首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Volcanoes of the Mariana arc system produce magmas that belong to several liquid lines of descent and that originated from several different primary magmas. Despite differences in parental magmas, phenocryst assemblages are very similar throughout the arc. The different liquid lines of descent are attributed to differences in degree of silica saturation of the primary liquids and in the processes of magmatic evolution (fractional crystallization vs magma mixing). Pseudoternary projections of volcanic rocks from several arc volcanoes are used to show differences between different magmatic suites. In most of the arc, parental liquids were Ol- and Hy-normative basalts that crystallized olivine, augite, and plagioclase (± iron-titanium oxide) and then plagioclase and two pyroxenes, apparently at low pressure. Eruptive rocks follow subparallel liquid lines of descent on element–element diagrams and on pseudoternary projections. Magmas at North Hiyoshi are Ne-normative and have a liquid line of descent along the thermal divide due to precipitation of olivine, augite, and plagioclase. Derived liquids are large ion lithophile element (LILE)-rich. Magmas at other Hiyoshi seamounts included an alkaline component but had more complex evolution. Those at Central Hiyoshi formed by a process dominated by mixing alkaline and subalkaline magmas, whereas those at other Hiyoshi seamounts evolved by combined magma mixing and fractional crystallization. Influence of the alkaline component wanes as one goes south from North Hiyoshi. Alkaline and subalkaline magmas were also mixed to produce magmas erupted at the Kasuga seamounts that are behind the arc front. The alkaline magmas at both Hiyoshi and Kasuga seamounts had different sources from those of the subalkaline magmas at those sites as indicated by trace element ratios and by Nd.  相似文献   

2.
During the 1929 activity of Hokkaido-Komagatake volcano, the Plinian eruption of a phenocryst-rich andesite was preceded by a small eruption of more mafic magma formed by magma mixing. A similar eruption sequence has been reported for some other eruptions (Pallister et al. 1996; Venezky and Rutherford 1997), suggesting that eruption of a mixed magma is a precursor of phenocryst-rich magmas. For the purpose of understanding the tapping processes of the phenocryst-rich magma chamber, we investigated the temporal variation in the erupted magma and estimated the viscosity and density of the end-member and mixed magmas with constraints drawn from petrography. For the precursory mixed magma we estimate 33dž vol.% phenocrysts, andesitic-dacitic melt composition, 3 wt.% H2O content, and temperature of 1040°C. In comparison, for the climactic, silicic end-member magma we estimate 48Dž vol.% phenocryst, high-silica rhyolitic melt, 3 wt.% H2O, and temperature of 950°C, respectively. The mafic end-member magma, which was not erupted, is thought to be an almost aphyric basaltic-andesitic magma, based on mass balance calculation of the phenocryst content. The proportion of the mafic end-member magma component in the mixed magma was calculated to be 20-40 wt.%. On the basis of these data, we estimate magma viscosities of 103.9, 106.9, and 102.0 Pa s for the mixed, silicic end-member, and mafic end-member magmas, respectively. The calculated density differences among these magmas are inconsequential when possible errors are considered. We calculate the minimum excess pressure required for dike propagation to be 31 MPa for the silicic end-member magma and 8 MPa for the mixed magma, using the estimated viscosity and dike propagation model of Rubin (1995). If we assume that excess pressure is limited by the wall rock strength of the magma chamber, excess pressure retainable in the magma chamber is less than ca. 20 MPa. This suggests that the mixed magma was able to ascend to the surface without freezing, whereas the viscous silicic end-member magma could not. The formation and precursory eruption of the mixed magma are, therefore, effective and necessary initiation processes for the phenocryst-rich, viscous magma eruption.  相似文献   

