首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We utilized paleoecological techniques to reconstruct long-term changes in lake-water chemistry, lake trophic state, and watershed vegetation and soils for three lakes located on an elevational gradient (661–1150 m) in the High Peaks region of the Adirondack Mountains of New York State (U.S.A.). Diatoms were used to reconstruct pH and trophic state. Sedimentary chrysophytes, chlorophylls and carotenoids supplied corroborating evidence. Pollen, plant macrofossils, and metals provided information on watershed vegetation, soils, and biogeochemical processes. All three lakes were slightly alkaline pH 7–8 and more productive in the late-glacial. They acidified and became less productive at the end of the late-glacial and in the early Holocene. pH stabilized 8000–9000 yr B.P. at the two higher sites and by 6000 yr B.P. at the lowest. An elevational gradient in pH existed throughout the Holocene. The highest site had a mean Holocene pH close to or below 5; the lowest site fluctuated around a mean of 6. The higher pH and trophic state of the late-glacial was controlled by leaching of base cations from fresh unweathered till, a process accelerated by the development of histosols in the watersheds as spruce-dominated woodlands replaced tundra. An apparent pulse of lake productivity at the late-glacial-Holocene boundary is correlated with a transient, but significant, expansion of alder (Alnus crispa) populations. The alder phase had a significant impact on watershed (and hence lake) biogeochemistry. The limnological changes of the Holocene and the differences between lakes were a function of an elevational gradient in temperature, hydrology (higher precipitation and lower evapotranspiration at higher elevation), soil thickness (thinner tills at higher elevation), soil type (histosols at higher elevation), vegetation (northern hardwoods at lower elevation, spruce-fir at higher), and different Holocene vegetational sequences in the three watersheds.This is the thirteenth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

2.
Stratigraphic analysis of fossil chironomid head capsules wasperformed at North Crater Lake and Lake of the Woods, located at treeline (2250m) in the Ashnola region of southernmost British Columbia. Priorto 10,000 yr BP, cold conditions were indicated by the lack oftemperate taxa and the presence of cold-stenotherms. The abundance anddiversity of warm-adapted taxa (e.g., Dicrotendipes,Microtendipes, Polypedilum and Cladopelma)increased rapidly after 9500 yr BP, whereas taxa indicative ofcold conditions disappeared. Beginning prior to deposition of the Mazama ash(6730 ± 40 yr BP), several warm-adapted taxa decreasedin abundance. Mid- to late-Holocene assemblages (ca. 4500yr BP to present) indicated continued cooling as revealed by afurther reduction in diversity and abundance of warm-adapted taxa atboth lakes, and the reappearance of cold-stenotherms in Lake of theWoods. Diversity changes in the cores paralleled the inferred climatic changes.Diversity was low during the late-glacial, increased in theearly-Holocene, and declined after 5400 yr BP.To quantitatively infer past climatic changes, a newweighted yphen;averaging partial-least-squares (WA-PLS)model was developed and applied to the fossil midge data. The quantitativereconstructions revealed late-glacial mean July air temperatures rangingfrom about 8 to 10°C. Summer air temperatures were highest inthe early Holocene (13 to 17°C), gradually decreasing by about3°C through the mid- to late-Holocene.  相似文献   

3.
为了深入探讨珠江三角洲的沉积古环境和古气候历史,在三水市区获取了2个高取芯率的钻孔岩芯,进行了12个AMS 14C测年,并结合孢粉、硅藻等分析结果探讨三水地区全新世的海平面与河流水动力变化,以及古植被演替过程。结果表明:钻孔所在区域全新世沉积总体从9 000 cal. a B.P.左右开始,呈现河流相―河湾相―河口湾相―潮坪相―河口湾相―河漫滩相的演变过程。三水区的早全新世沉积阶段年代最早为9 000 cal. a B.P.左右,表现为河口湾相的淤泥质粉砂沉积,硅藻以淡水种类为主,最高沉积速率为1.6 cm/a。海侵初始时间为8 700 cal. a B.P.左右,最高海平面时间为7 600 cal. a B.P.左右,此时海岸带发育红树林,丘陵山地发育较茂盛的亚常绿热带常绿阔叶林;中―晚全新世阶段(6 500―2 200 cal. a B.P.),以泥炭粉砂沉积为主,沉积速率为0.2~0.5 cm/a,河口区高潮线附近及河流弯道低洼滩地在5 000 cal. a B.P.前后形成淡水沼泽、河口三角洲边缘区洼地水松林发育。在晚全新世(2 200 cal. a B.P.左右)以来,陆相黏土质沉积指示河口泥沙快速堆积,三角洲平原迅速扩大,沉积速率高达1.7 cm/a。孢粉结果显示次生的芒箕孢子剧增,陆地植被稀疏,人类活动显著增强。  相似文献   

