit to the height up to which type II emission could be expected. This height is ∼2 solar radii from the center of the Sun. Further, the large time gap between the cessation time and heights of coronal type II emission and the commencement time and heights of most of the IP type II bursts do not account for the difference between the two heights and the average shock speed. Also, there is clear difference in the magnitude of the kinetic energies and the distinct characteristics of the CMEs associated with coronal and IP type II bursts. Hence, we suggest that in most instances the coronal type II bursts and IP type II bursts occur due to distinct shocks. We also address the question of the origin of type II bursts and discuss the possible explanation of observed results.  相似文献   

15.
It is shown that the correlation takes place between the 4–7 MeV gamma–ray line flare fluence F4–7 and the intensity of the > 10 MeV proton flux in the interplanetary space as well as between F4–7 and the peak flux density of microwave bursts. Besides, the energy spectral index of protons displays the definite dependence from parameters of the radio burst frequency spectrum. These testify that: a) there is a close physical association between the acceleration of electrons and protons in flares; b) protons, giving gamma–ray lines, and ones, registered in the interplanetary space, belong to the same population.  相似文献   

16.
We present the observations of cosmic gamma-ray bursts (GRBs) with the main detector of the SIGMA telescope onboard the Granat Observatory from January 1990 through September 1994. The observations were carried out in the energy range 35–1300 keV. We detected 36 GRBs and 31 high-energy solar flares during this period. No GRB fell within the main field of view; they were all recorded by the “secondary optics” of the telescope. The SIGMA telescope recorded relatively bright bursts with peak fluxes of 10?6–10?4 erg s?1 cm?2 in the 100–500-keV energy band. Stable detector background allows the long-term variability of GRB sources on a time scale of ~1000 s to be studied. The results of our search for early afterglows of GRBs are presented. The flux averaged over all bursts in the interval 100–800 s after the main event is 0.36±0.14 counts s?(35–300 keV), suggesting that there is soft gamma-ray emission on this time scale after a considerable number of GRBs.  相似文献   

17.
In this short note I discuss the hypothesis that bursting activity of magnetars evolves in time analogously to the glitching activity of normal radio pulsars (i.e. sources are more active at smaller ages), and that the increase of the burst rate follows one of the laws established for glitching radio pulsars. If the activity of soft gamma repeaters decreases in time in the way similar to the evolution of core‐quake glitches (∝t5/2), then it is more probable to find the youngest soft gamma repeaters, but the energy of giant flares from these sources should be smaller than observed 1044–1046 erg as the total energy stored in a magnetar's magnetic field is not enough to support thousands of bursts similar to the prototype 1979 March 5 flare. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Observations of the afterglows of gamma ray bursts (GRBs) in different spectral ranges yield valuable information both about the nature of GRBs and about the properties of the surrounding medium. A powerful infrared (IR) afterglow has been observed at the site of the strong GRB041219. Here we interpret the observed IR afterglow as the result of a reprocessing of gamma radiation on dust in a cloud surrounding the GRB source. In this model we do not expect the appearance of a prompt optical afterglow which should be absorbed by the surrounding dust cloud. We estimate the collimation angle of the gamma radiation and obtain limits on the red shift (distance to the GRB source) by matching the model parameters to the experimental data.__________Translated from Astrofizika, Vol. 48, No. 3, pp. 439–444 (August 2005).  相似文献   

19.
We assume that internal shocks of gamma-ray bursts (GRBs) consist of multiple sub-jets with a collimation half-angle of about several times gamma-1i, where gammai is the Lorentz factor of each sub-jet. If by chance a sub-jet is first emitted off-axis from the line of sight, the observed peak energy can be in the X-ray region. Next, if by chance a subsequent sub-jet is emitted along the line of sight, then the peak energy will be in the gamma-ray region and the gamma ray may arrive after the X-ray precursor from the former sub-jet depending on parameters. This model predicts a new class of GRBs with extremely weak and short gamma-ray emission but X-ray precursors and/or postcursors as well as an afterglow.  相似文献   

20.
The recent detection of a transient absorption feature in the X-ray prompt emission of GRB 990705 showed the importance of such observations in the understanding of gamma-ray bursts and their progenitors. We investigate the time dependence of photoionization edges during the prompt emission of bursts in different environments. We show that their variability can be used to infer the density and geometry of the surrounding medium, giving important clues to unveil the nature of the burst progenitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号