3.
Magma mixing and magma plumbing systems in island arcs   总被引:3,自引:0,他引:3  
Petrographic features of mixed rocks in island arcs, especially those originating by the mixing of magmas with a large compositional and temperature difference, such as basalt and dacite, suggest that the whole mixing process from their first contact to the final cooling (= eruption) has occurred continuously and in a relatively short time period. This period is probably less than several months, considerably shorter than the whole volcanic history. There may also be a prolonged quiescent interval, lasting longer than several days, between the magmas' contact and the mechanical mixing. This interval will allow the basic magma to cool and produce a semi-solidified boundary which is later disrupted by flow movements to produce basic inclusions.Mixing of magmas of contrasting chemical composition need not be the inevitable consequence of the contact of the magmas. It is, however, made more probable by forced convection caused by motive force such as the injection of a basic magma into an acidic magma chamber. A short interval between their initial contact and the final eruption requires that the acid magma chamber has a small volume, of the same order or less than that the introduced basic magma.The volcanic activity of Myoko volcano, central Japan, of the last 100,000 years shows alternate eruptions of hybrid andesite by mixing of basaltic and dacitic magmas, and non-mixed basalt to basaltic andesite. There was a repose period of 20,000 to 30,000 years between eruptions. The acidic chamber, eventually producing the mixed andesite activity, is formed during the repose period by the « in situ » solidification of the original basic magma against its wall. The volume of the chamber is very small, probably about 10–2 km3. Basaltic magma with constant chemical composition is supplied to the shallow chamber from another deep seated basaltic chamber. The volume of the shallow magma chamber may be critical to the characteristics of volcanic activity and its products.  相似文献   

4.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   

5.
Abstract The Hakkoda‐Towada caldera cluster (HTCC) is a typical Late Cenozoic caldera cluster located in the northern part of the Northeast Japan Arc. The HTCC consists of five caldera volcanoes, active between 3.5 Ma and present time. The felsic magmas can be classified into high‐K (HK‐) type and medium‐ to low‐K (MLK‐) type based on their whole‐rock chemistry. The HK‐type magmas are characterized by higher K2O and Rb contents and higher 87Sr/86Sr ratios than MLK‐type magmas. Both magmas cannot be derived from fractional crystallization of any basaltic magma in the HTCC. Assimilation‐fractional crystallization model calculations show that crustal assimilation is necessary for producing the felsic magmas, and HK‐type magmas are produced by higher degree of crustal assimilation with fractional crystallization than MLK‐type magmas. Although MLK‐type magmas were erupted throughout HTCC activity, HK‐type magmas were erupted only during the initial stage. The temporal variations of magma types suggest the large contribution of crustal components in the initial stage. A major volcanic hiatus of 3 my before the HTCC activity suggests a relatively cold crust in the initial stage. The cold crust probably promoted crustal assimilation and fractional crystallization, and caused the initial generation of HK‐type magmas. Subsequently, the repeated supply of mantle‐derived magmas raised temperature in the crust and formed relatively stable magma pathways. Such a later system produced MLK‐type magmas with lesser crustal components. The MLK‐type magmas are common and HK‐type magmas are exceptional during the Pliocene–Quaternary volcanism in the Northeast Japan Arc. This fact suggests that exceptional conditions are necessary for the production of HK‐type magmas. A relatively cold crust caused by a long volcanic hiatus (several million years) is considered as one of the probable conditions. Intensive crustal assimilation and fractional crystallization promoted by the cold crust may be necessary for the generation of highly evolved HK‐type felsic magmas.  相似文献   

6.
Size distributions of plagioclase crystals in series of recent porphyritic dacite lavas from Kameni volcano, Greece, can be modelled by mixing two populations of crystals, each with overlapping linear crystal size distributions (CSD)—termed microlites and megacrysts. The magmas bearing the microlites and megacrysts started to crystallise 6–13 and 24–96 years, respectively, before each eruption. The dates of initiation of crystallisation of the megacrysts indicate that they are left-overs of earlier injections of new magma into a shallow chamber: some magma remains after each eruption and continues to crystallise. New magma with few or no crystals is then introduced and the microlites crystallise from the mixed magma. Eruption followed 6–13 years after mixing. Such a model would suggest that some porphyritic magmas are products of a shallow magma chamber that is never completely emptied, just topped up from time to time.  相似文献   