4.
Stable oxygen and carbon isotope geochemistry of ostracode valves, abundance and assemblages of ostracode species, and sedimentological parameters from cores taken in Williams and Shingobee Lakes in north-central Minnesota show changes in climatic and hydrologic history during the Holocene. Isotopic records are consistent with the following scenario:Before 9800 yr B.P. the two lakes were connected. Increasing evaporation through the jack/red pine period (9800-7700 yr B.P.) led to lower lake levels, leaving small separated basins. The prairie period (7700-4000 yr B.P.) reflects high aridity, and lake levels reached low stands shortly before 6500 yr B.P. Low lake levels are associated with groundwater discharge between 6500 and 6000 yr B.P. The hardwood period (4000-3200 yr B.P.) corresponds to long cold winters and warm to cool summers with lower evaporation rates and slower sedimentation. During the white pine period (<3200 yr B.P.) evaporation increased and/or precipitation shifted to the summer months.These changes can be related to shifting atmospheric circulation patterns. Zonal flow was probably dominant during the early Holocene until the end of the prairie period (c. 4000 yr B.P.). During the hardwood period a combination of zonal and meridional flow patterns caused long and cold winters and wetter summers. During the white pine period wintners were shorter and the meridional flow pattern more significant. Today meridional flow dominates the circulation pattern.This is the 6th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

5.
甘肃平凉地区约80万年以来的植被与气候变迁*   总被引:6,自引:1,他引:6  
刘俊峰  苏英 《地理研究》1994,13(4):90-97
将该地约80万年以来的植被发展和气候变化历史划分为14个大的阶段.其中距今约80-78万年、20-14万年、10-1万年三个阶段的植被主要为荒漠草原,气候干冷;距今约78-64、55-46、14-10万年三个阶段植被主要为落叶阔林,气候温暖湿润;其它阶段的植被和气候处于上述二者之间.全新世早、中期,本区气候较现代温湿,晚期趋于温凉半干旱.  相似文献   

6.
Analysis of the distributions of chironomid (midge) and other dipteran subfossils from two high elevation lake sediment cores in the Cascade Mountains reveals changes in midge communities and inferred climate since the late-glacial. Cabin Lake and 3M Pond are located near treeline in the subalpine Engelmann Spruce/Subalpine Fir biogeoclimatic zone of British Columbia. In Cabin Lake, chironomid head capsule assemblages depict a typical late-glacial community, and three distinct Holocene communities. In Cabin Lake, the late-glacial community is composed of cold-stenothermous taxa dominated by Stictochironomus, Mesocricotopus, Heterotrissocladius, Parakiefferiella nigra, Protanypus and Paracladius, whereas warm water midges are absent or rare, indicating cold conditions. A late-glacial chironomid community was not found in 3M Pond. In both lakes the early Holocene is dominated by a diverse warm-adapted assemblage, corresponding to the warm climatic conditions of the xerothermic period. Cabin Lake's mid-Holocene zone records a decrease in relative abundance of the warm water types and is accompanied by an increase in cold-stenotherms. At 3M Pond this period shows a dramatic loss in diversity of warm-adapted taxa, as the temperate genus Dicrotendipes dominates. This zone corresponds to Hebda's (1995) mesothermic period. Further cooling in the late Holocene (to modern conditions) is inferred from continued reduction of warm water midges and persistence (at Cabin Lake) or appearance (at 3M Pond) of a cold-stenothermal community. This late Holocene cooling is similar in timing to Neoglacial advances in the Coast, Cascade, and Rocky Mountains of southern British Columbia. Similarities in the timing of chironomid and vegetation community changes at these high elevation sites, along with the more rapid response time of the Chironomidae, support the sensitivity of midges to postglacial climatic change at high elevation sites.  相似文献   

