首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
— Well temperature logs from 61 sites located in discontinuous and continuous permafrost regions of northern Canada are analyzed. The method of functional space inversion (FSI) is applied to the set of precise temperature logs from wells located between 60 ° and 82 °N. There is strong evidence of extensive ground surface temperature (GST) warming beginning in the late 18th century and lasting until the 20th century. This was preceded by a lengthy period of cooling. The approximate average increase of the surface temperature of Canadian Arctic, based on all individual GST histories, is > 1.3 °C for the last 200 years. Simultaneous inversion of all well temperature data suggests an even higher warming (approximately 2 °C). There has been no strong south-to-north gradient in the ground warming magnitude when northern Canadian data are compared with eastern and central Canadian data south of 60 °N which also shows warming close to 2 °C. In Alaska, warming of some 2 °C has been restricted mainly to the 20th century. In general, however, a high warming magnitude is common for most of Canada and Alaska for the previous century. The averaged GST history (GSTH) for the Canadian Arctic is calibrated with and compares visually with a variety of recently published regional and hemispheric proxy climate reconstructions. These show that GST warming derived from well temperature logs is generally higher than one shown by other proxy (mainly tree-ring reconstructions).Received April, 2003  相似文献   

2.
Changes in solar ultraviolet flux produce changes in ozone concentration in the upper stratosphere with associated radiative and dynamical effects. At low latitudes, the response of ozone mixing ratio to solar UV variations on the time scale of the solar rotation period is well characterized observationally. In addition, there is some provisional evidence for an ozone response at intermediate periods of 60-80 days. Current two-dimensional stratospheric models simulate the observed 27-day response amplitudes and phase lags with reasonable accuracy in the upper stratosphere. The observed response of total ozone on the 27-day time scale is also in approximate agreement with the same models although observed ozone sensitivities and phase lags are slightly larger than expected theoretically. Future studies of the 27-day response at higher latitudes and altitudes are needed to test more completely our understanding of the direct effects of solar UV variability on the middle atmosphere.  相似文献   

3.
Summary Winter and summer Mid-Latitude (45oN) atmospheres to 90 km, two of a family of nine atmospheres supplemental to the U.S. Standard Atmosphere (1962), provide information on atmospheric structure by seasons rather than the mean annual data shown in the Standard, which is described for reference. Principal data sources for constructing these atmospheres consisted of summaries of Northern Hemisphere radiosonde observations at stations near, 45oN, and observations made from rockets and instruments released by rockets, from nearly a dozen Northern Hemisphere launching sites.Winter and summer temperature-height profiles begin with surface temperatures of –1° and +21 °C, respectively, and contain three isothermal layers: –58°C at 19 to 27 km in winter and –57.5°C at 13 to 17 km in summer; –7.5° and +2.5°C at 47 to 52 km; and –79.5 and –99°C at 80 to 90 km, respectively. The temperature-height curve for the U.S. Standard has a surface temperature of +15°C with isothermal regions at 11 to 20 km (–56.5°C), 47 to 52 km (–2.5°C), and 80 to 90 km (–92.5°C). In all three atmospheres, temperature gradients for various segments are linear with geopotential, height. Humidity is incorporated into the lowest 10 km of the Supplemental Atmospheres, whereas the Standard is dry. Figures and tables depict temperature, relative humidity, pressure, and density for winter and summer, and temperature, pressure, density, speed of sound, and dynamic viscosity for the U.S. Standard Atmosphere.The Supplemental Atmospheres are mutually consistent; zonal wind profiles, computed from the geostrophic wind equation and selected pressure heights, compare favorably with existing radiosonde and rocket wind observations.  相似文献   

