首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We found an evidence that the luminosity of the Sun systematically decreased about 20 days before sunspot surface appearance by analysing time-lag correlation of time derivatives of running mean time profiles of the data of the Active Cavity Radiometer Irradiance Monitor (ACRIM) I experiment on board of Solar Maximum Mission (SMM) and of the data of the daily sunspot number. This indicates that sunspot flux tube cooling and heat transport blocking by the flux tubes start to take place in the interior of the solar convection zone well before the sunspot surface appearance. From this finding and our previous finding that the luminosity of the Sun systematically increased and the blocked heat appeared on the surface about 50 days after the sunspot surface appearance, a new view of sunspot formation and dynamics and a new view of the luminosity modulation emerged. (i) Sunspots of a solar cycle are formed from clusters of flux tubes which can be seen in the running mean time profile of the sunspot number as a peak with duration on the order of 100 to 200 days. (ii) Heat flow is blocked by the cluster of sunspot flux tubes inside the convection zone to decrease the luminosity about 20 days before the surface emergence of the sunspot cluster. (iii) The blocked heat appears on the surface about 50 days after the surface emergence of the cluster of sunspot flux tubes to heat up the surface. This appears as a thermal pulse in the running mean time profile of the ACRIM dat in between the peaks of the sunspot running mean time profile. This process of heating the surface makes the temperature gradient less steep and weakens the buoyancy of sunspot flux tubes below the surface. (vi) The radiative cooling of the surface layer by the excess heat release steepens the temperature gradient so that the buoyancy of the sub-surface magnetic flux tubes becomes stronger to cause the next surge of emergence of a cluster of sunspots and other magnetic activities, which creates a peak in the time profile of the sunspot number. We call this peak a magnetic pulse of the Sun and the coupled process of alternating pulsed appearance of heat and sunspots the magneto-thermal pulsation of the Sun.  相似文献   

2.
The power of solar acoustic waves is reduced inside sunspots mainly due to absorption, emissivity reduction, and local suppression. The coefficients of these power-reduction mechanisms can be determined by comparing time – distance cross-covariances obtained from sunspots and from the quiet Sun. By analyzing 47 active regions observed by SOHO/MDI without using signal filters, we have determined the coefficients of surface absorption, deep absorption, emissivity reduction, and local suppression. The dissipation in the quiet Sun is derived as well. All of the cross-covariances are width corrected to offset the effect of dispersion. We find that absorption is the dominant mechanism of the power deficit in sunspots for short travel distances, but gradually drops to zero at travel distances longer than about 6°. The absorption in sunspot interiors is also significant. The emissivity-reduction coefficient ranges from about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and accounts for only about 21.5% of the umbra’s and 16.5% of the sunspot’s total power reduction. Local suppression is nearly constant as a function of travel distance with values of 0.80 and 0.665 for umbrae and whole sunspots respectively, and is the major cause of the power deficit at large travel distances.  相似文献   

3.
We have searched for the missing energy flux of the sunspot by measuring white-light photographs over the region around the sunspots exceeding ten times of the diameter of spots. It was found that the excess brightness amounts to 0.3–0.8% of the local continuum intensity immediately beyond the penumbra and smoothly decrease to zero at the edge of our inspected radii of 130 000–160000km. This result suggests that the flux deficit in sunspots of the order of 30% over the umbra-penumbra is roughly the same as the excess flux found in the very large surrounding region which includes photospheric facular contributions. Among nineteen spots fourteen showed this extended bright ring. Narrow band photoelectric scans revealed that the excess radiation originates in the continuum, not from weakened absorption lines.  相似文献   

4.
Results are given for calculations of convective flows around objects in the outer layers of the Sun that have similar characteristics to small sunspots. These objects are allowed to radiatively (diffusively) exchange heat with their surroundings, but convective motions and exchange are absent. This assumption is based on the simple presumption that a sunspot magnetic field maintains pressure equilibrium with the surrounding medium and prevents convective exchange with that medium.The flow structure around the object, and the question of the overall balance or redistribution of the emerging heat flux as suggested by earlier empirical models, are studied and discussed.After a period of adjustment, shortly after the sunspot-like object is placed into the domain, the layer readjusts itself so that most of the heat flux actually reappears at the surface, although some fraction of the flux is carried horizontally far from the object. There is no indication of long term storage of the heat flux that would normally appear in the place where the object resides. Finally, when the object is removed, the surrounding medium responds very quickly and soon returns to the undisturbed state before the object was in place.The present numerical treatment includes restrictions that may influence aspects of the heat redistribution, convective flows and time scales. In particular, the shape of the object and its size (somewhat smaller than a sunspot) are important, as is the number of spatial dimensions and the treatment of some boundary conditions. Since all of these issues require further investigation, some discussion is presented regarding the applicability of our results to real sunspots.  相似文献   