7.
The mixing of mafic and silicic magmas in a squeezed conduit is simulated by fluid dynamics experiments using glue and dilute glycerin in a squeezed vinyl tube. Lighter and more viscous glue initially stably overlies dilute glycerin in a tube. As the tube is squeezed downward by a roller, the glue and dilute glycerin axisymmetrically circulate in the tube. The stable density stratification overturns due to the circulative motion. Because of viscosity contrast between the two liquids, the convective motion becomes unsteady and chaotic, which leads to efficient mixing of two liquids, even when the tube is squeezed very slowly. It is suggested that magma mixing in a squeezed conduit may explain some occurrences of natural mixed lavas with nearly homogeneous groundmass.  相似文献   

8.
The Fe/Mg+Fe) ratios (XFe) of the Quaternary basalts (SiO2 < 53 wt.%) in the Japanese arcs were examined. The XXFe of relatively magnesian basalts decreases from the volcanic front toward the Japan Sea across the arcs. Based on the partition coefficient of Mg-Fe2+ between olivine and liquid, it is suggested that all the basalts near the volcanic front, which are mostly tholeiitic basalts, are significantly fractionated, whereas many basalts near the Japan Sea, which are mostly alkali basalts, are little fractionated. The K2 O content in the primary basalt magmas increases toward the Japan Sea. Combining the XFe and K2 O data, it is suggested that relatively large amounts of tholeiitic magmas are produced near the volcanic front, but they fractionate during their ascent, whereas smaller amounts of alkali basalt magmas are formed near the Japan Sea, but they can ascend with less fractionation. The density of primary tholeiite magma is significantly larger than that of primary alkali basalt magmas. It is most likely that primary tholeiite magmas cannot ascend beyond the upper crust and would fractionate to produce less dense tholeiitic magmas near the volcanic front, whereas primary alkali basalt magmas can ascend through the upper crust without fractionation, as far as buoyancy is the principal ascending force. In the Japanese arcs, the stress field may be less compressional near the Japan Sea than near the volcanic front, so that magmas can ascend more rapidly in the latter region than in the former. These two factors may be responsible for the above mentioned chemical variations of basalt magmas across the arcs. The variation in volume of the Quaternary volcanic rocks across the arcs can be explained by the presence of a melt-rich zone above but nearly parallel to the subducted slab.  相似文献   

9.
Quanshu Yan  Xuefa Shi 《Island Arc》2014,23(3):221-235
Major element and trace element compositions, and Sr, Nd and Pb isotopic compositions for postcollisional granites from the Laoshan granitic complex, in the eastern side of the Triassic suture between the South China and North China tectonic blocks were determined. The granites are alkaline, A‐type and can be further classified as A1 granites. The trace element composition of these granites is transitional between those of oceanic island basalt and enriched mid‐oceanic ridge basalt, with depletions in Ba, Sr, P, and Ti that can be ascribed to mineral fractionation and enrichments in Cs, Rb, Th and U possibly resulted from the involvement of slab fluids. The isotopic signature of Laoshan granites represent a mixture between an enriched mantle type 1 (EMI)‐like end‐member and lower continental crust (LCC). We propose that the magmas that formed the Laoshan A1 granites are a mixture between those derived from the EMI‐like delaminated eclogitic rocks (subsequently enriched by fluids released from Mesozoic Pacific subducted slab) and those derived from the LCC, which consists of granulites or metamorphic residues from the prior generation of I‐type granites in the region. The mixed magmas then experienced a strongly alkali feldspar‐dominated fractionation prior to their emplacements as A‐type granites in the Laoshan granitic complex.  相似文献   

