首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate accelerated electron energy spectra for different sources in a large flare using simultaneous observations obtained with two instruments, the Nobeyama Radio Heliograph (NoRH) at 17 and 34 GHz, and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) at hard X-rays. This flare is one of the few in which emission up to energies exceeding 200 keV can be imaged in hard X-rays. Furthermore, we can investigate the spectra of individual sources up to this energy. We discuss and compare the HXR and microwave spectra and morphology. Although the event overall appears to correspond to the standard scenario with magnetic reconnection under an eruptive filament, several of its features do not seem to be consistent with popular flare models. In particular we find that (1) microwave emissions might be optically thick at high frequencies despite a low peak frequency in the total flux radio spectrum, presumably due to the inhomogeneity of the emitting source; (2) magnetic fields in high-frequency radio sources might be stronger than sometimes assumed; (3) sources spread over a very large volume can show matching evolution in their hard X-ray spectra that may provide a challenge to acceleration models. Our results emphasize the importance of studies of sunspot-associated flares and total flux measurements of radio bursts in the millimeter range.  相似文献   

2.
This paper explores the time evolution of microwave and hard X-ray spectral indexes in the solar flare observed by Nobeyama Radio Polarimeters (NoRP) and the Ramaty High Energy Solar Spectroscopy Imager (RHESSI) on 13 December 2006. The microwave spectral index, γ MW, is derived from the emissions at two frequencies, 17 and 35 GHz, and hard X-ray spectral index, γ HXR, is derived from RHESSI spectra. Fifteen subpeaks are detected at the microwave and hard X-ray emissions. The microwave spectral indexes tend to be harder than hard X-ray spectral indexes during the flare, which is consistent with previous findings. All detected subpeaks follow the soft-hard-soft spectral behaviours in the hard X-ray rise-peak-decay phases. However, the corresponding microwave subpeaks display different spectral behaviour, such as soft-hard-soft, soft-hard-harder, soft-hard-soft + hard or irregular patterns. These contradictions reveal the complicated acceleration mechanism for low- and high-energy electrons during this event. It is also interesting that the microwave interpeak spectral indexes are much more consistent with one another.  相似文献   

3.
The preflare phase of the flare SOL2011-08-09T03:52 is unique in its long duration, in that it was covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph, and because it showed three well-developed soft X-ray (SXR) peaks. No hard X-rays (HXR) are observed in the preflare phase. Here we report that no associated radio emission at 17 GHz was found either, despite the higher sensitivity of the radio instrument. The ratio between the SXR peaks and the upper limit of the radio peaks is higher by more than one order of magnitude than the ratio in regular flares. The result suggests that the ratio between acceleration and heating in the preflare phase was different than in regular flares. Acceleration to relativistic energies, if any, occurred with lower efficiency.  相似文献   

4.
We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1 s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (∼20%) of the groups show close correlation on time scales < 1 s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69 ± 0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission.  相似文献   

5.
Heating and acceleration of electrons in solar impulsive hard X-ray (HXR) flares are studied according to the two-stage acceleration model developed by Zhang for solar 3He-rich events. It is shown that electrostatic H-cyclotron waves can be excited at a parallel phase velocity less than about the electron thermal velocity and thus can significantly heat the electrons (up to 40 MK) through Landau resonance. The preheated electrons with velocities above a threshold are further accelerated to high energies in the flare-acceleration process. The flare-produced electron spectrum is obtained and shown to be thermal at low energies and power law at high energies. In the non-thermal energy range, the spectrum can be double power law if the spectral power index is energy dependent or related. The electron energy spectrum obtained by this study agrees quantitatively with the result derived from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) HXR observations in the flare of 2002 July 23. The total flux and energy flux of electrons accelerated in the solar flare also agree with the measurements.  相似文献   

6.
The radio emission during 201 selected X-ray solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zürich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% are they the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.  相似文献   

7.
The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows one to obtain unique information about the primary energy release mechanisms in solar flares. The SSRT (Siberian Solar Radio Telescope) spatially resolved images and its high spectral and temporal resolution allow for direct determination not only of the source positions but also of the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when SSRT is observing the flare region in two high-order fringes near 5.7?GHz; thus, two 1D brightness distributions are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14?April 2002 is presented. Using multiwavelength radio observations recorded by the SSRT, the Huairou Solar Broadband Radio Spectrometer (SBRS), the Nobeyama Radio Polarimeters (NoRP), and the Radio Solar Telescope Network (RSTN), we study an event with series of several tens of drifting microwave pulses with drift rates in the range from ?7 to 13?GHz?s?1. The sources of the fast-drifting bursts were located near the top of a flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch anisotropy of the emitting electrons.  相似文献   