5.
During sunspot cycles 20 and 21, the maximum in smoothed 10.7-cm solar radio flux occurred about 1.5 yr after the maximum smoothed sunspot number, whereas during cycles 18 and 19 no lag was observed. Thus, although 10.7-cm radio flux and Zürich suspot number are highly correlated, they are not interchangeable, especially near solar maximum. The 10.7-cm flux more closely follows the number of sunspots visible on the solar disk, while the Zürich sunspot number more closely follows the number of sunspot groups. The number of sunspots in an active region is one measure of the complexity of the magnetic structure of the region, and the coincidence in the maxima of radio flux and number of sunspots apparently reflects higher radio emission from active regions of greater magnetic complexity. The presence of a lag between sunspot-number maximum and radio-flux maximum in some cycles but not in others argues that some aspect of the average magnetic complexity near solar maximum must vary from cycle to cycle. A speculative possibility is that the radio-flux lag discriminates between long-period and short-period cycles, being another indicator that the solar cycle switches between long-period and short-period modes.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

6.
We study the effects of two-dimensional turbulence generated in sunspot umbra due to strong magnetic fields and Alfven oscillations excited in sunspots due to relatively weak magnetic fields on the evolution of sunspots. Two phases of sunspot magnetic field decaying are shown to exist. The initial rapid phase of magnetic field dissipation is due to two-dimensional turbulence. The subsequent slow phase of magnetic field decaying is associated with Alfven oscillations. Our results correspond to observed data that provide evidence for two types of sunspot evolution. The effect of macroscopic diamagnetic expulsion of magnetic field from the convective zone or photosphere toward sunspots is essential in supporting the long-term stability and equilibrium of vertical magnetic flux tubes in sunspots.  相似文献   

7.
A white-light flare (WLF) on 10 March 2001 was well observed in the Hα line and the Ca ii λ8542 line using the imaging spectrograph installed on the Solar Tower Telescope of Nanjing University. Three small sunspots appeared in the infrared continuum image. In one sunspot, the infrared continuum is enhanced by 4–6% compared to the preflare value, making the sunspot almost disappear in the continuum image for about 3 min. A hard X-ray (HXR) source appeared near the sunspot, the flux of which showed a good time correlation with the profile of the continuum emission. In the sunspot region, both positive and negative magnetic flux suffered a substantial change. We propose that electron precipitation followed by radiative back-warming may play the chief role in heating the sunspot. The temperature rise in the lower atmosphere and the corresponding energy requirement are estimated. The results show that the energy released in a typical WLF is sufficient to power the sunspot heating.  相似文献   

8.
F10.7太阳辐射通量作为输入参数被广泛运用于大气经验模型、电离层模型等空间环境模型,其预报精度直接影响航天器轨道预报精度.采用时间序列法统计了太阳辐射通量F10.7指数和太阳黑子数(SSN)的关系,给出了两者之间的线性关系,在此基础上提出了一种基于长短时记忆神经网络(Long and Short Term Memory,LSTM)的预报方法,方法结合了54 d太阳辐射通量指数和SSN历史数据来对F10.7进行未来7 d短期预报,并与其他预报方法的预报结果进行了比较,结果表明:(1)所建短期预报7 d方法模型的性能优于美国空间天气预报中心(Space Weather Prediction Center, SWPC)的方法,预测值和观测值的相关系数(CC)达到0.96,同时其均方根误差约为11.62个太阳辐射通量单位(sfu),预报结果的均方根误差(RMSE)低于SWPC,下降约11%;(2)对预测的23、24周太阳活动年结果统计表明,太阳活动高年的第7 d F10.7指数预报平均绝对百分比误差(MAPE)最优可达12.9%以内,低年最优可达2...  相似文献   