10.
Melting phase relations of an augite-olivine high-magnesian andesite and an augite-olivine basalt from the Miocene Setouchi volcanic belt in southwest Japan have been studied under water-saturated, water-undersaturated and under anhydrous conditions. Both the andesite and the basalt are characterized by low FeO*/MgO ratios (0.86 and 0.76 in weight, respectively) and qualify as primary magmas derived from the upper mantle.The andesite melt coexists with olivine, orthopyroxene and clinopyroxene at 15 kbar and 1030°C under water-saturated conditions, and at 10 kbar and 1070°C under water-undersaturated conditions (7 wt.% H2O in the melt). The basalt-melt also coexists with the above three phases at 11 kbar and 1305°C under anhydrous conditions, and at 15 kbar and 1205°C in the presence of 4 wt.% water.Present studies indicate that high-magnesian andesite magmas may be produced even under water-undersaturated conditions by partial melting of mantle peridotite. It is suggested that two types of high-magnesian andesites in the Setouchi volcanic belt (augite-olivine and bronzite-olivine andesites) were produced by different degrees of partial melting; augite-olivine andesite magmas, whose mantle residual is lherzolite, were formed by lower degrees of partial melting than bronzite-olivine andesite magmas, which coexist with harzburgite. The basalt magmas, which were often extruded in close proximity to the high-magnesian andesite magmas, are not partial melting products of a mantle peridotite which had previously melted to yield high-magnesian andesite magmas.  相似文献   

11.
The El Capitan alaskite exposed in the North American Wall, Yosemite National Park, was intruded by two sets of mafic dikes that interacted thermally and chemically with the host alaskite. Comparisons of petrographic and compositional data for these dikes and alaskite with published data for Sierra Nevada plutons lead us to suggest that mafic magmas were important in the generation of the Sierra Nevada batholith. Specifically, we conclude that: (1) intrusion of mafic magmas in the lower crust caused partial melting and generation of alaskite (rhyolitic) magmas; (2) interaction between the mafic and felsic magmas lead to the observed linear variation diagrams for major elements; (3) most mafic inclusions in Sierra Nevada plutons represent chilled pillows of mafic magmas, related by fractional crystallization and granitoid assimilation, that dissolve into their felsic host and contaminate it to intermediate (granodioritic) compositions; (4) vesiculation of hydrous mafic magma upon chilling may allow buoyant mafic inclusions and their disaggregation products to collect beneath a pluton's domed ceiling causing the zoning (mafic margins-to-felsic core) that these plutons exhibit.  相似文献   

12.
Different models of pre-eruptive magmas behavior are examined to determine the factors relevant in triggering eruptions. Statistical models of the activity pattern of volcanoes show that an eruption may be treated as a casual event, and that the probability of an eruption is controlled by the size of stochastic perturbations. Qualitative and energetic models suggest that an energy threshold is necessary to start an eruption when magmas approach the Earth’s surface. The peculiarities of such state are connected with the mechanism of rise of magmas. Factors such as rise velocity of magmas, regional stress field, viscosity and interaction with pore fluid are believed to be the most important causes of the different behavior of magmas.  相似文献   

13.
The “Colli Albani” composite volcano is made up of strongly silica-undersaturated leucite-bearing rocks. Magmas were erupted during three main periods, but a complex plumbing system dominated by regional tectonics channelled magmas into different reservoirs. The most alkali-rich magmas, restricted to the caldera-forming period (pre-caldera), are extremely enriched in incompatible trace elements and display more radiogenic Sr (87Sr/86Sr?=?0.71057–0.71067), with slightly less radiogenic Pb with respect to those of the post-caldera period. Post-caldera volcanic activity was concentrated in three different volcanic environments: external to the caldera, along the caldera edge and within the caldera. The post-caldera magmas produced melilite- to leucitite-bearing, plagioclase-free leucitites. In contrast to the pre-caldera lavas, they are characterised by lower incompatible trace element abundances and less radiogenic Sr (87Sr/86Sr?=?0.71006–0.71039). Magmas evolved through crystal fractionation plus minor crustal assimilation in a large magma chamber during the pre-caldera period. The multiple caldera collapses dissected and partially obliterated the early magma chamber. During the post-caldera stage, magmas were channelled through several pathways and multiple shallow-level magma reservoirs were established. A lithospheric mantle wedge previously depleted in the basaltic component and subsequently enriched by metasomatic slab-derived component is suggested as the mantle source of Colli Albani parental magmas. Two different parental magmas are recognised for the pre- and post-caldera stages. The differences may be related to the interplay between smaller degrees of melting for the pre-caldera magmas and more carbonate-rich recycled subducted lithologies in the post-caldera magmas.  相似文献   