4.
We study temporal changes of the rigidity (R) spectrum of the harmonics of the 27-day variation of the galactic cosmic ray (GCR) intensity using neutron monitors (NM) data for the period 1965–2002. We show that the rigidity spectrum of the third harmonic (9 days) of the 27-day variation of the GCR intensity changes in a similar way as the spectra of the first and second harmonics, being hard in the maximum epochs and soft in the minimum epochs of solar activity. We ascribe this finding to the alternation of the sizes of the modulation regions of the 27-day variation of the GCR intensity in different epochs of solar activity. The average size of the vicinity of the corotating interaction regions, causing the 27-day variation of the GCR intensity, is less in the minimum epochs than in the maximum epochs of solar activity. A vicinity of the corotating interaction regions of larger size involves in modulation higher rigidity particles of GCR than the vicinity of smaller size; thus, this statement can be considered as one of the reasons leading to the hardening of the rigidity spectrum of the harmonics of the 27-day variation of the GCR intensity in maximum epochs compared with minimum epochs of solar activity.We also show that the temporal changes of the power rigidity spectrum of the third harmonic of the 27-day variation of the GCR intensity are negatively correlated with the rigidity spectrum of the 11-year variation of the galactic cosmic ray intensity.We found a recurrence in the temporal changes of the amplitudes of the first harmonic of the 27-day variation of the GCR intensity and in some parameters of solar activity and solar wind.  相似文献   

5.
Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d–1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.  相似文献   

6.
Measurements of the hydroxyl rotational temperatures at about 87 km altitude above Wuppertal (51.3°N, 7.2°E), Germany, are analysed. The time series covers the time interval from 1987 until 2005 and consists of more than 4000 night mean temperature data. Seasonal and longer-term trends are removed from the data set and OH* temperature fluctuations on temporal scales of about 3–40 days are derived. Various spectral analysis techniques (harmonic analysis, maximum entropy method and wavelet transform) are applied. Can – due to the Sun's rotation – the irregular pattern of sunspots on the solar disc lead to OH* temperature fluctuations? Pronounced spectral components in the OH* temperature fluctuations around a period from 27 to 31 days are frequently observed. We tentatively attribute these signatures to the differential rotation of the Sun: Sun's equatorial regions rotate faster (taking only about 27 days) than the polar regions. Sunspots occur at heliographic latitudes at about ±40°, which correspond to a rotation rate of about 27–31 days. The OH* temperature fluctuations within this period range show a long-term modulation of 11 years. Thus, tracking the spectral intensity of the 27- to 31-day component should allow the indirect monitoring of the solar sunspot cycle.  相似文献   

7.
The low frequency (LF) nighttime radio-wave absorption in the lower ionosphere has been measured at Prhonice (50°N, 15°E) in central Europe for over 35 years. Digital measurements, performed since summer 1988, allow absorption oscillations in the period range 10 – 180 mins, which are believed to reflect gravity wave activity, to be derived. Unfortunately, problems with the transmitter in recent years terminated the evaluation of gravity wave activity. The analysis of the available information (6 years of data) allows two conclusions to be drawn as to the effects of the solar activity on gravity wave activity: (1) there is no detectable effect of the solar 27-day variation on gravity wave activity; (2) there is an indication that the positive effect of the 11-year solar cycle on gravity wave activity in the winter half of the year is remarkable (lack of data in summer). The result concerning the solar cycle effect is, to a certain extent, preliminary, because the available data do not cover a complete solar cycle. A comparison with results from other stations and an interpretation of results are presented.  相似文献   

8.
Wind and temperature profiles measured routinely by rockets at Ryori (Japan) since 1970 are analysed to quantify interannual changes that occur in the upper stratosphere. The analysis involved using a least square fitting of the data with a multiparametric adaptative model composed of a linear combination of some functions that represent the main expected climate forcing responses of the stratosphere. These functions are seasonal cycles, solar activity changes, stratospheric optical depth induced by volcanic aerosols, equatorial wind oscillations and a possible linear trend. Step functions are also included in the analyses to take into account instrumental changes. Results reveal a small change for wind data series above 45 km when new corrections were introduced to take into account instrumental changes. However, no significant change of the mean is noted for temperature even after sondes were improved. While wind series reveal no significant trends, a significant cooling of 2.0 to 2.5 K/decade is observed in the mid upper stratosphere using this analysis method. This cooling is more than double the cooling predicted by models by a factor of more than two. In winter, it may be noted that the amplitude of the atmospheric response is enhanced. This is probably caused by the larger ozone depletion and/or by some dynamical feedback effects. In winter, cooling tends to be smaller around 40–45 km (in fact a warming trend is observed in December) as already observed in other data sets and simulated by models. Although the winter response to volcanic aerosols is in good agreement with numerical simulations, the solar signature is of the opposite sign to that expected. This is not understood, but it has already been observed with other data sets.  相似文献   