9.
We suggest a quantitative sunspot model developed in terms of mean-field magnetohydrodynamics (MHD). The model consistently describes the distributions of magnetic field, fluid velocity, and thermodynamic parameters in a sunspot and the surrounding matter. Two versions of the model allow the MHD equilibrium in sunspots and their slow decay to be analyzed. The baroclinic flow converging to the sunspot plays an important role in the equilibrium. Several calculated characteristics—almost uniform distributions of brightness and magnetic field inside sunspots, their abrupt changes at the boundary, and nearly linear decreases in the area and magnetic flux of decaying sunspots with time—qualitatively agree with the observations.  相似文献   

10.
To investigate the relation between observations of the 10.7 cm flux and the international sunspot number so that a physical unit may be ascribed to historical records, both polynomial and power law models are developed giving the radio flux as a function of sunspot number and vice versa. Bayesian data analysis is used to estimate the model parameters and to discriminate between the models. The effect on the parameter uncertainty and on the relative evidence of normalizing the measure of fit is investigated. The power law giving flux as a function of sunspot number is found to be the most plausible model and may be used to estimate the radio flux from historical sunspot observations.  相似文献   

11.
Observations have consistently pointed out that the longitudinal and latitudinal motions of sunspots are correlated. The magnitude of the covariance was found to increase with latitude, and its sign was found to be positive in the N-hemisphere and negative in the S-hemisphere. This correlation was believed to be due to the underlying turbulence where the sunspot flux tubes are anchored, and the covariance had the right sign and magnitude needed to explain the transfer of angular momentum toward the equator through Reynolds stresses.Here we present an alternate explanation for these sunspot velocity correlations: It is believed that the dynamo operates in a thin overshoot layer beneath the base of the convection zone, and the flux tubes generated there produce sunspots at the photosphere. By studying the dynamics of flux tubes emerging from the base of the convection zone to the photosphere, we show that these velocity correlations of sunspots could be merely a consequence of the effect of Coriolis force on rising flux tubes. The effect of the Coriolis force, as demonstrated by even a back-of-the-envelope calculation, is to push the faster rotating spots equatorward and the slower rotating spots poleward, giving rise to a correlation in their longitudinal and latitudinal velocities, which is positive in the N-hemisphere and negative in the S-hemisphere. The increase in the correlation with latitude is due to the increase in magnitude of the Coriolis force. Hence we show that these velocity correlations might have nothing to do with the Reynolds stresses of the underlying turbulence.We present analyses of observations, and show that the covariances of plages are an order of magnitude higher than the sunspot covariances. If plages and sunspots share the same origin, and if their horizontal velocity correlations are wholly due to the effect of Coriolis force on rising flux tubes, then the study of their dynamics suggests that the flux tubes that form plages should have diameters of a couple of thousand km at the base of the convection zone and remain intact until they reach the photosphere, whereas sunspots should be formed by a collection of small flux tubes (each measuring about a hundred km in diameter), that rise through the convection zone as individual elements and coalesce when they emerge through the photosphere.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

12.
We show that the rotation of coronal holes can be understood in terms of a current-free model of the coronal magnetic field, in which holes are the footpoint locations of open field lines. The coronal field is determined as a function of time by matching its radial component to the photospheric flux distribution, whose evolution is simulated including differential rotation, supergranular diffusion, and meridional flow. We find that ongoing field-line reconnection allows the holes to rotate quasi-rigidly with their outer-coronal extensions, until their boundaries become constrained by the neutral line of the photospheric field as it winds up to form stripes of alternating magnetic polarity. This wind-up may be significantly retarded by a strong axisymmetric field component which forces the neutral line to low latitudes; it is also gradually halted by the cross-latitudinal transport of flux via supergranular diffusion and a poleward bulk flow. We conclude that a strong axisymmetric field component is responsible for the prolonged rigid rotation of large meridional holes during the declining phase of the sunspot cycle, but that diffusion and flow determine the less rigid rotation observed near sunspot maximum, when the holes corotate with their confining polarity stripes.  相似文献   