14.
Complex rocks, consisting of different lithologic breccias and sediments in the Tungho area of the southern Coastal Range, eastern Taiwan, were formed by magmas and magma–sediment mingling. Based on field occurrences, petrography, and mineral and rock compositions, three components including mafic magma, felsic magma, and sediments can be identified. The black breccias and white breccias were consolidated from mafic and felsic magma, respectively. Isotopic composition shows these two magmas may be from the same source. Compared to the white breccias, the black breccias show clast-supported structures, higher An values in plagioclase, higher contents of MgO, CaO, and Fe2O3 and lower SiO2, greater enrichment in the light rare earth elements (LREE), and depletion in the heavy rare earth elements (HREE). The white breccias show matrix-supported blocks and mingling with tuffaceous sediments to form peperite. Physical and chemical evidence shows that the characteristics of these two components (mafic and felsic magmas) are still apparent in the mingled zone. According to their petrography, mafic and felsic magmas did not have much time for mingling. White intrusive structures and black flow structures show that mingling occurred before they solidified. Finally, the occurrence of mingling between magmas and sediments suggests that the mingling has taken place at the surface and not in the magma chamber.  相似文献   

15.
The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   

16.
Origin of andesite and its bearing on the Island arc structure   总被引:1,自引:0,他引:1  
The hypothesis that andesite magmas originate from basalt magmas through fractionation is supported for the following reasons: 1) A close association of andesite and dacite with basalt in many volcanoes and a complete gradation in chemistry and mineralogy throughout this suite. 2) Formation of andesite magmas from basalt magmas by differentiation in situ of some intrusive and extrusive bodies. 3) Agreement between the calculated compositions of solid materials to be subtracted from basalt magmas to yield andesite magmas and the observed mineralogy of phenocrysts in these rocks. 4) Higher alkali contents in andesite and dacite associated with high-alumina basalt than in those associated with tholeiite. 5) A complete gradation from the high iron concentration trend of basalt magma fractionation (Skaergaard) to the low or noniron concentration trend (the calc-alkali series) which can be ascribed to the difference of the stage of magnetite crystallization. 6) Similarity between the orogenic rock suite and plateau basalts in the preferential eruption of magmas of middle fractionation stage, givin rise to the great volume of andesite in the orogenic belts and iron-rich basalt in the plateau lavas. Petrological and seismic refraction studies suggest that a great volume of gabbroic materials are present in the lower crust underneath the volcanic belts as a complementary material for the andesite lavas. The island arc structure would develop by repeated eruption of andesite on the surface and by thickening of the oceanic crust underneath the arc due to the addition of gabbroic materials. The suitable portion of the lower crust may be subjected to partial melting to produce granitic magma in the later stage of development of the arc, successively changing it to a part of the adjacent continent.  相似文献   

17.
Abstract A remarkable temporal variation in primary magma compositions has been found in the Northeast Japan arc. The trench-side magmas have become more enriched in FeO* and the backarc-side magmas have become more depleted in FeO* while retaining almost constant SiO, levels for the last ∼20 million years. In order to understand the origin of the temporal variation, FeO* and SiO, contents in partial melts are modeled for an adiabatically-rising mantle as a function of potential temperature and original composition of the mantle material. The result demonstrates that the primary magmas that are more depleted in FeO* were derived from the mantle materials either at lower potential temperatures or with compositions more depleted in basaltic components. A possible mechanism for the inferred primary magma variability is the change in depth intervals with time of magma production in a compositionally-layered mantle wedge; greater degrees of depletion at a greater depth is reconciled with a probable thermal regime in the mantle wedge.  相似文献   