9.
The variability of stratospheric planetary waves and their possible connection with the 11-year solar cycle forcing have been investigated using annual-mean temperatures for the period of 1958–2001 derived from two reanalysis data sets. The significant planetary waves (wavenumbers 1–3) can be identified in the northern mid-high latitudes (55–75°N) in the stratosphere using this data. Comparisons with satellite-retrieved products from the Microwave Sounding Unit (MSU) confirm the significant planetary wave variability seen in the reanalyses. A planetary wave amplitude index (PWAI) is defined to indicate the strength of the stratospheric planetary waves. The PWAI is derived from Fourier analysis of the temperature field for wavenumbers 1–3 and averaged over 55–75°N latitude and the 70–20 hPa layers. The results include two meaningful inter-annual oscillations (2- and 8-year) and one decadal trend (16-year) that was derived from wavelet analysis. The stratospheric temperature structure of the wave amplitudes appear associated with the Arctic Oscillation (AO) which explicitly changed with the PWAI. The temperature gradients between the polar and mid-high latitudes show opposite tendencies between the top-10 strong and weak wave regimes.The variation of the planetary wave amplitude appears closely related to the solar forcing during the recent four solar cycles (20–23). The peak of the 2-year oscillation occurs synchronously with solar minimum, and is consistent with the negative correlation between the PWAI and the observed solar UV irradiance. The UV changes between the maxima and minima of the 11-year solar cycle impact the temperature structure in the middle-lower stratosphere in the mid-high latitudes and hence influence the planetary waves. During solar maximum, the dominant influence appears to be exerted through changes in static stability, leading to a reduction in planetary wave amplitude. During solar minimum, the dominant influence appears to be exerted through changes in the meridional temperature gradient and vertical wind shear, leading to an enhancement of planetary wave amplitude.  相似文献   

10.
The results of a three-dimensional numerical simulation of changes in the temperature and wind within a height range of up to 100 km caused by changes in fluxes in the solar ultraviolet (UV) radiation in the 23rd solar activity cycle (which was characterized by unusually low values of UV-radiation fluxes) and also of global changes in the ozone content are presented. The simulation results showed that the response of the temperature to variations in the UV radiation are substantially of a nonzonal character, which is caused by the presence in the model of sources of quasi-stationary waves corresponding to the observational data.  相似文献   

11.
A global numerical weather prediction system is extended to the mesosphere and lower thermosphere (MLT) and used to assimilate high-altitude satellite measurements of temperature, water vapor and ozone from MLS and SABER during May–July 2007. Assimilated temperature and humidity from 100 to 0.001 hPa show minimal biases compared to satellite data and existing analysis fields. Saturation ratios derived diagnostically from these assimilated temperature and water vapor fields at PMC altitudes and latitudes compare well with seasonal variations in PMC frequency measured from the aeronomy of ice in the mesosphere (AIM) satellite. Synoptic maps of these diagnostic saturation ratios correlate geographically with three independent transient mesospheric cloud events observed at midlatitudes by SHIMMER on STPSat-1 and by ground observers during June 2007. Assimilated temperatures and winds reveal broadly realistic amplitudes of the quasi 5-day wave and migrating tides as a function of latitude and height. For example, analyzed winds capture the dominant semidiurnal MLT wind patterns at 55°N in June 2007 measured independently by a meteor radar. The 5-day wave and migrating diurnal tide also modulate water vapor mixing ratios in the polar summer MLT. Possible origins of this variability are discussed.  相似文献   