13.
Flux elements, pores and sunspots form a family of magnetic features observed at the solar surface. As a first step towards developing a fully non-linear model of the structure of these features and of the dynamics of their interaction with solar convection, we conduct numerical experiments on idealized axisymmetric flux tubes in a compressible convecting atmosphere in cylindrical boxes of radius up to 8 times their depth. We find that the magnetic field strength of the flux tubes is roughly independent of both distance from the centre and the total flux content of the flux tube, but that the angle of inclination from the vertical of the field at the edge of the tube increases with flux content. In all our calculations, fluid motion converges on the flux tube at the surface. The results compare favourably with observations of pores; in contrast, large sunspots lie at the centre of an out-flowing moat cell. We conjecture that there is an inflow hidden beneath the penumbrae of large spots, and that this inflow is responsible for the remarkable longevity of such features.  相似文献   

14.
The properties of small (< 2″) moving magnetic features near certain sunspots are studied with several time series of longitudinal magnetograms and Hα filtergrams. We find that the moving magnetic features:
  1. Are associated only with decaying sunspots surrounded entirely or in part by a zone without a permanent vertical magnetic field.
  2. Appear first at or slightly beyond the outer edge of the parent sunspot regardless of the presence or absence of a penumbra.
  3. Move approximately radially outward from sunspots at about 1 km s?1 until they vanish or reach the network.
  4. Appear with both magnetic polarities from sunspots of single polarities but appear with a net flux of the same sign as the parent sunspot.
  5. Transport net flux away from the parent sunspots at the same rates as the flux decay of the sunspots.
  6. Tend to appear in opposite polarity pairs.
  7. Appear to carry a total flux away from sunspots several times larger than the total flux of the sunspots.
  8. Produce only a very faint emmission in the core of Hα.
A model to help understand the observations is proposed.  相似文献   

15.
Mechanisms of the formation and stability of sunspots are among the longest-standing and intriguing puzzles of solar physics and astrophysics. Sunspots are controlled by subsurface dynamics, hidden from direct observations. Recently, substantial progress in our understanding of the physics of the turbulent magnetized plasma in strong-field regions has been made by using numerical simulations and local helioseismology. Both the simulations and helioseismic measurements are extremely challenging, but it is becoming clear that the key to understanding the enigma of sunspots is a synergy between models and observations. Recent observations and radiative MHD numerical models have provided a convincing explanation for the Evershed flows in sunspot penumbrae. Also, they lead to the understanding of sunspots as self-organized magnetic structures in the turbulent plasma of the upper convection zone, which are maintained by a large-scale dynamics. Local helioseismic diagnostics of sunspots still have many uncertainties, some of which are discussed in this review. However, there have been significant achievements in resolving these uncertainties, verifying the basic results by new high-resolution observations, testing the helioseismic techniques by numerical simulations, and comparing results obtained by different methods. For instance, a recent analysis of helioseismology data from the Hinode space mission has successfully resolved several uncertainties and concerns (such as the inclined-field and phase-speed filtering effects) that might affect the inferences of the subsurface wave-speed structure of sunspots and the flow pattern. It is becoming clear that for the understanding of the phenomenon of sunspots it is important to further improve the helioseismology methods and investigate the whole life cycle of active regions, from magnetic flux emergence to dissipation. The Solar Dynamics Observatory mission has started to provide data for such investigations.  相似文献   

16.
The rotation of sunspots in the solar active region NOAA 10930 was investigated on the basis of the data on the longitudinal magnetic field and the Doppler velocities using magnetograms and dopplergrams taken with the Solar Optical Telescope installed aboard the HINODE mission. Under the assumption of axial symmetry, areally-mean vertical, radial, and azimuthal components of the magnetic field and velocity vectors were calculated in both sunspots. The plasma in the sunspots rotated in opposite directions: in the leading sunspot, clockwise, and in the following sunspot, counterclockwise. The magnetic flux tubes that formed sunspots of the active region on the solar surface were twisted in one direction, clockwise. Electric currents generated as a result of the rotation and twisting of magnetic flux tubes were also flowing in one direction. Azimuthal components of magnetic and velocity fields of both sunspot umbrae reached their maximum on December 11, 2006. By the start of the X3.4 flare (December 13, 2006), their values became practically equal to zero.  相似文献   