7.
Analyses of lithology, organic-matter content, magnetic susceptibility, and pollen in a sediment core from Okpilak Lake, located in the northeastern Brooks Range, provide new insights into the history of climate, landscape processes, and vegetation in northern Alaska since 14,500?cal?year BP. The late-glacial interval (>11,600?cal?year BP) featured sparse vegetation cover and the erosion of minerogenic sediment into the lake from nearby hillslopes, as evidenced by Cyperaceae-dominated pollen assemblages and high magnetic susceptibility (MS) values. Betula expanded in the early Holocene (11,600?C8,500?cal?year BP), reducing mass wasting on the landscape, as reflected by lower MS. Holocene sediments contain a series of silt- and clay-dominated layers, and given their physical characteristics and the topographic setting of the lake on the braided outwash plain of the Okpilak River, the inorganic layers are interpreted as rapidly deposited fluvial sediments, likely associated with intervals of river aggradation, changes in channel planform, and periodic overbank flow via a channel that connects the river and lake. The episodes of fluvial dynamics and aggradation appear to have been related to regional environmental variability, including a period of glacial retreat during the early Holocene, as well as glacial advances in the middle Holocene (5,500?C5,200?cal?year BP) and during the Little Ice Age (500?C400?cal?year BP). The rapid deposition of multiple inorganic layers during the early Holocene, including thick layers at 10,900?C10,000 and 9,400?C9,200?cal?year BP, suggests that it was a particularly dynamic interval of fluvial activity and landscape change.  相似文献   

8.
Late Quaternary Palaeoenvironment of Spring Lake,Alberta, Canada   总被引:1,自引:0,他引:1  
Palaeoenvironmental investigations based upon sediment cores taken from Spring Lake in the Peace River District of Alberta, Canada (latitude 55° 31 N; longitude 119° 35 W) show that the sedimentary record spans the Holocene period. Chemical and diatom changes coincide with regional climatic change since deglaciation (about 11 000 yr. B.P.). Calcite laminations in the basal 3 metres of the cores are evident, and were probably formed through elevated water temperature although photosynthetic removal of CO2 undoubtedly contributed. The disappearance of the laminations, and concurrent decrease in calcite X-ray diffraction peaks ca. 5000 yr. B.P. may have been caused by a change from a partially meromictic to a dimictic lake as the climate changed. Benthic and alkaline diatoms dominate before 5000 yr. B.P., while the planktonic Stephanodiscus hantzschii dominated between 5100 and 4200 yr. B.P. probably owing to increased nutrient levels. From ca. 4200 yr. B.P. until the present, benthic Fragilaria spp. and more circumneutral diatoms were dominant. Palaeoproduction, as measured by chlorophyll derivates, was highest in the early developmental stages of the lake, decreased coinciding with a major disturbance of the sediments and lowered water levels, and then gradually increased again until present. Only during the earlier period of peak production does biogenic calcite formation appear more important than calcite deposition caused by high water temperatures.  相似文献   

9.
Based on extensive data from a long-term investigation, a new genetic classification of lake basins is proposed for Estonia. Eight lake groups are distinguished, tectonic-denudation, glacial, chemical, fluvial, coastal (neotectonic), telmatogenic, cosmogenic and artificial, containing 13 subgroups and 19 basin types. Also proposed is a new lithological classification of Estonia's organic and calcareous lake sediments, based on analyses of more than 2000 sediment samples from 90 contemporary and 50 late-glacial (extinct) lakes. Of the ca. 1150 Estonian lake basins that formed on mineral substrate, the two largest basins are of preglacial, tectonic-denudation origin, later modified by glaciers. Eight hundred lakes are of glacial origin, and 300 of other origins in the Holocene. In addition, ca 20 000 bog pools formed on peat in the Holocene. Only minerogenous sedimentation occurred in the lakes in the late-glacial period. After that, organic (gyttjas) and/or calcareous sediments have formed. Azonal factors have been largely responsible for the wide variation in Estonia's lacustrine deposits.This article belongs to a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