12.
This paper presents a numerical model and results for the mid-latitude ionospheric profile below the peak of the F2-layer. The basis of the model is the solving of equations for four ionic species O+, NO+, O+2 and N+2, as well as the meta-stable O+(2D) and O+(2P). Diffusion and wind-induced drifts and 21 photo-chemical reactions are also taken into account. Neutral atmospheric density and temperature are derived from the MSIS86 model and solar extreme ultraviolate irradiance from the EUV91 model. In an effort to obtain a more realistic ionospheric profile, the key point at foF2 and hmF2 is fitted from the simulation to observations. The model also utilizes the vertical drifts derived from ionosonde data with the help of the Servo model. It is shown that the ionospheric height of peak can be reproduced more accurately under the derived vertical drifts from the Servo theory than with the HWM90 model. Results from the simulation are given for Wuchang (30.5°N, 114.4°E) and Wakkanai (45.6°N, 141.7°E), showing the profile changes with season and solar activity, and the E-F valley structure (the depth and the width). This simulation also reveals the importance of meta-stable ions and dynamical transport processes on the formation of the F1-ledge and F1-F2 valley.  相似文献   

13.
Periods of planetary waves, especially the 10- and 16-day waves, were found in Fourier analyses of 10-year geomagnetic time series from two mid-latitude stations in the northern hemisphere. This suggests that planetary waves influence geomagnetic variations. Cross-spectral analysis of magnetic time series from seven stations located at around 50°N at the beginning of 1979, when a 16-day wave occurred in the stratosphere, also shows a 16-day oscillation. However, study of the phases does not reveal the horizontal direction of wave propagation. Furthermore, the temporal variations of the 16-day oscillation in magnetic time series are presented as dynamic spectra and the results are compared with global investigations of geopotential height data at 1 hPa (around 48 km) with respect to the 16-day wave for the same time interval. In some cases this comparison suggests a clear correlation between geomagnetic variations and planetary waves as well as a propagation of the 16-day wave up to the dynamo region (100-170 km).  相似文献   

14.
We simulate the time evolution of the neutral and charged species in the terrestrial middle atmosphere using a 1-D radiative-convective model with interactive neutral and ion chemistry driven by four different sets of daily spectral solar irradiance (SSI) available in the literature for the year 2000. Obtained daily time series of ozone, hydroxyl and electron densities are used to calculate their sensitivity to the short-term SSI variability at 205 nm. All applied SSI data sets possess 27-day solar rotation cycle; however, its amplitude and phase as well as the correlation between considered SSI time series differ among data sets leading to the different behavior of the atmospheric response. Contrary, the ozone and hydroxyl sensitivities to the SSI changes during solar rotation cycle are almost identical for all applied SSI data sets in the stratosphere. In the mesosphere, the difference in correlation between SSI in Herzberg continuum and Lyman-α line in considered SSI data sets leads to substantial scatter of the sensitivity estimates based on 205 nm. Our results show that for the sensitivity analysis in the stratosphere based on the SSI at 205 nm any considered SSI data sets can be applied. For the mesosphere, where the sensitivity strongly varies among applied SSI data sets more robust results can be obtained using the sensitivity calculations based on the SSI in Lyman-α line.  相似文献   

15.
Long-term changes of temperature and wind data have been investigated using U.S. rocketsondes at six selected sites at northern tropical and subtropical locations (from 8°S to 34°N). The analysis method used here is based on a multi-function regression analysis that allows for a continuous linear trend, for natural variability, and for sudden changes of the mean due to successive instrumental improvements. Results show that while sensor replacement does not seem to induce major measurement bias, successive correction procedures have produced significant mean temperature shifts, mostly above 55 km. Changes in the local time of measurement may have an impact on trend estimates because of tidal effects. This effect is probably enhanced by the direct solar radiative heating on the sensor. Selecting data according to the time of measurement has sometimes reduced the amplitude of the observed cooling.Using a detailed statistical model and error analysis, significant temperature trends are detected in the upper stratosphere with amplitudes slightly increasing with height. As the trend profiles from the selected sites are very similar in patterns and magnitudes, a mean annual temperature trend profile is composed using these six data sets. A significant cooling of 1.1±0.6 K per decade is estimated for 25 km height, increasing with height up to 1.7±0.7 K per decade in the altitude range of 35 to 50 km, and to 3.3±0.9 K per decade near 60 km. Previous published simulations of stratospheric changes induced by greenhouse gas increases and stratospheric ozone depletion, using numerical models, predict smaller cooling than that estimated here by a factor of around two. A similar analysis for zonal wind data reveals no significant changes larger than 5 m · s−1 per decade.  相似文献   