17.
Rotational Modulation of Microwave Solar Flux   总被引:1,自引:0,他引:1  
Time series data of 10.7 cm solar flux for one solar cycle (1985–1995 years) was processed through autocorrelation. Rotation modulation with varying persistence and period was quite evident. The persistence of modulation seems to have no relation with sunspot numbers. The persistence of modulation is more noticeable during 1985–1986, 1989–1990, and 1990–1991. In other years the modulation is seen, but its persistence is less. The sidereal rotation period varies from 24.07 days to 26.44 days with no systematic relation with sunspot numbers. The results indicate that the solar corona rotates slightly faster than photospheric features. The solar flux was split into two parts, i.e., background emission which remains unaffected by solar rotation and the localized emission which produces the observed rotational modulation. Both these parts show a direct relation with the sunspot numbers. The magnitude of localized emission almost diminishes during the period of low sunspot number, whereas background emission remains at a 33% level even when almost no sunspots may be present. The localized regions appear to shift on the solar surface in heliolongitudes.  相似文献   

18.
We applied automatic identification of sunspot umbrae and penumbrae to daily observations from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to study their magnetic flux density (B) and area (A). The results confirm an already known logarithmic relationship between the area of sunspots and their maximum flux density. In addition, we find that the relation between average magnetic flux density ( $B_{\rm avg}$ ) and sunspot area shows a bimodal distribution: for small sunspots and pores (A≤20 millionth of solar hemisphere, MSH), $B_{\rm avg} \approx 800~\mbox{G}$ (gauss), and for large sunspots (A≥100 MSH), $B_{\rm avg}$ is about 600 G. For intermediate sunspots, average flux density linearly decreases from about 800 G to 600 G. A similar bimodal distribution was found in several other integral parameters of sunspots. We show that this bimodality can be related to different stages of sunspot penumbra formation and can be explained by the difference in average inclination of magnetic fields at the periphery of small and large sunspots.  相似文献   

19.
In order to explore the mechanism of the solar cycle luminosity change observed by the Active Cavity Radiometer Irradiance Monitor (ACRIM) I experiment on board of the spacecraft Solar Maximum Mission, we examined running mean time profiles of the daily ACRIM data from the declining phase of solar cycle 21 to the rising phase of solar cycle 22. By comparing them with those of the daily sunspot number, integrated surface magnetic field flux, integrated He I 10830 Å line equivalent width data, and two kinds of data sets of the daily integrated Ca II K line index as indices of the surface magnetic activities, we found (i) that the running mean time profiles of the six independent data sets have several peaks and valleys in common in one solar cycle with time intervals on the order of a few hundreds of days, and (ii) that the peaks and valleys of the ACRIM data profiles followed the peaks and valleys of all the other five indices of the surface activities by 40 to 60 days. This time delay phenomenon suggests (i) that the luminosity modulation was not directly caused by dark and bright features of the surface magnetic activities that the other five indices represent, and (ii) that the missing sunspot radiative flux which was blocked by sub-surface magnetic flux tubes of sunspots and sunspot groups should be re-radiated 40 to 60 days after the surface emergence of the magnetic flux tubes. The concept of the time delay resolves the enigma of the missing sunspot radiative flux and the enigma of the ACRIM experiment that the luminosity dropped when a sunspot or a sunspot group appeared on the surface while the yearly mean of the luminosity decreased and increased along with the decrease and increase of the yearly sunspot number of the 11-year solar cycle. A model of the mechanism to understand these phenomena is presented and its application to other stars is suggested.  相似文献   

20.
Gupta  S.S.  Sivaraman  K.R.  Howard  Robert F. 《Solar physics》1999,188(2):225-236
The Kodaikanal sunspot data set covering the interval 1906–1987 is analyzed for differential rotation of sunspots of different sizes. As is known, smaller sunspots rotate faster than larger sunspots, and this result is verified in the analysis of this data set. These results agree well with the Mount Wilson sunspot results published earlier. The activity cycle dependence of sunspot rotation is studied. An increase in this rate at the minimum phase is seen, which has been reported earlier. It is demonstrated that this cycle variation is seen for sunspots in all size categories, which suggests that it is not a relative increase in the number of the faster-rotating small sunspots that causes the cycle dependence. These results are discussed as they may relate to subsurface dynamic properties of the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号