10.
Diatom assemblages and sulfur content in sediments were analyzed to clarify changes in the sedimentary environment of Kushu Lake, a coastal lake on Rebun Island in Hokkaido, Japan. Salinity variations were assessed by means of a diatom-based index of paleosalinity and the sedimentary sulfur content. This paper discusses the Holocene development of the lake, in relation to Holocene relative sea-level change. For paleoenvironmental interpretation of the lake development, the rationale of the threshold method (Anundsen et al., 1994) was applied.At ca. 8000 yr BP, a coastal embayment (paleo-Kushu Bay) resulted from marine ingression. The threshold elevation at the mouth of the paleo-Kushu Bay kept pace with the rising sea-level, resulting in its enclosure at the culmination of Holocene marine transgression (ca. 6500–5000 yr BP). From predicted relative sea-level at ca. 6000 yr BP for Rebun Island (Nakada et al., 1991), the threshold may have been at least above –3 to –5 m altitude. A freshwater lake environment with strongly anoxic bottom conditions may have occurred from ca. 5500 to 5100 yr BP. After an important episode of marine ingression, the lake was isolated completely from the open sea at ca. 4900 yr BP. The diatom record suggests that the maximum lacustrine extent occurred at ca. 4900–3100 yr BP. Thereafter, water depth decreased at the lake margins.In Kushu Lake, the threshold elevation, due to a build-up of a coastal barrier, prevents us from determining the amplitude of sea-level changes, even though the age of isolation contacts corresponds to periods of regression and climatic deterioration. In spite of isostatic subsidence, the effective protection provided by the well-developed barrier did not allow registration of any relative sea-level fluctuations since its isolation.  相似文献   

11.
A pollen record from Rock Lake in the Mission Mountains, northwestern Montana reveals a four-zone sequence reflecting Holocene vegetation change. Chronologic control is provided by two well-known tephras, Glacier Peak (11 200 yr B.P.) and Mazama (6800 yr B.P.). The presence of Glacier Peak tephra above the basal inorganic sediments indicates deglaciation prior to 11 200 yr B.P. Colonizing vegetation (Zone I) after the fall of Glacier Peak tephra was dominated byArtemisia (sage) andAlnus (alder). The presence ofAbies needles,Picea needles, and oneTaxus needle in the core demonstrates that these taxa were at Rock Lake at the time Zone II sediments were deposited. The increase inPinus,Picea, andAbies pollen in Zone II (10 850-4750 yr B.P.) suggests warmer and drier conditions prevailed, and may record the Hypsithermal. The pervasiveness ofPicea andAbies pollen in Pollen Zone III (4750-3350 yr B.P.) suggests the emergence of the modern subalpine forest. Pollen Zone IV (3350 yr B.P.-present) is characterized by relatively little change in the pollen assemblages. One noted change, however, is the increase of Cyperaceae (sedge), which may indicate an expansion of shore-line around the lake, possibly reflecting increased precipitation.This is the 5th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

12.
Precipitation rates in the Atacama Altiplano 22–24°S were 400–500 mm yr–1 during late glacial and early Holocene times as opposed to 200 mm yr–1 today. This humid phase (Tauca phase) was likely due to strengthened tropical (monsoonal) circulation, which brought continental moisture to the Atacama Altiplano. The lake level of Laguna Lejía (23°30S, 4350 m) at that time was up to 25 m higher than it is today. Mg/Ca and Sr/Ca data from lake sediments show that, what today is a highly saline lake was a freshwater lake at that time. Seasonally-laminated calcareous sediments were deposited between 13 500 and <10 400 yr B.P. indicating the maximum of the humid phase. Climatic changes in the past are important for current groundwater resources.14C and3H data from lake-, ground- and well water suggest that modern groundwater formation (i.e. water <40 years) in the Altiplano is very limited under current arid conditions. We conclude that significant amounts of the water resources in this area originated during the time of the late-glacial and early Holocene humid climate. Tritium data from snow samples show that the moisture in the Altiplano at 22–24°S is mainly of continental origin, whereas precipitation from the westerlies hardly contributes to the water supply in this area. This precipitation pattern matches the paleodata, and we suggest that current precipitation formation may provide an analogue framework for late-glacial circulation in this area.This is the 3rd in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