16.
Atmospheric density measurements near 200 km from the Satellite Electrostatic Triaxial Accelerometer (SETA) experiment are analyzed for geomagnetic and solar flux variability effects. Data from the SETA experiment, onboard two satellites, are available for the periods of May to November 1982, and July 1983 to March 1984. The data utilized the span ±79.5° latitude, and are available for both day (1030 LT) and night (2230 LT). Annual and semiannual density variations are removed and regression analyses are performed on the residuals using a series of lagged 3 h Kp indices to determine and remove geomagnetic fluctuations. Densities are found to increase by as much as 134% in response to an increase in the Kp index from 1 to 6. Monthly curves are generated for the Kp regression coefficients to delineate seasonal-latitudinal and day/night dependences, which reflect the effects of mean meridional advection of disturbances from high to low latitudes. Further analyses are performed comparing measured densities with MSISE-90 predictions. Results show that the model is able to capture many of the prominent features, but does not fully predict the level of variability for the individual disturbance periods analyzed. After the geomagnetic effects are removed, the residual densities are interpreted in terms of solar flux variability. The daily-averaged SETA density residuals are strongly correlated with long-term solar flux variability, and exhibit a much greater dependence on the 27-day solar rotation period than MSISE-90 predictions. Variations in residual density of the order of 10–20% occur in association with day-to-day and 27-day solar flux variations. The MSIS model does not accurately predict the magnitude of these short-term density variations in response to solar activity.  相似文献   

17.
With the launch of the TIMED satellite in December 2001, continuous temperature and wind data sets amenable to MLT tidal analyses became available. The wind measuring instrument, the TIMED Doppler Interferometer (TIDI), is operating since early 2002. Its day- and nighttime capability allows to derive tidal winds over a range of MLT altitudes. This paper presents climatologies (June 2002–June 2005) of monthly mean amplitudes and phases for six nonmigrating semidiurnal tidal components between 85 and 105 km altitude and between 45°S and 45°N latitude (westward propagating wave numbers 4, 3, 1; the standing oscillation s0; and eastward propagating wave numbers 1, 2) in the zonal and meridional wind directions.Amplitude errors are 15–20% (accuracy) and 0.8 m/s (precision). The phase error is 2 h. The TIDI analysis agrees well with 1991–1994 UARS results at 95 km. During boreal winter, amplitudes of a single component can reach 10 m/s at latitudes equatorward of 45°. Aggregate effects of nonmigrating tides can easily reach or exceed the amplitude of the migrating tide. Comparisons with the global scale wave model (GSWM) and the thermosphere–ionosphere–mesosphere–electrodynamics general circulation model (TIME-GCM) are partly inconclusive but they suggest that wave–wave interaction and latent heat release in the tropical troposphere both play an important role in forcing the semidiurnal westward 1, westward 3, and standing components. Latent heat release is the leading source of the eastward propagating components.  相似文献   

18.
Sreedharan  C. R.  Mani  A. 《Pure and Applied Geophysics》1973,106(1):1576-1580
The vertical profiles of ozone and temperature from a series of balloon soundings at Delhi (28°N), Poona (18°N) and Trivandrum (8°N) were studied with synoptic meteorological data. While both ozone and temperature profiles show similar variations over all three stations, ozone maxima being always associated with thermally stable layers, the variations are most pronounced over Delhi, particularly in winter and in early spring when a series of western disturbances pass over north India. Both ozone and temperature profiles over Delhi show a layer structure characterized by a series of maxima and minima in both the vertical distribution of ozone and temperature and these are most pronounced in the lower stratosphere. These variations are associated with the influx of ozone-rich middle latitude stratospheric air over Delhi replacing subtropical air.  相似文献   

19.
Ionospheric electron content (IEC) observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91E; dip Latitude 24.8°N), India, for the period 1975/80 and 1986/89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day) shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap) are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.  相似文献   

20.
Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January/February 1991 it had a zonal wave number of 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号