8.
Alexander  R. Calum  Brown  John C. 《Solar physics》2002,210(1-2):407-418
Photospheric Compton backscatter (albedo) makes a significant contribution to observed hard X-ray (HXR) spectral fluxes over the RHESSI energy range and should be allowed for in HXR spectral interpretation. The full correction problem is nonlinear and messy but we offer a simple approximate first-order correction procedure for global HXR spectra based upon empirical fits to published albedo simulations. We also illustrate the impact of this correction on inferred electron spectra for the thin- and thick-target models.  相似文献   

9.
We present Hα observations from ARIES (Nainital) of a compact and impulsive solar flare that occurred on March 10, 2001 and which was associated with a CME. We have also analyzed HXT, SXT/Yohkoh observations as well as radio observations from the Nobeyama Radio Observatory to derive the energetics and dynamics of this impulsive flare. We coalign the Hα, SXR, HXR, MW, and magnetogram images within the instrumental spatial-resolution limit. We detect a single HXR source in this flare, which is found spatially associated with one of the Hα bright kernels. The unusual feature of HXR and Hα sources, observed for the first time, is the rotation during the impulsive phase in a clockwise direction. We propose that the rotation may be due to asymmetric progress of the magnetic reconnection site or may be due to the change of the peak point of the electric field. In MW emission we found two sources. The main source is at the main flare site and another is in the southwest direction. It appears that the remote source is formed by the impact of accelerated energetic electrons from the main flare site. From the spatial correlation of multiwavelength images of the different sources, we conclude that this flare has a three-legged structure.  相似文献   

10.
The Neupert effect is the name given to the correlation observed in many flares between the time-integrated microwave and hard X-ray emissions and the soft X-ray emission light curve. We have used hard X-ray data from the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) and soft X-ray data from the detector on GOES to determine what fraction of all events show this correlation and how the correlation changes from the impulsive to the gradual phase. We have found that of 66 HXRBS events observed in 1980 with a peak rate of > 1000 counts s-1, 58 (80%) showed good correlations with peaks in the GOES time derivative plot corresponding to peaks in the hard X-ray (HXR) plots to within ±20 s. In 20 of these good-correlation cases (30%), the soft X-ray (SXR) time derivative stays high after the HXR emission has decreased suggesting that the later emissions result from energy release in a loop already affected by the initial energy release. In 8 of the 13 flares that showed poor correlation, the SXR time derivative shows no peak corresponding to the initial HXR impulsive peak that has structure on a time scale of 1 s. This suggests that in these events the initial impulsive energy release results primarily in electron acceleration, and that the secondary plasma heating from the accelerated electrons contributes relatively little compared to the more gradual plasma heating already taking place at the same time. The more gradually varying events, commonly referred to as type C flares, tend to show poorer correlation between the SXR time derivative and the HXR time profile. Of 26 GOES X1 or greater flares recorded between 1980 and 1989 with HXR peaks lasting over 10 rain, 13 (50%) showed poor correlation with the gradual HXR peaks either not registering at all in the SXR time derivative plots or showing up as very broad peaks. In one case, on 1981 April 26, the SXR time derivative peak was delayed by 13 rain. Only 17 (65%) of the 26 X-flares had an earlier, impulsive component and of those, 12 (71%) showed good correlation between the impulsive peaks.  相似文献   

11.
The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by the Solar Submilimeter Telescope (SST) and microwaves (1 – 18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments onboard satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and γ-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterparts only in the higher energy X- and γ-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were difficult to be reconciled with a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.  相似文献   

12.
Simultaneous microwave and X-ray observations are presented for a solar flare detected on May 8, 1980 starting at 19:37 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28–490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms, respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive peaks in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5 s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model.  相似文献   