13.
Chironomids typical of cold, well-oxygenated, oligotrophic environments are common in late-Pleistocene deposits, but these taxa are rare in Holocene sediments of most small temperate lakes. Hypotheses to explain the demise of these taxa include variations in climate, lake trophic state, lake levels, terrestrial vegetation, and/or sediment composition. In southwestern British Columbia, this demise correlates with palynological evidence for a lodgepole pine decline, and for rapid climatic amelioration, at about 10 000 yr B.P. Faunal changes are poorly correlated with lithological boundaries. The similar timing of the declines among lakes suggests that a regional influence, climate, has possibly been the principal determinant of early chironomid faunal succession.This is the eleventh of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R.B. Davis for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

14.
We present glacial geologic and chronologic data concerning the Holocene ice extent in the Stauning Alper of East Greenland. The retreat of ice from the late-glacial position back into the mountains was accomplished by at least 11 000 cal years B.P. The only recorded advance after this time occurred during the past few centuries (the Little Ice Age). Therefore, we postulate that the Little Ice Age event represents the maximum Holocene ice extent in this part of East Greenland.  相似文献   

15.
A 2 m sediment core from Church's Blue Hole on Andros Island, Bahamas provides the first paleoecological record from the Bahama Archipelago. The timing of events in the lower portion of the core is uncertain due to inconsistencies in the radiocarbon chronology, but there is evidence that a late Holocene dry period altered the limnology of Church's Blue Hole and supported only dry shrubland around the site. The dry period on Andros may correlate with a widespread dry period in the Caribbean from 3200 to 1500 yr BP. After the dry period ended, a more mesic climate supported tropical hardwood thicket around Church's Blue Hole. At c. 740 radiocarbon yr BP there is a sudden rise in charcoal concentration and a rapid transition to pinewoods vegetation, while at c. 430 radiocarbon yr BP charcoal concentration drops, but is higher again near the top of the core. Although climatic shifts could have caused these changes in vegetation and charcoal concentration, the changes post-date human colonization of the Bahamas and may reflect human arrival, followed by the removal of humans c. 1530 AD and the recolonization of Andros Island c. 200 years later.This is the 12th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

16.
Multi-proxy data, both lithostratigraphic and biostratigraphic, are presented from Efstadalsvatn, a lake in NW Iceland. The sequence covers the period 10,000 to 3500 14C yr B.P. The biostratgraphic data include the first Icelandic chironomid-based reconstruction of Holocene mean July air temperatures, using a Norwegian training set in the absence of modern Icelandic data. The results show that deglaciation and ecosystem development probably began before 10,000 14C yr B.P. and that July temperatures were around 4°C at ca. 9500 14C yr B.P. Temperatures then rose to ca. 8°C at the time of the deposition of the Saksunarvatn tephra (9100 14C yr B.P.), reaching ca. 10°C by 8500 14C yr B.P., high enough for the growth of tree birch, although successful birch colonisation did not take place until 6750 14C yr B.P. There is some evidence for cooling immediately preceding 9100 14C yr B.P. There is little firm biostratigraphic evidence for the 8200 cal. B.P. event, although this may be due to a relatively low resolution pollen sampling interval, but there are changes at this time in the total carbon (TC) and mass susceptibility (MS) data. Optimal temperatures and relative vegetation stability may have occurred between 8000–6100 14C yr B.P. but the chironomid assemblages indicate higher temperatures after 5000 14C yr B.P. This latter interpretation may, however, reflect delayed colonisation of thermophilous taxa and requires further investigation. There is evidence in the lithostratigraphy for greater local terrestrial instability after 6100 14C yr B.P. but it seems unlikely that this led to the redevelopment of ice in the catchment. The biostratigraphic records appear to show a degree of resistence to climate forcing throughout the early and middle Holocene. The new chironomid-based temperature reconstruction needs to be refined by further studies in Iceland, particularly the development of an Icelandic training set, but has already demonstrated the problems of paleoclimatic interpretations based on pollen and/or macrofossil evidence alone.  相似文献   