18.
The Earth has grown from chaotically mixed small dusts and gases to its present highly differentiated layered structure over the past 4.567 billion years. This differentiation has led to the formation of the atmosphere, hydrosphere,biosphere, crust, mantle, and core. The timing and mechanism for the formation and evolution of these different layers are still subjects of intense debate. This review brings together recent advances in using non-traditional stable isotopes to constrain major events and processes leading to the formation and differentiation of the Earth, including the Moon-forming giant impact, crustmantle interactions, evolution of life, the rise of atmospheric oxygen, extreme paleoclimate changes, and cooling rate of magmas.  相似文献   

19.
Volcanic rocks from subduction zones are widely believed to originate by partial melting of mantle lherzolite modified by the addition of a fluid or melt extracted from the down-going slab. U-series disequilibrium in such magmas is commonly attributed to this particular melting process. A detailed study of U-series isotopes in the 650 y. B.P. eruptive sequence of Mt. Pelée (Martinique) shows that plinian products are in radioactive equilibrium, whereas dome-forming products of the same eruption are characterized by 238U-230Th disequilibrium. The same features apply to other plinian and dome-forming products of this volcano and systematically correspond to different eruptive styles. We attribute these characteristics to variable superficial interaction of magmas with the hydrothermal system during the final stages of eruption rather than to deep magma genesis processes. This conclusion might be generally applicable to arc magmas.  相似文献   

20.
The Handkerchief Mesa mixed magma complex is one of several late Cenozoic volcanic complexes in the southeastern San Juan Mountains characterized by mingling and limited mixing of basalt and rhyodacite. Stratigraphy in the dissected vent complex at Handkerchief Mesa records three phases of volcanism, the first and third displaying evidence for coeruption of mafic and silicic magmas. Phases 1 and 2 erupted silicic pyroclastics and basaltic lava flows, respectively. Phase-3 eruptions were dominated by rhyodacite lava flows, rhyodacite dikes, and abundant mingled and mixed hybrid lavas.Pre- and syneruptive basalt-rhyodacite mixing of phase-3 eruptions is shown by: (1) inclusions of quenched basalt in rhyodacite; (2) partially disaggregated basalt inclusions in mixed hybrids and rhyodacites; (3) interfingering lenses of mixed hybrid lavas and rhyodacite. Whole-rock major- and trace-element analyses support a two-component mixing model whereby intermediate hybrids are produced by mixing of basalt and rhyodacite (up to 30% basalt: 70% rhyodacite). Disequilibrium phenocryst textures and mineral compositions are consistent with multistage mixing culminating in an eruptive mixing event. Protracted mixing along a boundary zone at the base of a rhyodacite magma chamber may be responsible for stabilizing Fe-rich olivine phenocrysts in some hybrids.Basalt-rhyodacite mixing is inhibited by rapid crystallization in the basalt shortly after inclusion within the lower temperature melt. The degree to which mechanical dispersion and blending ensues is a critical function of the initial temperature contrast (ΔTi) between the two magmas. Thermal models, simulating the conductive cooling histories for basalt spheres in rhyodacite reservoirs, suggest that at large ΔTi's (> 200°) rapid cooling of the inclusion leads to disequilibrium crystallization with concomitant depression of equilibrium solidi, grain boundary wetting by residual liquids, and limited disaggregation of the inclusion imposed by movement of the host. For small ΔTi's (< 100°) temperatures within the inclusion can be maintained above the solidus for prolonged time periods, enhancing the possibility of producing homogeneous mixed hybrids through mechanical blending and diffusion. Both mechanisms operated at Handkerchief Mesa and contributed to the range of observed textures and compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号