13.
Second and sub-second structures were simultaneously detected in optical, radio and hard X-ray (HXR) band, respectively by the GanYu Station of Purple Mountain Observatory, Nobeyama Radio Observatory, and RHESSI satellite in the November 1, 2004 flare (Ji et al., in Astrophys. J. 636:L173, 2006), which may be contributed to the energy transport of the continuous heat flux from the hot corona or chromosphere evaporation and of the accelerated electrons. The linear correlations between the amplitudes of these fluctuations and their flare emissions, and those between the cross-correlation coefficients of the fluctuations at two H α kernels, or two radio frequencies, or two X-ray energies and their flare emissions may support the causal relationship of the flare and these time structures. While, the cross-correlations of the fluctuations at three different bands suggest that the fluctuations are caused by the common thermal or nonthermal processes in the flare. Moreover, some new features of the fluctuations are reported in the flare: (1) The sub-second fluctuations in radio and HXR bands have a same timescale, which is evidently larger than that in H-alpha band. The difference may be explained by the downward movements of nonthermal electrons or the upward motion of chromosphere evaporation. (2) The power-law distributions of the amplitudes of the second and the sub-second structures are obtained at optical, radio and HXR bands with different indices. (3) The peak-to-peak correspondence of Stokes I and V components in the sub-second structures at radio band suggests that they may be resulted from a periodical particle acceleration and particle injection in this event. However, the second structures may be caused by the modulations of Alfvén waves with an upward speed of 103 km/s.  相似文献   

14.
Based on two-dimensional solar images obtained with the Siberian Solar Radio Telescope and the Nobeyama Radio Heliograph and using YOHKOH soft X-ray images, we investigate bright coronal points. The principal microwave emission mechanism of these points is shown to be the thermal bremsstrahlung of an optically thin plasma. The fact that, in several cases, bright coronal points do not coincide at two wavelengths can be explained by imaging peculiarities of the Nobeyama Radio Heliograph rather than by physical factors.  相似文献   

15.
Solar maps at 212 and 405 GHz obtained by the Solar Submillimetric Telescope (SST) show regions of enhanced brightness temperature, which coincide with the location of active regions. A statistical study of the radio emission from these active regions was performed for the first time at such high frequencies during 23 days on June and July 2002, when the atmospheric opacity was low. The brightest regions on the maps were chosen for this study, where the brightness excess observed varies from 3 to 20% above quiet Sun levels (i.e., 200–1000 K) at both wavelengths. Sizes of the regions of enhanced emission calculated at half the maximum value were estimated to be between 2′ and 7′. These sizes agree with observed sizes of active regions at other wavelengths such as Hα and ultraviolet. An important result is that the flux density spectra of all sources increase toward submillimeter frequencies, yielding flux density spectral index with an average value of 2.0. The flux density of the active region sources were complemented with that from maps at 17 and 34 GHz from the Nobeyama Radio Heliograph. The resulting spectra at all four frequencies were fit considering the flux density to be due to thermal bremsstrahlung from the active region. In the calculations, the source radius was assumed to be the mean of the measured values at 212 and 405 K. The effective temperatures of the radio emitting source, assumed homogeneous, obtained from this fit were 0.6–2.9 × 104 K, for source diameters of 2′–7′.  相似文献   

16.
We present study of relationship of GSXR flares with Hα flares, hard X-ray (HXR) bursts, microwave (MW) bursts at 15.4 GHz, type II/IV radio bursts, coronal mass ejections (CMEs), protons flares (>10 MeV) and ground level enhancement (GLE) events we find that about 85.7%, 93%, 97%, 69%, 60%, 11.1%, 79%, 46%, and 23%% GSXR flares are related/associated with observed Hα flares, HXR bursts, MW bursts at 15.4 GHz, type II radio bursts, type IV radio bursts, GLE events, CMEs, halo CMEs, and proton flares (>10 MeV), respectively. In the paper we have studied the onset time delay of GSXR flares with Hα flares, HXR, and MW bursts which shows the during majority GSXR flares SXR emissions start before the Hα, HXR and MW emissions, respectively while during 15–20% of GSXR flares the SXR emissions start after the onset of Hα, HXT and MW emissions, respectively indicating two types of solar flares. The, onset time interval between SXR emissions and type II radio bursts, type IV radio bursts, GLE events CMEs, halo CMEs, and protons flares are 1–15 min, 1–20 min, 21–30 min, 21–40 min, 21–40 min, and 1–4 hrs, respectively. Following the majority results we are of the view that the present investigations support solar flares models which suggest flare triggering first in the corona and then move to chromospheres/ photosphere to starts emissions in other wavelengths. The result of the present work is largely consistent with “big flare syndrome” proposed by Kahler (1982).  相似文献   

17.
We investigate the M1.8 solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3?–?50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram has indicated two statistically significant time periods of about 16 and 36 s. The 36 s QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16 s QPP were found in thermal and nonthermal HXR emission both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP, and the estimated physical parameters of the flare loops allowed us to interpret the observed QPP in terms of MHD oscillations excited in two spatially separated, but interacting systems of flaring loops.  相似文献   

18.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

19.
Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a second step process. The information available so far was drawn from qualitative considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basic hypothesis investigated is that the peculiar gradual features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April, 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilisation of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.  相似文献   

20.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号