17.
Wallywash Great Pond (17° 57 N, 77° 48 W, 7 m a.s.l.) is the largest perennial lake in Jamaica. It occupies a fault trough within the karstic White Limestone. The Great Pond is a hardwater lake with a pH of 8.2–8.6 and an alkalinity of 3.6–3.9 meq 1–1. Its chemistry is strongly influenced by the spring discharge from the limestone. The lake water is subject to degassing, evaporation and bicarbonate assimilation by submerged plants and algae, resulting in marl precipitation. A 9.23 m core (WGP2), taken from a water depth of 2.8 m, was analysed for magnetic susceptibility, loss-on-ignition, carbonate content, mole % MgCO3 in calcite, and stable isotopes in the fine carbonate fraction. The chronology is based on ten14C and four U/Th dates. Four main sediment types alternate in the core: marl; organic, calcareous mud; organic mud or peat; and earthy, brown, calcareous mud. The marls represent periods of wet/warm climate during sea-level highstands and the organic deposits, shallower, swampy conditions. In contrast, the brown, calcareous muds were laid down when the lake was dry or ephemeral. The last interglacial (120 000- 106 000 yr BP) is represented by three distinct marl units. After a dry interval, stable, wet/warm conditions set in from 106 000 to 93 000 yr BP. A dry/cool climate prevailed between 93 000 and at least 9500 yr BP. Three subsequent cycles of alternating wet and dry conditions culminated in flooding of the basin by the Black River during the late Holocene. These recent events cannot be accurately dated by14C due to significant and temporally-variable inputs of dead carbon from the springs.  相似文献   

18.
A multi-proxy analysis of two sediment cores from Rantin Lake are used to reconstruct past lake-level changes and to make inferences about millennial-scale variations in precipitation/evaporation (P/E) balance in the southern Yukon, Canada between 10,900 and 3,100?cal?yr BP. Analyses of calcium carbonate and organic matter concentration, magnetic susceptibility, titanium content, dry bulk density, and macrofossils are used to reconstruct water-level changes. The development of sand layers and deformed sediments at the deep-water core site (i.e. Core A-06) prior to ~10,900?cal?yr BP suggest that lake level was lower at this time. Fine-grained organic sediment deposited from 10,600 to 9,500?cal?yr BP indicates a rise in lake level. The formation of an unconformity at the shallow cores site (Core C-06) and the deposition of shallow-water calcium carbonate-rich facies at the Core A-06 site between ~9,500 and ~8,500?cal?yr BP suggest lower lake levels at this time. Shallow-water facies gradually transition into a sand layer that likely represents shoreline reworking during an extreme lowstand that occurred at ~8,400?cal?yr BP. Following this low water level, fine-grained organic-rich sediment formed by ~8,200?cal?yr BP, suggesting deeper water conditions at core site A-06. Calcium carbonate concentrations are relatively low in sediment deposited from ~6,300 to 3,100?cal?yr BP in Core A-06, indicating that lake level was comparatively higher during the middle and late Holocene. In general, results from this study suggest that the early Holocene was characterized by high P/E from ~10,500 to 9,500?cal?yr BP, low P/E from ~9,500 to 8,400?cal?yr BP, and return to higher P/E from ~8,200 to 3,100?cal?yr BP.  相似文献   

19.
The environmental history of the Kootenay Valley in the southern Canadian Rockies was reconstructed using lake sediment from Dog Lake, British Columbia, and compared to other paleoenvironmental studies in the region to understand how vegetation dynamics and fire regimes responded to climate change during the Holocene. A pollen-based vegetation reconstruction indicates five periods of vegetation change. At 10,300 cal yr B.P. Pinus-Juniperus parkland colonized the valley and by 7600 cal yr B.P. was replaced by mixed stands of Pinus, Picea and Pseudotsuga/Larix. Fire frequencies increased to their Holocene maximums during the 8200–4000 cal yr B.P. period. From 5500–4500 cal yr B.P. Pseudotsuga/Larix reached its maximum extent in the Kootenay Valley under a more frequent fire regime. At 5000 cal yr B.P. Picea and Abies began to expand in the area and by 4500 cal yr B.P. the forest shifted to a closed montane spruce forest type with dramatically reduced fire frequency. The shift to less frequent forest fires after 4500 cal yr B.P., along with a moisterPicea – dominated closed forest, corresponds to Neoglacial advances in the Canadian Rockies and Coast Mountains. Fire intervals after 4000 cal yr B.P. are significantly longer than the shorter fire intervals of the early to mid Holocene. A return to drier, more open forest condition occurs between 2400–1200 cal yr B.P. with a slight increase in fire activity and summer drought events. Lower lake levels inferred by charophyte accumulation rates during the 2400–1200 cal yr B.P. interval support this moisture regime shift. An abrupt shift toPicea dominated forest occurred from 1200–1000 cal yr B.P. and a final period of wet-closed forest cover reaches its maximum extent from 700–150 cal yr B.P. that appears to be a response to Little Ice Age cooling. Present forests are within their natural range of variability but are predicted to shift again to a drier more open structure with increased Pseudotsuga/Larix cover. More frequent stand replacing fires and increased area burned likely will accompany this change due to continued global warming.  相似文献   

20.
Geomorphology of a beach-ridge complex and adjacent lake basins along the northern shore of Lake Michigan records fluctuations in the level of Lake Michigan for the last 8000 to 10 000 14C yr B.P. (radiocarbon years Before Present). A storm berm at 204.7–206 m (671.6–675.9 ft) exposed in a sandpit provides evidence of a pre-Chippewa Low lake level that is correlated with dropping water levels of Glacial Lake Algonquin (c. 10 300–10 100 14C yr B.P.). Radiocarbon dates from organic material exposed in a river cutbank and basal sediments from Elbow Lake, Mackinac Co., Michigan, indicate a maximum age of a highstand of Lake Michigan at 6900 14C yr B.P., which reached as high as 196.7 m (645 ft), during the early-Nipissing transgression of Lake Michigan. Basal radiocarbon dates from beach swales and a second lake site (Beaverhouse Lake, Mackinac Co.) provide geomorphic evidence for a subsequent highstand which reached 192.6 m (632 ft) at 5390±70 14C yr B.P.Basal radiocarbon dates from a transect of sediment cores, along with tree-ring data, and General Land Office Surveyor notes of a shipwreck, c. A.D. 1846, reveal a late-Holocene rate for isostatic rebound of 22.6 cm/100 radiocarbon years (0.74 ft/100 radiocarbon years) for the northern shore of Lake Michigan, relative to the Lake Michigan-Lake Huron outlet at Port Huron, Michigan. Changes in sediment stratigraphy, inter-ridge distance, and sediment accumulation rates document a mid- to late-Holocene retreat of the shoreline due to isostatic rebound. This regression sequence was punctuated by brief, periodic highstands, resulting in progressive development over the past 5400 14C yr of 75 pairs of dune ridges and swales each formed over an interval of approximately 72 years. Times of lake-level fluctuation were identified at 3900, 3200, and 1000 14C yr B.P. based on changes in inter-ridge spacing, shifts in the course of Millecoquins River, and reorientation of beach-ridge lineation. Soil type, dune development, and selected pollen data provide supporting evidence for this chronology. Late-Holocene beach-ridge development and lake-level fluctuations are related to a retreat of the dominant Pacific airmass and the convergence of the Arctic and Tropical airmasses resulting in predominantly meridional rather than zonal air flow across the Great Lakes region.This is the 13th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号